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We calculate massive string scattering amplitudes of compactified open string in the
Regge regime. We extract the complete infinite ratios among high-energy amplitudes of
different string states in the fixed angle regime from these Regge string scattering amplitudes.
The complete ratios calculated by this indirect method include and extend the subset of ratios
calculated previously [J. C. Lee and Y. Yang, Nucl. Phys. B 784 (2007), 22; J. C. Lee, T.
Takimi and Y. Yang, Nucl. Phys. B 804 (2008), 250] by the more difficult direct fixed
angle calculation. In this calculation of compactified open string scattering, we discover a
realization of arbitrary real values L in the identity Eq. (4·18), rather than integer value
only in all previous high-energy string scattering amplitude calculations. The identity in
Eq. (4·18) was explicitly proved recently in [J. C. Lee, C. H. Yan and Y. Yang, SIGMA 8
(2012), 045, arXiv:1012.5225] to link fixed angle and Regge string scattering amplitudes. In
addition, we discover a kinematic regime with stringy highly winding modes, which shows the
unusual exponential fall-off behavior in the Regge string scattering. This is complimentary
with a kinematic regime discovered previously [J. C. Lee, T. Takimi and Y. Yang, Nucl.
Phys. B 804 (2008), 250] which shows the unusual power-law behavior in the high-energy
fixed angle compactified string scatterings.

Subject Index: 129

§1. Introduction

There are three fundamental characteristics of high-energy fixed angle string
scattering amplitudes,1)–3) which are not shared by the field theory scattering. These
are the softer exponential fall-off behavior (in contrast to the hard power-law behav-
ior of field theory scatterings), the infinite Regge-pole structure of the form factor
and the existence of infinite number of linear relations,4)–13) or stringy symmetries,
discovered recently among high-energy string scattering amplitudes of different string
states. An important new ingredient to derive these linear relations is the zero-norm
states (ZNS)14)–16) in the old covariant first quantized (OCFQ) string spectrum,
in particular, the identification of inter-particle symmetries induced by the inter-
particle ZNS14) in the spectrum. Other approaches related to this development can
be found in 17).

∗) E-mail: hesong@ihep.ac.cn
∗∗) E-mail: jcclee@cc.nctu.edu.tw

∗∗∗) E-mail: yiyang@mail.nctu.edu.tw

 at N
ational C

hiao T
ung U

niversity L
ibrary on M

ay 1, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/


888 S. He, J. C. Lee and Y. Yang

Recently, following an old suggestion of Mende,18) two of the present authors19)

calculated high-energy fixed angle massive scattering amplitudes of closed bosonic
string with some coordinates compactified on the torus. The calculation was ex-
tended to the compactified open string scatterings.20) An infinite number of linear
relations among high-energy scattering amplitudes of different string states were ob-
tained in the fixed angle or Gross kinematic regime (GR). The UV behavior in the
GR shows the usual soft exponential fall-off behavior. These results are reminiscent
of the existence of an infinite number of massive ZNS in the compactified closed21)

and open22) string spectrums constructed previously. In addition, it was discovered
that, for some kinematic regime with super-highly winding modes at fixed angle, the
so-called Mende kinematic regime (MR), these infinite linear relations break down
and, simultaneously, the string amplitudes enhance to hard power-law behavior at
high energies instead of the usual soft exponential fall-off behavior.

In this paper, we calculate high-energy small angle or Regge string scattering
amplitudes23)–30) of open bosonic string with one coordinate compactified on the
torus. The results can be generalized to more compactified coordinates. It is shown
that there is no linear relations among Regge scattering amplitudes as expected.
However, as in the case of noncompactified Regge string scattering amplitude cal-
culation,31)–33) we can deduce the infinite GR ratios in the fixed angle from these
compactified Regge string scattering amplitudes. We stress that the GR ratios cal-
culated in the present paper by this indirect method from the Regge calculation
are for the most general high-energy vertex rather than only a subset of GR ra-
tios obtained directly from the fixed angle calculation.19),20) In this calculation, we
have used a set of master identities Eq. (4.18) to extract the GR ratios from Regge
scattering amplitudes. Mathematically, the complete proof of these identities for ar-
bitrary real values L was recently worked out in 36) by using an identity of signless
Stirling number of the first kind in combinatorial theory. The proof of the identity
for L = 0, 1, was previously given in 31)–33) based on a set of identities of signed
Stirling number of the first kind.35) It is interesting to see that, physically, the iden-
tities for arbitrary real values L can only be realized in high-energy compactified
string scatterings considered in this paper. All other high-energy string scatterings
calculated previously31)–33) correspond to integer values of L only. A recent work on
string D-particle scatterings34) also gave integer values L.

