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a b s t r a c t

Software obfuscation is intended to protect a program by thwarting reverse engineering.

Several types of software obfuscation have been proposed, and control-flow obfuscation is

a commonly adopted one. In this paper, we present a framework to evaluate parallel

control-flow obfuscation, which raises difficulty of reverse engineering by increasing

parallelism of a program. We also define a control flow graph of a program and some

atomic operators for obfuscating transformations. The proposed framework comprises

three phases: parsing, formalization and evaluation. A program is first parsed to a control

flow graph. Then, we formalize a parallel control-flow obfuscating transformation based on

our atomic operators. By selecting target code blocks in the control flow graph and applying

obfuscating transformations to the target code blocks, the original program is then

obfuscated. In the third phase, we define a measure to calculate the program complexity.

The measure can be considered as a degree to which an obfuscating transformation can

confuse a human trying to understand the obfuscated program. Such a measure can also

be used as the base of the potency metric to estimate the capability of the obfuscated

program against reverse engineering. Our novel framework helps efficiently examine

a control-flow obfuscating transformation in a systematic manner and helps select an

appropriate obfuscating transformation among a number of candidates to better protect

a program.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction flow obfuscation, data obfuscation and layout obfuscation.
Software obfuscation is a technique used to increase potency

of a program and protect the software piracy. Namely, soft-

ware obfuscation transforms a program into an obfuscated

one which thwarts reverse engineering, but still preserves the

original functionality (Collberg et al., 1997). Despite a theoretic

proof of impossibility of omnipotent software obfuscation

(Barak et al., 2001), positive results can still be obtained under

specific conditions (Lynn et al., 2004).

According to Collberg’s study (Collberg et al., 1997), soft-

ware obfuscation can be classified into three types: control-
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Control-flow obfuscation disguises the real execution of

a program under the scrambled control flow of that program

to make reverse engineering difficult. Data obfuscation

transforms data and data structures in a program. Layout

obfuscation removes information that an attacker can seize

from a program. Various obfuscating transformations of each

type have been proposed (Collberg et al., 1997; Wang et al.,

2003; Popov et al., 2007; Majumdar et al., 2007b; Kazuhide

et al., 2006). Each obfuscating transformation has its indi-

vidual restrictions and provides different levels of resistance

against reverse engineering. Therefore, some methods were
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conceived to measure the capability of an obfuscating trans-

formation (Udupa et al., 2005; Madou et al., 2006; Naeem et al.,

2007; Anckaert et al., 2007; Majumdar et al., 2007a; Ceccato

et al., 2008, 2009; Tsai et al., 2009). The evaluation methods

can further be classified into two types: empirical analysis and

formal analysis.

The empirical analysis evaluates an obfuscating trans-

formation by running practical experiments to obtain evalu-

ation results (Udupa et al., 2005; Madou et al., 2006; Naeem

et al., 2007; Anckaert et al., 2007; Majumdar et al., 2007a), or

to determine the time and effort a human takes to interpret an

obfuscated program (Ceccato et al., 2008, 2009). The above

work (Udupa et al., 2005; Madou et al., 2006; Naeem et al., 2007;

Anckaert et al., 2007; Majumdar et al., 2007a; Ceccato et al.,

2008, 2009) executed various experiments to manifest

the effects and capabilities of different obfuscating

transformations.

In the empirical studies, implementation of new trans-

formations is required to repeat the experiments on applying

different transformations to the same program. The experi-

ment results show that effects stemming from an obfuscating

transformation may change with the structures of a target

program where the transformation is applied to. Moreover,

different combinations of obfuscating transformations may

produce different results. In short, an experiment result is

tightly related to a specific programwith a specific obfuscating

transformation. It is less efficient and inflexible to estimate

the capability of an obfuscating transformation by the

empirical studies, especially when we want to compare

multiple transformations and select a proper one to protect

a designate program at the design stage.

In our previous work (Tsai et al., 2009), we designed

a framework to quantify the effects of control-flow obfus-

cating transformations.We proposed amodel to formalize the

obfuscating transformations and target programs. Then, we

devised measures to assess the capability of the trans-

formations. Based on our model and measures, we can

compare different control-flow obfuscating transformations

easily. The capability of a control-flow obfuscating trans-

formation can be estimated at the design stage on the basis of

the formal representation of the transformation. Neverthe-

less, our previous work can only measure the capability of

a control-flow obfuscating transformation when applied on

a sequential program. Since parallel programs are popular

today, we extend our previous framework to evaluate the

effect of an obfuscating transformation.

