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occurrence of level coincidences in energy bands has a much richer structure than anticipated

previously. In particular, we identify robust level coincidences that cannot be removed by a small
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Recently, level crossings in the energy bands of crystals have been identified as a key signature for

topological phase transitions. Using realistic models we show that the parameter space controlling the

perturbation of the Hamiltonian compatible with the crystal symmetry. Different topological phases

that are insulating in the bulk are then separated by a gapless (metallic) phase. We consider HgTe/CdTe

quantum wells as a specific example.

& 2012 Elsevier Ltd. All rights reserved.
Recently level crossings in the energy bands of crystals have
become a subject of significant interest as they represent a key
signature for topological phase transitions induced, e.g., by tuning
the composition of an alloy or the thickness of a quasi-two-
dimensional (2D) system [1–4]. For example, it was proposed [5]
and soon after confirmed experimentally [6,7] that HgTe/CdTe
quantum wells (QWs) show a phase transition from spin Hall
insulator to a quantum spin Hall regime when the lowest
electron-like and the highest hole-like subbands cross at a critical
QW width of � 65 Å; see also [2,8–11]. Here we present a systematic
study of level crossings and anticrossings in the subband structure of
quasi-2D systems. We show that the parameter space characterizing
level crossings has a much richer structure than previously antici-
pated. In particular, we present examples for robust level coinci-
dences that are preserved while the system parameters are varied
within a finite range. Similar to the topological phase transitions
characterizing the quantum Hall effect [12], the insulating Z2 topolo-
gical phases [1] thus get separated by a gapless (metallic) phase. Such
an additional phase was previously predicted in Ref. [13]. Yet it was
found that this phase could occur only in 3D, but not in 2D. Also, it
was not clear which systems would realize such a phase. Here we
take HgTe/CdTe QWs as a realistic example, though many results are
relevant also for other quasi-2D systems

Level crossings were studied already in the early days of
quantum mechanics [14–16]. They occur, e.g., when atoms are
placed in magnetic fields in the transition region between the
ll rights reserved.

Northern Illinois University,
weak-field Zeeman effect and the high-field Paschen–Back effect.
Also, they occur when molecules and solids are formed from
isolated atoms. Hund [14] pointed out that adiabatic changes of
1D systems – unlike multi-dimensional systems – cannot give rise
to level crossings. Von Neumann and Wigner [15] quantified how
many parameters need to be varied for a level crossing. While levels
of different symmetries (i.e., levels transforming according to
different irreducible representations, IRs) may cross when a single
parameter is varied, to achieve a level crossing among two levels of
the same symmetry, it is in general necessary to vary three (two)
independent parameters if the underlying eigenvalue problem is
Hermitian (orthogonal). Subsequently, this problem was revisited
by Herring [16] who found that the analysis by von Neumann and
Wigner was not easily transferable to energy bands in a crystal due
to the symmetry of the crystal potential. Similar to energy levels in
finite systems, levels may coincide in periodic crystals if the levels
have different symmetries. Of course, unless the crystal is invariant
under inversion, this can occur only for high-symmetry lines or
planes in the Brillouin zone (BZ), where the group of the wave
vector is different from the trivial group C1. If at one end point k1 of
a line of symmetry a band with symmetry Gi is higher in energy
than the band with symmetry Gj, while at the other end point
k2 the order of Gi and Gj is reversed, these levels cross somewhere
in between k1 and k2. Herring classified a level crossing as
‘‘vanishingly improbable’’ if it disappeared upon an infinitesimal
perturbation of the crystal potential compatible with all crystal
symmetries. In that sense, a level coincidence at a high-symmetry
point of the BZ such as the G point k¼0 becomes vanishingly
improbable. For energy levels with the same symmetry, Herring
derived several theorems characterizing the conditions under
which level crossings may occur. In particular, he found that in
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Table 1
The point group of a QW for different growth directions starting from a bulk

semiconductor with diamond structure (point group Oh) or zinc blende structure

(point group Td) for a system without (‘‘sym.’’) or with (‘‘asym.’’) SIA.

Bulk [001] [111] [110] [mmn] [0mn] [lmn] Axial appr.