More importantly, we discover an exponential fall-off behavior of high-energy
compactified open string scatterings in a kinematic regime with highly winding
modes at small angle. The existence of this regime was conjectured in 20). However,
no Regge scatterings were calculated there and thus the results for the small angle
scatterings extracted from the fixed angle calculation were not completed and fully
reliable.31),32) The discovery of the soft exponential fall-off behavior in this kinematic
regime with small angle in compactified string scatterings is complimentary with a
kinematic regime discovered previously,19),20) which shows the unusual power-law
behavior in the high-energy fixed angle compactified string scatterings. This paper
is organized as the following. In §2, we set up the kinematics. In §3, we review the
fixed angle compactified string scatterings. Section 4 is devoted to the compactified
Regge string scatterings. We first calculate the Regge string scattering amplitudes
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Exponential Fall-Off Behavior of Regge Scatterings 889

and extract the most general fixed angle ratios from these Regge amplitudes. We
then derive a Regge regime which shows an unusual exponential fall-off behavior. A
brief conclusion is made in §5.

§2. Kinematics set-up

We consider 26D open bosonic string with one coordinate compactified on S1

with radius R. It is straightforward to generalize our calculation to more compacti-
fied coordinates. The mode expansion of the compactified coordinate is

X25 (σ, τ) = x25 + K25τ + i
∑
k �=0

α25
k

k
e−ikτ cos nσ, (2.1)

where K25 is the canonical momentum in the X25 direction

K25 =
2πJ − θl + θi

2πR
. (2.2)

Note that J is the quantized momentum and we have included a nontrivial Wilson
line with U(n) Chan-Paton factors, i, l = 1, 2...n. , which will be important in the
later discussion. The mass spectrum of the theory is

M2 =
(
K25

)2 + 2 (N − 1) ≡
(

2πJ − θl + θi

2πR

)2

+ M̂2, (2.3)

where we have defined level mass as M̂2 = 2 (N − 1) and N =
∑

k �=0 α25
−kα

25
k +

αμ
−kα

μ
k , μ = 0, 1, 2...24. We are going to consider 4-point correlation function in this

paper. In the center of momentum frame, the kinematic can be set up to be19),20)

k1 =
(

+
√

p2 + M2
1 ,−p, 0,−K25

1

)
, (2.4)

k2 =
(

+
√

p2 + M2
2 , +p, 0, +K25

2

)
, (2.5)

k3 =
(
−
√

q2 + M2
3 ,−q cosφ,−q sinφ,−K25

3

)
, (2.6)

k4 =
(
−
√

q2 + M2
4 , +q cosφ, +q sinφ, +K25

4

)
, (2.7)

where p is the incoming momentum, q is the outgoing momentum and φ is the
center of momentum scattering angle. In the high-energy limit, one includes only
momenta on the scattering plane, and we have included the fourth component for the
compactified direction as the internal momentum. The conservation of the fourth
component of the momenta implies∑

m

K25
m =

∑
m

(2πJm − θl,m + θi,m

2πR

)
= 0. (2.8)
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890 S. He, J. C. Lee and Y. Yang

Note that
k2

i = (K25
i )2 − M2

i = −M̂2
i . (2.9)

We have

−k1 · k2 =
√

p2 + M2
1 ·

√
p2 + M2

2 + p2 + K25
1 K25

2

=
1
2
(
s + k2

1 + k2
2

)
=

1
2
s − 1

2

(
M̂2

1 + M̂2
2

)
, (2.10)

−k2 · k3 = −
√

p2 + M2
2 ·

√
q2 + M2

3 + pq cos φ + K25
2 K25

3

=
1
2
(
t + k2

2 + k2
3

)
=

1
2
t − 1

2

(
M̂2

2 + M̂2
3

)
, (2.11)