This paper presents a framework for evaluating parallel

control-flow obfuscating transformations, which aim at

scrambling the control-flow graph (CFG) of a program by

increasing its parallelism. The framework consists of three

components: parser, formalizer and evaluator. The parser is

in charge of interpreting and converting a program, either

parallel or sequential, to its corresponding CFG. The formal-

izer can be used to describe control-flow obfuscating trans-

formations,which can be decomposed into the defined atomic

operators. We devise a new atomic operator to complement

the insufficiency of our previous work (Tsai et al., 2009), such

that parallel control-flow obfuscating transformations can be

modeled by our framework. After applying a transformation

to a specified CFG, either parallel or sequential, we can obtain
an obfuscated CFG. Then, the evaluator analyzes the capa-

bility of an obfuscating transformation by comparing the

original and obfuscated CFGs. We present a new measure to

determine complexity of a parallel program, which is a base

for deriving the capability of a parallel control-flow obfus-

cating transformation. We conjecture that the measure may

be related to the capability of an obfuscated program against

reverse engineering.

We hope that based on the framework we can not only

efficiently examine a control-flow obfuscating transformation

but easily understand how to assemble and create a more

effective transformation, especially at the design stage. We

also expect that our framework, concerning the impacts

resulting from choosing different target code blocks, helps

select targets and proper obfuscating transformations to

reach better potency.

This paper is organized as follows. In Section 2, we review

the related work. Section 3 introduces the definition of

a parallel CFG and Section 4 describes formalization of parallel

control-flow obfuscating transformations. Section 5 presents

a measure for evaluating parallel control-flow obfuscating

transformations. We demonstrate our framework by exam-

ples in Section 6 and conclude the paper in the last section.
2. Related work

In recent years, many researchers have proposed various

evaluation methods to assess effectiveness of an obfuscating

transformation. The methods coarsely fall into two types:

empirical analysis (Udupa et al., 2005; Anckaert et al., 2007;

Majumdar et al., 2007a; Ceccato et al., 2008, 2009) and formal

analysis (Tsai et al., 2009). The empirical analysis evaluates an

obfuscating transformation by running practical experiments

to observe how much an obfuscated program resists against

deobfuscators or how much time a human takes to interpret

the program. The formal analysis mainly focuses onmodeling

an obfuscating transformation into a formal representation

and measures the transformation on the basis of the

formalization.

2.1. Empirical analysis

Udupa et al. (2005) examined control-flow flattening,

a control-flow obfuscating transformation, by measuring the

time required for automatic deobfuscation. Anckaert et al.

(2007) introduced a framework to evaluate an obfuscating

transformation based on program complexity metrics, which

measure the complexity with respect to instructions, control

flow, data flow and data. The authors implemented three

obfuscating transformations (control flow flattening, static

disassembly thwarting and binary opaque predicates), applied

the transformations to eleven C programs of the SPECint 2000

benchmark suite, and produced obfuscated programs. The

complexity analyses show that the three transformations can

provide positive effects, but the ‘binary opaque predicates’

transformation is less potent than the other two trans-

formations. Majumdar et al. (2007a) introduced several

metrics to evaluate the effect of another reverse-engineering

technique, backward slicing. The authors also implemented

http://dx.doi.org/10.1016/j.cose.2012.08.003
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three obfuscating transformations (bogus predicate, adding to

a while loop and variable encoding), applied them to five

programs and obtained the differences ofmetric values before

and after obfuscation. The differences imply that these

obfuscating transformations can significantly make reverse

engineering difficult.

Taking questionnaires as a basis, Ceccato et al. (2008, 2009)

assessed the difficulty an attacker would encounter in

examining the ‘identifier renaming’ obfuscation technique.

The authors asked human users to interpret the original and

obfuscated programs and fill out a questionnaire. After

analyzing the questionnaires with famous statistical tests,

such as the ManneWhitney test and the Wilcoxon test, the

authors pointed out that the ‘identifier renaming’ technique

can effectively reduce the capability of human users in

understanding the source codes of an obfuscated program.

The above empirical studies (Udupa et al., 2005; Anckaert

et al., 2007; Majumdar et al., 2007a; Ceccato et al., 2008, 2009)

intended to understand the effects of obfuscation. They

launched practical experiments to measure individual

obfuscating transformations with the defined metrics or with

the perception of human users. These experiment results re-

flected the relation between a specific program and an

obfuscating transformation. Since a transformation may

cause different effects upon different programs, it is necessary

to assess obfuscation in finer grains, such that the differences

can be distinguished. With a fine grained assessment, we can

also evaluate effect of a compound obfuscating trans-

formation which is constituted by one or more individual

transformations. However, the empirical studies provide little

knowledge to address the issues, like the order of trans-

formations or the possibility of obtaining different results

even if we apply the same transformation to the same

program.
2.2. Formal analysis

In our previous work (Tsai et al., 2009), we presented a graph

approach to quantifying the effect of control-flow obfuscating

transformations. We proposed a formal method based on

atomic operators which control-flow obfuscating trans-

formations can be decomposed into. Each atomic operator is

assigned a code block as its target such that an obfuscating

transformationcanbe formallymodeled infinergrains.Table1

lists the nine atomic operators defined in our previous work.