Oh sym. D4h D3d D2h C2h C2h Ci D1h

asym. C4v C3v C2v Cs Cs C1 C1v

Td sym. D2d C3v C2v Cs C2 C1 D1h

asym. C2v C3v Cs Cs C1 C1 C1v

R. Winkler et al. / Solid State Communications 152 (2012) 2096–2099 2097
the absence of inversion symmetry level crossings that are not

vanishingly improbable may occur for isolated points k such that
these crossings cannot be destroyed by an infinitesimal change in
the crystal potential, but they occur at some point near k. Here we
identify several examples for such robust level coincidences. This
illustrates that level coincidences in energy bands can be qualita-
tively different from level coincidences in other systems [15].

Recently, several studies focusing on topological phase transi-
tions recognized the importance of symmetry for level crossings
in energy bands [2,8–10]. Murakami et al. [2] studied the phase
transition separating spin Hall insulators from the quantum spin
Hall regime, focusing on generic low-symmetry configurations
with and without inversion symmetry. They found that without
inversion symmetry the phase transition is accompanied by a gap
closing at points k that are not high-symmetry points. In inver-
sion symmetric systems the gap closes only at points k¼G=2
where G is a reciprocal lattice vector. Here we show that level
crossings in quasi-2D systems can be characterized by a multi-
tude of scenarios, taking HgTe/CdTe quantum wells as a specific
example for which it is known that the lowest electron-like and
the highest hole-like subbands (anti)cross for a critical QW width
of about 65 Å [5–7,17]. In most semiconductors with a zinc
blende structure (point group Td) the s-antibonding orbitals form
the conduction band (IR G6 of Td), whereas the p-bonding orbitals
form the valence band (G8 and G7 of Td). The curvature of the G6

band is thus positive whereas it is negative for the G8 band. For
finite k, the four-fold degenerate G8 states (effective spin j¼ 3=2)
split into the so-called heavy hole (HH, mz ¼ 73=2) and light hole
(LH, mz ¼ 71=2) branches. In HgTe, the order of the G8 and G6

bands is reversed: G6 is located below G8 and it has a negative
(hole-like) curvature, whereas G8 splits into an electron
ðmz ¼ 71=2Þ and a hole ðmz ¼ 73=2Þ branch [18]. HgTe and CdTe
can be combined to form a ternary alloy HgxCd1�xTe, where the
fundamental gap E0 between the G6 and G8 bands can be tuned
continuously from E0 ¼ þ1:6 eV in CdTe to E0 ¼�0:3 eV in HgTe
with a gapless material for x� 0:84 [18]. Tuning the material
composition x thus allows one to overcome Herring’s conclusion
[16] that a degeneracy at k¼0 between two levels of different
symmetries is, in general, vanishingly improbable.

Layers of HgTe and CdTe can also be grown epitaxially on top
of each other to form QWs. At the interface the corresponding
states need to be matched appropriately. The opposite signs of the
effective mass inside and outside the well result in eigenstates
localized at the interfaces [19]. We calculate these eigenstates as
well as the corresponding subband dispersion EaðkÞ using a
realistic 8�8 multiband Hamiltonian H for the bulk bands G6,
G8, and G7, which fully takes into account important details of
EaðkÞ such as anisotropy, nonparabolicity, HH–LH coupling, and
spin–orbit coupling both due to bulk inversion asymmetry (BIA)
of the zinc blende structure of HgTe and CdTe as well as structure
inversion asymmetry (SIA) of the confining potential V(z). For
details concerning H and its numerical solution see Refs. [20,21].
In the following k¼ ðkx,kyÞ denotes the 2D wave vector.

The symmetry group G of a QW and thus the allowed level
crossings depend on the crystallographic orientation of the sur-
face used to grow a QW [a (001) surface being the most common
in experiments]. It also depends on whether we have a system
without or with BIA and/or SIA. The resulting point groups are
summarized in Table 1. We show below that these different
groups give rise to a rich parameter space for the occurrence of
level coincidences. For a proper symmetry classification we
project the eigenstates of H onto the IRs of the respective point
group [22]. In the following, all IRs are labeled according to Koster
et al. [23]. As spin–orbit coupling plays a crucial role for BIA and
SIA [20] as well as for topological phase transitions [1–4], all
IRs referred to in this work are double-group IRs. For comparison,
Table 1 also lists the point groups if the prevalent axial (or
spherical) approximation is used for H. In this approximation,
BIA is ignored and different surface orientations become
indistinguishable.