Since different sequences of atomic operators may lead to

different obfuscating transformations, our previous work is
Table 1 e Atomic operators of control-flow obfuscating
transformations (Tsai et al., 2009).

Atomic operators Notations

Insert type I/II/III opaque predicates OF
Op=O

T
Op=O

?
Op

Split simple code blocks OS;n
S

Split branches OB;n
S

Reorder code blocks OR

Replace with equivalent codes OE

Insert dummy simple blocks OS
D

Insert dummy loops OL
D

helpful in understanding the effect of a compound trans-

formation and the effect caused by different order of trans-

formations. The work also considers that the effect of an

obfuscating transformation may change with target code

blocks even if the atomic operators are applied in the same

sequence. However, the method was designed simply for

sequential control-flow obfuscating transformations. As an

improvement of the programming skills, it is essential to

evaluate parallel control-flow obfuscating transformations, in

addition to the sequential transformations. To provide amore

comprehensive evaluation, this paper improves our previous

work to support the capability of assessing parallel control-

flow obfuscating transformations.
3. Parsing phase

Control flow graphs (CFGs) can be used to represent the

control flows of a programand to help an analyzer understand

the program easily (Cota et al., 1994; Stotts and Cai, 1988;

Cheng, 1993). In this paper, we facilitate the formalization of

parallel control-flow obfuscating transformations by

leveraging the definitions of a CFG. As a high-level abstraction,

a program can be parsed into a directed graph whose vertices

are code blocks of the program and edges represent the

execution sequence of two adjacency nodes. An edge between

two code blocks, ‘X’ and ‘Y’, implies that the code block ‘Y’

should be executed immediately after ‘X’.

In this paper, the vertices (code blocks) in a parallel CFG can

be classified as:

� Branch (B): a code block that causes execution to

transfer, either conditionally or unconditionally, to some

statement other than the succeeding statement. In high-

level programming languages, branch instructions may

be found in for, while, do-while, if-else, and goto

statements.

� Fork (F ): a code block that creates parallel execution. The

succeeding code blocks of a fork can run concurrently until

the paths converge.

� Join (J ): a code block at which parallel execution paths

converge.

� Simple block (S ): a code block with an ordered sequence of

statements without any outgoing or incoming branch, fork

or join statements inside the code block.

In addition, we also adopt the notations defined in our

previous work to mention some special code blocks.

� Entry block (CE) : the entry code block of a source program.

� Any block (CA) : any existing code block.

� Dummy code block (CD) : a code block running dummy

instructions that do not affect the final execution result of

a program.

� Termination block (f): the exit code block of a source

program.

As mentioned, edges in a parallel CFG represent possible

execution paths the program may take. Our parser specifies

four types of edges for illustrating a parallel CFG.

http://dx.doi.org/10.1016/j.cose.2012.08.003
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� Sequential edge (s): A sequential edge s ¼ (Ci, Cj) exists

between two code blocks Ci and Cj, where Ci˛{S, J} and i s j.

� Branch edge (b): Since a branch Bmay jump to either its true

or false target, there are two code blocks that could be

executed immediately after B. Hence, the two branch edges

leaving B are denoted by bT ¼ (B, CTrue)T and bF ¼ (B, CFalse)F,

where CTrue and CFalse represent the true and false targets of

B, respectively.

� Fork edge ( f ): Since several code blocks can be executed

concurrently right after a fork F, a fork block Fmay have one

or more succeeding code blocks. A fork edge is therefore

represented as f ¼ (F, C ), where C s J.

� Join edge ( j ): A join edge is denoted by j¼ (C, J ), whereCs F.

Such an edge means that the execution of C is always fol-

lowed by immediately executing J.

With the above definitions, a directed graph G is defined as

G ¼ ðV;EÞ, where V is the vertex set and E represents the edge

set. V contains all the code blocks of the parsed program,

including simple blocks, branches, forks, joins and a termi-

nation. E is composed of sequential edges, branch edges, fork

edges and join edges. Then, a parsed program j is represented

as (CE, G), where CE points to the entry block and G is the CFG

of the program. In Fig. 1, the CFG of j contains four simple

blocks (rectangular), one branch (diamond), one fork (base-

down triangular) and one join (base-up triangular). Hence, the

formal form of j can be represented as j¼(S0, G), where

G ¼ ðV;EÞ, V ¼ fS0; S1; S2;S3;S4;B0; F0; J0;fg, and E ¼ fðS0; F0Þ;
ðF0;B0Þ; ðF0; S3Þ; ðB0;S1ÞT; ðB0;S2ÞF; ðS1;S2Þ; ðS2; J0Þ; ðS3; J0Þ; ðJ0;fÞg.
f is an indication of the end of execution path and is not

counted into the number of vertices in V.
Fig. 1 e Example of a parallel control flow graph.
4. Formalization phase

A parallel control-flow obfuscating transformation converts

a program into a parallel program with higher level of paral-

lelism. Though the nine atomic operators defined in our

previous work can be applied to a parallel program for higher

parallelism, these operators cannot make a sequential

program become a parallel program. Hence, the scalability of

the framework is restricted to model sequential obfuscating

transformations only. Hence, we design an additional atomic

operator “inserting a fork” to complement the insufficiency.