First we neglect the small terms in H due to BIA so that the
bulk Hamiltonian has the point group Oh. In the absence of SIA, a
quasi-2D system grown on a (001) surface has the point group D4h

(which includes inversion) and all electron and hole states
throughout the BZ are two-fold degenerate [22]. Subband edges
k¼0 in a HgTe/CdTe QW as a function of well width w are
shown in Fig. 1(a). The HH states transform according to G7

6 of
D4h. The electron-like and LH-like subbands transform according
to G7

7 . As expected, the G7
6 and G7

7 subbands may cross as a
function of w.

In the presence of SIA we cannot classify the eigenstates anymore
according to their behavior under parity. Without BIA the
point group becomes C4v. HH states transform according to G6 of
C4v and electron- and LH-like states transform according to G7. The
level crossings depicted in Fig. 1(a) remain allowed in this case
[8,24].

The situation changes when taking into account BIA. Without
SIA the point group becomes D2d. In this case, all subbands
transform alternately according to the IRs G6 and G7 of D2d,
irrespective of the dominant spinor components. In particular,
both the highest HH state and the lowest conduction band state
transform according to G6 of D2d so that around wC65 Å
we obtain an anticrossing between these levels of about
2.9 meV (for k¼0), see Fig. 1(b) [8–10]. With both BIA and SIA
the point group becomes C2v. Now we have only one double-
group IR G5. Thus it follows readily that all subbands anticross as
a function of a continuous parameter such as the well width.

While BIA opens a gap at k¼0, level coincidences remain
possible for some ~ka0 when the well width w is tuned to a
critical value ~w [2,16]. Considering a (001) surface with BIA, we
find, indeed, that for each direction f of k¼ ðk,fÞ, critical values
~w and ~k exist that give rise to a band crossing. Thus we get a line

in k space where the bands cross when w is varied within some
finite range. This result holds for QWs on a (001) surface with BIA,
without and with SIA (as studied experimentally in Refs. [6,7]). As
an example, Fig. 2(a) shows ~k in the presence of a perpendicular
electric field Ez ¼ 100 kV=cm.

In general, three independent parameters must be tuned for a
level coincidence in a quantum mechanical systems [15] if the
underlying eigenvalue problem is Hermitian. While the multi-
band Hamiltonian H used here [20] is likewise Hermitian (not
orthogonal), only two independent parameters (w and k¼ 9k9) are
necessary to achieve the level degeneracy. We have here an
example for the robustness of band coincidences under perturba-
tions that was predicted by Herring [16] to occur in systems
without a center of inversion (in multiples of four). It shows that
level coincidences in energy bands can behave qualitatively
different from level coincidences in other quantum mechanical
systems [15]. We note that the band coincidences found here are
not protected by symmetry in the sense that – unlike the other



Fig. 1. (Color online) Subband states in a symmetric HgTe/CdTe quantum well (for k¼0) as a function of well width w calculated with an 8�8 Hamiltonian (a) neglecting

BIA (point group D4h) and (b) with BIA (D2d). States transforming according to G7
6 of D4h (G6 of D2d) are shown in red; states shown in black transform according to G7

7 of

D4h (G7 of D2d).

Fig. 2. Critical wave vectors ~k that give rise to a level coincidence in a HgTe/CdTe QW (a) on a (001) surface taking into account BIA (b) on a (110) surface neglecting BIA. In

both cases a perpendicular field Ez ¼ 100 kV=cm was assumed. In (a) the level coincidence requires a well width ~w ¼ 66:1 Å for ~kJ½110� and ~w ¼ 66:3 Å for ~kJ½110�. In

(b) we have ~w ¼ 60:9 Å for ~kJ½001� and ~w ¼ 60:7 Å for ~kJ½110�.

Table 2

Irreducible representations of quasi-2D states ðk¼ 0Þ on a (001) and (111) surface,

starting from a bulk semiconductor with diamond (point group Oh) or zinc blende

(point group Td) structure for a system without (‘‘sym.’’) or with (‘‘asym.’’)

structure inversion asymmetry.

Bulk (001) (111)

Group c, LH HH Group c, LH HH

Oh sym. D4h G7
7 G7

6
D3d G7

4 G7
5 � G7

6

asym. C4v G7 G6 C3v G4 G5 � G6

Td sym. D2d G7=6 G6=7 C3v G4 G5 � G6

asym. C2v G5 G5 C3v G4 G5 � G6
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cases discussed above – the group of ~k is the trivial group
C1 containing only the identity.