The new atomic operator can be used to create forks and fork

edges for complicated control flows. Together with the newly

designed atomic operator, the new set of atomic operators can

provide the basic components to formalize a parallel control-

flow obfuscating transformation.

Fig. 2 shows the atomic operator of inserting a fork. The

operator, denoted by On
Fðj;CTÞ, indicates that a fork is inserted

as the predecessor of n consequent code blocks,

Ck,Ckþ1,/,Ckþn�1. C
T is used to index the above target code

block Ckþi (0 � i � n � 1).

After executing the operator, Ck,Ckþ1,/,Ckþn�1 are executed

in parallel immediately after Cx, the successor of F1. In addi-

tion to inserting a fork, we insert a join (J1) to guarantee that

the execution of these parallel code blocks is completed before

executing Cy (the successor of J1), such that the original

functionality of the program can be preserved. Algo. 4 clarifies

the steps OF takes.

Before applying OF, the execution dependency among Ck

and its successors (Ckþ1,Ckþ2,/,Ckþn�1) should be checked. If

dependency exists, OF may result in an incorrect execution.

Another restriction on applying OF is that the target code

blocks of such an operator cannot be a join, a branch or any

other fork.
Fig. 2 e The operation of inserting a fork code block. After

insertion, E becomes fðCx; F1Þ; ðF1;CkÞ; ðF1;CkD1Þ;.;

ðF1;CkDnL1Þ; ðCk; J1Þ;.; ðCkDnL1; J1Þ; ðJ1;CyÞg.

http://dx.doi.org/10.1016/j.cose.2012.08.003
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Algo. 4. Insert a fork on n consequent code blocks,

On
Fðj;CTÞ; CT ¼ CK.

V)VWfF; Jg;
E)EWfðF;CkÞ; ðF;Ckþ1Þ;/; ðF;Ckþn�1Þg;
Find (Ckþn�1, Ci) and insert (J, Ci) to E ci;

IF Ck ¼ CE THEN

Replace the entry point with F;

END IF;

Replace ei ¼ (Ci, Ck) with ðCi; FÞcei˛E;
Replace ei ¼ (Ci, Cj) with ðCi; JÞcCi˛fCk;Ckþ1;/;Ckþn�1g;

The new atomic operator OF and the existing operators

listed in Table 1 can form a set of the building components to

formalize parallel control-flow obfuscating transformations.

With such a set of atomic operators, each transformation can

be represented as T ¼ hf1; f2/fmi, a composition of m atomic

operators f1,.,fm, where fx˛fOF
Opð$;CaÞ;OT

Opð$;CbÞ;O?
Opð$;CcÞ;

OEð$;CdÞ;OS;n
S ð$;CeÞ;OB;n

S ð$;Cf Þ;OL
Dð$;CgÞ;OS

Dð$;ChÞ;ORð$;CiÞ;On
F

ð$;CjÞg, for x ¼ 1,.,m. hidenotes an ordered set of functional

composition, where hf1; f2/fmi represents a function applying

multiple atomic operators to a target program, i.e.,

fm(/ f2( f1(target))). Ca, Cb,/, Cj are arbitrary code blocks of

a source program.

With the above definition, we can formally describe

a parallel control-flow obfuscating transformation, which is

helpful for further evaluation. In our definition, since we not

only take a program j as an input of a transformation, but also

consider distinct target code blocks for each atomic operator,

a finer grained evaluation result can be obtained.
5. Evaluation phase

To measure the complexity and overhead of an obfuscated

program, Collberg et al. (1997) proposed three metrics to

evaluate the performance of an obfuscating transformation.

They proposed a cost metric to measure the additional run-

time resources required to execute an obfuscated program.

The resilience metric has been introduced to evaluate how

well an obfuscating transformation holds up against attacks

from an automatic deobfuscator. The potency metric is

supposed to estimate the degree to which an obfuscating

transformation confuses a human trying to understand the

obfuscated program. Of these three metrics, only potency is

intended to measure the difficulty for a reverse engineer to

compromise and deduce an obfuscated program.

The exact effort of reverse engineering is difficult to

quantify and estimate, due to the variance of individual

experience and skill. It may take some hackers significantly

longer than others to reverse engineer the same program. In

this paper, our evaluation approach tries to eliminate the

individual variances. Assuming that the effort of reverse

engineering a program is the same to all hackers, the proposed

measure can then be defined based on the potency metric

given by Collberg et al. (1997):

pðPG;PG0Þ ¼ compðPG0Þ
compðPGÞ � 1 (1)
where comp(PG) and comp(PG
0
) stand for the complexity of the

original program PG and the obfuscated program PG
0
,

respectively.
5.1. Complexity measure

To calculate the potency that a parallel control-flow obfus-

cating transformation contributes, we first need an appro-

priate complexity measure that can reflect the effects

resulting from the transformation. Since our framework

considers both sequential and parallel programs, the

complexity measure needs to take both sequential and

parallel programs into account.

Shatz (1988) suggested a framework that measures the

complexityofadistributedprogram.Suchadistributedprogram

consists of several processes executing asynchronously in

parallel but communicating synchronously by passing

messages. In Shatz’s opinion, a distributed program’s

complexity can be obtained based on the complexity of each

processandcomplexitystemming frominteractionbetweenthe

processes. A parallel program, similar to a distributed program,

is composed of a number of sequential programs which are

executed in parallel. Hence, the total complexity of a parallel

program plausibly compromises the ‘sequential complexity’

that its sequential programs contribute and the complexity

resulting from ‘level of parallelism’. Therefore, we define the

total complexity of a parallel program (j) as shown in Eq. (2):

compðjÞ ¼ ws � scompðjÞ þwp � pcompðjÞ; (2)

where comp(j), the complexity of j, is comprised of two parts:

sequential complexity scomp(j) and complexity resulting from

parallelism pcomp(j). In this equation,ws andwp are defined as

adjustable weights for setting the ratio between the two types

of complexities.
5.2. Sequential complexity

To prevent against reverse engineering, a control-flow

obfuscating transformation makes a program’s control flow

unintelligible by increasing depth of nests in a program or by

enlarging the size of a program. Therefore, a proper

complexity measure should calculate the complexity of an

obfuscated program in consideration of the effects a control-

flow obfuscating transformation poses.

In 1981 Harrison and Megal presented the measure SCOPE

(Zuse, 1991) to calculate complexity of a control flow graph of

a sequential program. SCOPE determines the complexity in

terms of the size and the depth of nests involved in a control

flow graph. Since transforming a CFG into another by control-

flow obfuscation usually leads to changes of the graph size or

the nesting level, SCOPE can be an appropriate indicator for

estimating the potency. Therefore, we adopt the definition of

SCOPE for evaluating the capability of control-flow obfusca-

tion, instead of taking other measures, such as Relative

Logical Complexity (RLC) and Absolute Logical Complexity

(ALC) (Zuse, 1991).

Asmentioned in Section 3, we can obtain a directed CFG (j)

after parsing a source program. Then, we can derive the scope

value of j by Eq. (3).

http://dx.doi.org/10.1016/j.cose.2012.08.003
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scopeðjÞ ¼
X
Bi˛B

jrangeðj;BiÞj; (3)
where B is the set of branches in j and jrangeðj;BiÞj stands for

the nesting levels that Bi contributes. In this equation,

jrangeðj;BiÞj represents the number of code blocks either in

a loop led by Bi or on the paths branching out from Bi to the

convergence of the paths. The value of scope increases as the

number of nodes in the nests of a program increases. More-

over, if SCOPE is adopted in Eq. (2), the SCOPE value can be

derived by summing up the complexities of sub graphs of the

CFG (j). This simplifies the analyzing process of a complicated

CFG.

In addition to the nesting level, the number of condition

expressions within a branch also contributes complexity of

a program. The more the condition expressions are, the more

efforts should be taken to analyze the control flow. Hence, we

extend the definition of SCOPE to contemplate the impacts

brought by the number of condition expressions in a branch.

From a high-level programming perspective, a branch can

be treated as a building block for two types of control flow

structures, conditional jump and loop, which pose individual

effects upon complexity.

5.2.1. Conditional jump
The fundamental control flow graph of a conditional jump is

shown in Fig. 3. In this figure, the program contains a branch

block with two target code blocks converging at CA. Assuming

that the branch Bi contains only one condition expression, we

can obtain jrangeðj;BiÞj ¼ 2. In reality, a branch normally can

contain more than one condition expressions. So, we need to

consider such a nesting situation as well. If Bi contains nc
condition expressions with one or more “AND” or “OR” oper-

ators, then Bi can be split into nc branches (says Bi1;Bi2/BiðncÞ),

each of which contains only one condition expression. The

new flow graph deduced from Fig. 3 is now extended to nc
branches and 3 simple code blocks. The nesting level of the

branch Bi1, in the deepest nest, is equal to 2 since two code

blocks CTrue and CFalse are located on the divergent paths

branching out at Bi1. For branch Bi2, 3 code blocks (Bi1, C
True and

CFalse) are likely executed, such that we can derive

jrangeðj;Bi2Þj ¼ 3. By induction, the range value of branch Bij
can be deduced as