The situation is different for quasi-2D systems grown on a
(111) surface. In the absence of BIA and SIA, the point group is
D3d. HH states at k¼0 transform according to the complex
conjugate IRs Gþ5 � Gþ6 or G�5 � G�6 , where � indicates that these
IRs must be combined due to time reversal symmetry. All other
subband edges transform according to G7

4 . In the presence of BIA
and/or SIA the point group becomes C3v. Then HH states trans-
form according to the complex conjugate IRs G5 � G6. Electron-
like and LH-like states transform according to G4. Thus it follows
that on a (111) surface the HH states always cross the other states
at k¼0 as a function of w [similar to Fig. 1(a)]. The IRs for different
geometries starting out from a (001) or (111) surface are summarized
in Table 2.

Finally we consider quasi-2D states on a (110) surface. In the
absence of BIA and SIA, the point group becomes D2h. Here, all
subbands transform alternately according to Gþ5 and G�5 with the
topmost HH-like subband being Gþ5 and the lowest electron-like
subband being G�5 . A level crossing as a function of w is thus again
allowed at k¼0. In the presence of either BIA or SIA the symmetry
is reduced to C2v. While the point group in both cases is the same
[25], we obtain a remarkable difference between these cases.
With SIA the level crossing occurs for a line in k space, similar to
the (001) surface, see Fig. 2(b). With BIA we obtain a level



R. Winkler et al. / Solid State Communications 152 (2012) 2096–2099 2099
crossing only for kJ½110� with ~k � 0:0012 Å
�1

and ~w � 62:5 Å,
thus giving an example for the level crossings occurring for
isolated points ~ka0 as discussed by Murakami et al. [2]. These
examples illustrate that the occurrence of level crossings at either
isolated points or along continuous lines in parameter space is not
simply related with the system symmetry [25]. In the presence of
both BIA and SIA (group Cs) we have the same situation as with
BIA only, i.e., adding SIA changes the values of ~k and ~w, but we
keep ~kJ½110�.

In conclusion, we have shown that a rich parameter space
characterizes the occurrence of level coincidences in the subband
structure of quasi-2D systems. In particular, we have identified
level coincidences for wave vectors ~ka0 that cannot be removed
by a small perturbation of the Hamiltonian compatible with the
QW symmetry [16]. Taking into account the full crystal symmetry
of real materials is an important difference between the current
analysis and previous work that considered only lattice periodi-
city, inversion and time reversal symmetry. The full set of
symmetries imposes additional constraints on the band Hamiltonian
beyond the torus topology of the BZ that reflects the translational
symmetry. These additional constraints generally reduce the
number of parameters that are required to obtain level crossings
[16] so that robust level coincidences can be achieved even in
quasi-2D systems. As quasi-2D systems can be designed and
manipulated in various ways not available in 3D this opens new
avenues for both experimental and theoretical research of topo-
logically nontrivial materials.

As a specific example, we have considered HgTe/CdTe QWs,
where a particular level crossing reflects a topological phase
transition from spin Hall insulator to a quantum spin Hall regime
[5–7]. The robustness of the level coincidences found here implies
that these phases, which are insulating in the bulk, are separated
by a gapless phase similar to the metallic phases that separate the
insulating quantum Hall phases [12]. While in HgTe/CdTe QWs
the range of critical well widths ~w giving rise to the metallic
phase is rather small (about 0.1 monolayers), we expect that
future research will be able to identify materials showing larger
parameter ranges that can be probed more easily in experiments.
We note that our symmetry-based classification of level crossings
is independent of specific numerical values of the band structure
parameters entering the Hamiltonian H. Indeed, our findings are
directly applicable also to other quasi-2D systems made of bulk
semiconductors with a zinc blende or diamond structure such as
hole subbands in GaAs/AlGaAs and SiGe quantum wells. In
general, the k � p coupling between the LH1 (Gþ7 of D4h) and
HH2 (G�6 ) subbands gives rise to an electron-like dispersion of the
LH1 subband for small wave vectors k [26]. If these subbands
become (nearly) degenerate at k¼0, the coupling between these
subbands becomes the dominant effect. This situation is
described by the same effective Hamiltonian that characterizes
the subspace consisting of the lowest electron and highest HH
subband in a HgTe/CdTe QW [5]. It can be exploited if biaxial
strain is used to tune the separation between the LH1 and HH2
subbands [27].
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