��rangeðj;BijÞ
�� ¼ jrangeðj;Bi1Þj þ j� 1.
CTrue CFalse

CA

Bi
T F

Fig. 3 e The control flow graph of a conditional jump.
Considering the above case that a branch (says Bi) contains

nc condition expressions, we define the compound range of

the branch in Eq. (4).

jcrangeðj;BiÞj ¼
Xnc
j¼1

��range�j;Bij

���¼
Xnc
j¼1

ðjrangeðj;Bi1Þj þ j� 1Þ

¼
Xnc
j¼1

ðjrangeðj;BiÞj þ j� 1Þ

¼ nc � jrangeðj;BiÞj þ
Xnc
j¼2

ðj� 1Þ: (4)

5.2.2. Loop
In a high-level program, a loop may be created by for, while

and do-while statements. Fig. 4 shows the control flow graph

of a loop, which produces one branch and two simple code

blocks. If Bi in the loop contains only one condition expression,

the nesting level, denoted by jrangeðj;BiÞj, equals to 2 since

two code blocks (CTrue and Bi) are located on the paths

branching out at Bi. Similarly, if Bi contains nc condition

expression, we said that Bi can be further split into nc pieces

ðBi1;Bi2;/;BiðncÞÞ, as illustrated in Fig. 5. Then, we can come out

a new CFG containing two simple code blocks and nc branch

blocks. In such a loop, since all branches and CTrue are

executed before the divergent pathsmeet at CA, the number of

the code blocks on the divergent paths becomes ncþ1. Hence,

we obtain
��rangeðj;BijÞ

�� ¼ nc þ 1 ¼ nc þ jrangeðj;BiÞj � 1; c1 � j

� nc.

Again, by induction, the compound range of Bi, containing

nc condition expressions, can be derived as

jcrangeðj;BiÞj ¼ nc � ðjrangeðj;BiÞj þ nc � 1Þ (5)

5.3. Level of parallelism

Recall that the total complexity of a program is contributed by

the sequential complexity and the level of parallelism of

a program. In the equation (Eq. (2)) calculating the total
C
True

C
A

B i

T

F

Fig. 4 e The control flow graph of a loop.
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Fig. 5 e The extended control flow graph that B contains i

condition expressions.
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complexity of a program, we estimate the sequential

complexity (scomp) by adopting SCOPE. For the complexity

resulting from the level of parallelism ( pcomp), we assume

that the number of code blocks executed in parallel contrib-

utes to the level of parallelism of a program (j). We then

extend the Shatz’s concept to define pcomp(j), as expressed in

Eq. (6):

pcompðjÞ ¼
X
Fi˛F

jrangeðj; FiÞj; (6)

where F is the set of forks in j and jrangeðj; FiÞj represents the

parallelism that the fork Fi is conducive to. jrangeðj; FiÞj indi-
cates the number of code blocks on the parallel execution

paths, which start from Fi and terminate at the join operation.

If no forks exist in j, i.e. j is a sequential program, then

pcomp(j) ¼ 0.

In this paper, we propose a measure to estimate the

complexity of a program and the capability of a control-flow

obfuscating transformation. We recognize the measure
merely serves as a heuristic indicator of security. However, we

show our first attempt at evaluating a parallel control-flow

obfuscating transformation in a methodical manner, and we

believe the measure can still be the first step toward evalua-

tion of software potency raised by a control-flow obfuscating

transformation. We do not claim that a large value of our

measure implies that an obfuscated program will necessarily

be secure against reverse-engineering. We expect that large

values of this measure are necessary but not sufficient for

security. Our measure is only intended to reflect the difficulty

of reverse engineering through static analysis e it does not

reflect information that might be gained by running the

program and observing its execution, or by performing some

other kind of dynamic analysis. Nonetheless, this measure

may still be helpful in evaluating a control-flow obfuscating

transformation, especially in comparing different obfuscating

transformations when applied to a single program.
6. Example: prime number generator

In this section, we show how the proposed framework can be

used to evaluate the capability of obfuscating transformations

on a given software program (a prime number generator in

this example).
6.1. CFG conversion

Program I, generating prime numbers smaller than an input

num, is used as an example for demonstration.

/* Program I. Prime number generator */

int _PrimeGen (int tmp) {

int i;

for (i¼2; i<¼tmp/2; iþþ)

if (tmp %i ¼ ¼ 0)

return 0;

return 1;

}

int main () {

int num, tmp, sum;

int PrimeOrNot¼0;

printf("insert a number \n");

scanf("%d", &num);

for(sum¼0, tmp¼2; tmp<¼num; tmpþþ) {

PrimeOrNot ¼ _PrimeGen(tmp);

if( PrimeOrNot ¼ ¼ 1)

printf("%6d", tmp);

sum þ¼ tmp;

}

printf("\n");

return 0;

}

We derive the CFG j of Program I, as shown in Fig. 6. j

contains 2 branches and 5 simple code blocks. According to

the equations defined in Section 5, we get scompðjÞ ¼
jrangeðj;B0Þj þ jrangeðj;B1Þj ¼ 5þ 1 ¼ 6, pcomp(j) ¼ 0, and

comp(j) ¼ 6 þ 0 ¼ 6.

http://dx.doi.org/10.1016/j.cose.2012.08.003
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Fig. 6 e CFG of Program I: j[ðCE; ðV; EÞÞ, where CE[S0,

V[fS0;S1;S2;S4;B0;B1;fg, and E[fðS0;B0Þ; ðB0;S1ÞT ;
ðB0;S4ÞF; ðS1;B1Þ; ðB1;S2ÞT ; ðB1;S3ÞF; ðS2;S3Þ; ðS3;B0Þ; ðS4;fÞg.
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6.2. Obfuscation and estimation

In this example, we design two cases to show that different

compositions of the atomic operators with different parame-

ters can lead to discriminating effects. We apply a parallel

control-flow obfuscating transformation introduced in Coll-

berg’s study (Collberg et al., 1997) to the two cases with

different target code blocks. In the two cases, we create and

insert a dummy code block D0 into j, and then we add a fork

block F0 and a join block J0 to generate the parallel execution.

The first case takes a branch block (B1) and a simple block (S1)

as the target code blocks; while the second takes the code

blocks S2 and D0 as targets.

In the first transformation T 1, D0 is redundant to a branch

block B1 and the fork block F0 is inserted before S1, as illus-

trated in Fig. 7. According to the definitions given in Section 3,

T 1 can be formalized as follows:

T 1 ¼
�
OS

Dð$;B1Þ;O2
Fð$;S1Þ

�
: (7)
� Running OS
Dð$;B1Þ:

V)VWfD0g;
E)ðE� fðS1;B1ÞgÞWfðS1;D0Þ; ðD0;B1Þg:
We create a dummy block D0 containing a dummy function

kidfunc():

void kidfunc (int* t)

{

int t1¼*t;

while(t1– & t1%10!¼0);

}

Since D0 is placed within the loop led by B0, jrangeðj;B0Þj is
increased by 1. Hence, we can derive scompðjÞ ¼
j:rangeðj;B0Þj:þ j:rangeðj;B1Þj: ¼ 8þ 1 ¼ 9.

� Running O2
Fð$;S1Þ:

V)VWfF0; J0g;� n o�

E) E� ðD0;B1Þ; ðS1;D0Þ; ðB0; S1ÞT

W
n
ðF0;S1Þ; ðF0;D0Þ; ðJ0;B1Þ; ðB0; FÞT; ðS1; J0Þ; ðD0; J0Þ

o
:

After inserting O2
Fð$;S1Þ, S1 and D0 become the immediate

successors of F0 such that S1 and D0 can be executed in

parallel. By Eq. (6), we obtain pcompðjÞ ¼ jrangeðj; F0Þj ¼ 2,

while the sequential complexity remains the same (scomp¼ 6).

By assigning the same weights to scomp and pcomp, we can

obtain the total complexity comp(j) ¼ 9 þ 2 ¼ 11.

By Eq. (1), the potency resulted from T 1 is computed as 11/

6�1¼ 5/6. The positive potency value implies that T 1 obscures

the program from the perspective of code complexity.

The second transformation T 2 consists of the same atomic

operators as T 1, but applies to different targets. In the second

transformation, we first create a dummy block D0 for S2, then

insert a fork block (F0) and a join block (J0) to execute D0 and S2
in parallel. Consequently, the second obfuscating trans-

formation can be represented as hOS
Dð$; S2Þ;O2

Fð$;D0Þi.

� Running OS
Dð$;S2Þ:

V)VWfD0g;
E)

�
E�

n
ðB1;S2ÞT

o�
W
n
ðB1;D0ÞT; ðD0; S2Þ

o
:

Again, we adopt kidfunc() as the dummy function in D0, which

is inserted as the true target of B1. Now, D0 and S2 are in the

loop led by B1, so the range value of B1 ðjrangeðj;B1ÞjÞ becomes

2 and comp(j) can be derived as jrangeðj;B0Þj þ j
rangeðj;B1Þj ¼ 6þ 2 ¼ 8.
� Running O2
Fð$;D0Þ:

V)VWfF0; J0g;� n o�

E) E� ðB1;D0ÞTrue; ðD0;S2Þ; ðS2;S3Þ

W
n
ðF0;D0Þ; ðF0; S2Þ; ðJ0;S3Þ; ðB1; F0ÞTrue; ðD0; J0Þ; ðS2; J0Þ

o
:

O2
Fð$;D0Þ makes D0 and S2 executed in parallel after F0,

as illustrated in Fig. 8. The insertion of F0 contributes the

parallelism such that pcompðjÞ ¼ jrangeðj; F0Þj ¼ 2 and

the total complexity of Program III is obtained as

jrangeðj;B0Þj þ jrangeðj;B1Þj þ jrangeðj; F0Þj ¼ 8þ 4þ 2 ¼ 14.

By Eq. (1), the potency of T 2 equals 14/6�1 ¼ 4/3. The

different potency values prove that the effect launched from
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Fig. 7 e Program II: The obfuscated result of Program I after applying T 1[hOS
Dð$;B1Þ;O2

Fð$;S1Þi.
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a single obfuscating transformation may change with the

different targets and the parameters of an obfuscating trans-

formation. By comparing T 1 and T 2, we demonstrate that our

evaluation method provides flexibility and distinguishability

between different obfuscating transformations. We also

conjecture that T 2 providesmore protection to j than T 1 since

T 2 leads to a larger potency.

6.3. Discussion

A coarse grained potency value is obtained if the dummyblock

with kidfunc() is treated as a single code block. If we further

parse the dummy block D0 into sub CFGs, we can obtain a finer

grained result. First, kidfunc() is converted into jK such that

jK ¼ ðCE; ðV;EÞÞ, where CE ¼ SK0 , V ¼ fSK0 ;BK
0 ; S

K
1 ;fg and

E ¼ fðSK0 ;BK
0 Þ; ðBK

0 ; S
K
1 Þ

T; ðSK1 ;BK
0 Þ; ðBK

0 ;fÞ
Fg. The superscript K is

used to emphasize that the code blocks are part of kidfunc() in

D0. Fig. 9 shows the CFG of jK, of which the node count is 3.

Since there are 2 condition expressions in BK
0 , we

consider the impact brought by these expressions, measure

the SCOPE value contributed by BK
0 and obtain��rangeðjK;BK

0 Þ
�� ¼ 2� ð2þ 2� 1Þ ¼ 6. Next, we integrate the

complexity of j with that of jK and gain
rangeðj; F0Þ ¼ fS1;SK0 ;SK1 ;BK
0g, where SK0 ;S

K
1 ;B

K
0 are code blocks

in jK.

Hence,pcomp(j) becomes4, and therangeofB0 increases such

that jrangeðj;B0Þj ¼ 10. The sequential complexity is derived as

jrangeðj;B0Þj þ jrangeðj;B1Þj þ jrangeðjK;BK
0 Þj ¼ 10þ 1þ 6 ¼ 17.

The finer grained complexity of Program II is then computed as

comp(j)¼17þ4¼21 (assumethatwsandwp inEq. (2)areassigned

equalweights). Consequently,we canget a finer grainedpotency

21/6�1¼ 5/2, which is larger than the coarse grained potency 5/6

obtained in Section 6.2. Such a comparison shows that the finer

grained evaluation contains more information, and can be used

to measure the effect caused by a newly inserted dummy code

block inmore detail.
7. Conclusion

In this paper we propose a framework toward evaluation of

parallel control-flow obfuscating transformations. We define

a parallel control-flow graph and design an atomic operator of

inserting a fork based on the defined parallel CFG. This new

operator complements the deficiency of existing atomic

operators, which were designed to model sequential control-
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Fig. 8 e Program III: The obfuscated result of Program I after applying T 2[hOS
Dð$;S2Þ;O2

Fð$;D0Þi.

Sk0

Bk0

Sk1

Φ

T Sk0 int t1=* t;

Bk0 t1!=0& t1%10!=0

Sk1 t1--;

F

Fig. 9 e jk : The CFG of the function kidfunc.
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flow obfuscating transformations. Our new operator, along

with the existing atomic operators, constitute together a set of

building blocks to formalize both parallel and sequential

control-flow obfuscating transformations. Moreover, we

propose a new complexity measure which supports both

sequential and parallel programs. The proposed measure

considers the number of condition expressions in a branch

that leads to a finer grained result. Themeasure can be used as

the base of the potency metric to estimate the effect of

obfuscation. We give examples to show that our method can

even discriminate the effects caused by a single trans-

formation when applying on different target code blocks. The

examples imply that selections of target code blocks can be

a factor toward protection of a program by an obfuscating

transformation, in addition to the transformation algorithm

itself. For this reason, we believe our framework can achieve

stronger protection with the benefit from the target code

blocks of an obfuscating transformation.

This paper presents a framework of evaluating parallel

control-flow obfuscation. Currently, the framework is merely

designed for measuring difficulty in reverse engineering

http://dx.doi.org/10.1016/j.cose.2012.08.003
http://dx.doi.org/10.1016/j.cose.2012.08.003


c om p u t e r s & s e c u r i t y 3 1 ( 2 0 1 2 ) 8 8 6e8 9 6896
through static analysis. We recognize that more work should

be done for choosing between measuring results, human

behaviors and endeavors required by dynamic analysis. We

hope that we will be able to conjecture the effort and cost that

an reverse engineer needs from the proposed measure, and

then our framework will be helpful in examining the protec-

tion brought by obfuscation in a greater depth.
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