−k1 · k3 = −
√

p2 + M2
1 ·

√
q2 + M2

3 − pq cos φ − K25
1 K25

3

=
1
2
(
u + k2

1 + k2
3

)
=

1
2
u − 1

2

(
M̂2

1 + M̂2
3

)
, (2.12)

where s, t and u are the Mandelstam variables with

s + t + u =
∑

i

M̂2
i = 2 (N − 4) . (2.13)

Note that the Mandelstam variables defined above are not the usual 25-dimensional
Mandelstam variables in the scattering process since we have included the inter-
nal momentum K25

i in the definition of ki. In order to define the Regge or fixed
momentum transfer regime, we define the momenta

k̂1 =
(

+
√

p2 + M̂2
1 ,−p, 0, 0

)
, (2.14)

k̂2 =
(

+
√

p2 + M̂2
2 , +p, 0, 0

)
, (2.15)

k̂3 =
(
−
√

q2 + M̂2
3 ,−q cos φ,−q sinφ, 0

)
, (2.16)

k̂4 =
(
−
√

q2 + M̂2
4 , +q cos φ, +q sinφ, 0

)
(2.17)

and the corresponding 25-dimensional Mandelstam variables

−k̂1 · k̂2 =
√

p2 + M̂2
1 ·

√
p2 + M̂2

2 + p2 =
1
2

(
s25 − M̂2

1 − M̂2
2

)
, (2.18)

−k̂2 · k̂3 = −
√

p2 + M̂2
2 ·

√
q2 + M̂2

3 + pq cosφ =
1
2

(
t25 − M̂2

2 − M̂2
3

)
, (2.19)

−k̂1 · k̂3 = −
√

p2 + M̂2
1 ·

√
q2 + M̂2

3 − pq cosφ =
1
2

(
u25 − M̂2

1 − M̂2
3

)
, (2.20)

where
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Exponential Fall-Off Behavior of Regge Scatterings 891

s25 + t25 + u25 =
∑

i

M̂2
i = 2 (N − 4) . (2.21)

In the high-energy limit, we define the polarizations on the scattering plane to be

eP =
1

M2

(√
p2 + M2

2 , p, 0, 0
)

, (2.22)

eL =
1

M2

(
p,
√

p2 + M2
2 , 0, 0

)
, (2.23)

eT = (0, 0, 1, 0) , (2.24)

where the fourth component refers to the compactified direction. The center of mass
energy E is defined as (for large p, q)

E =
1
2

(√
p2 + M2

1 +
√

p2 + M2
2

)
=

1
2

(√
q2 + M2

3 +
√

q2 + M2
4

)
. (2.25)

The projections of the momenta on the scattering plane can be calculated to be (here
we only list the ones we will need for our calculation)

eP · k1 = − 1
M2

(√
p2 + M2

1

√
p2 + M2

2 + p2

)
, (2.26)

eL · k1 = − p

M2

(√
p2 + M2

1 +
√

p2 + M2
2

)
, (2.27)

eT · k1 = 0 (2.28)

and

eP · k3 =
1

M2

(√
q2 + M2

3

√
p2 + M2

2 − pq cos φ

)
, (2.29)

eL · k3 =
1

M2

(
p
√

q2 + M2
3 − q

√
p2 + M2

2 cos φ

)
, (2.30)

eT · k3 = −q sinφ. (2.31)

§3. Fixed angle regime

We begin with a brief review of high energy string scatterings for the non-
compactified 26D open bosonic string in the GR. That is in the kinematic regime
s,−t → ∞, t/s ≈ − sin2 θ

2= fixed (but θ �= 0) where s, t and u are the Mandelstam
variables for the noncompactified momenta and θ is the 26D CM scattering angle. It
was shown7),8) that for the 26D open bosonic string the only states that will survive
the high-energy limit at mass level M2

2 = 2(N − 1) are of the form

|N, 2m, r〉 ≡ (αT
−1)

N−2m−2r(αL
−1)

2m(αL
−2)

r |0, k2〉 . (3.1)
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892 S. He, J. C. Lee and Y. Yang

It can be shown that the high-energy vertex in Eq. (3.1) is conformal invariants up
to a subleading term in the high-energy expansion. Note that eP approaches eL in
the GR, and the scattering plane is defined by the spatial components of eL and
eT . Polarizations perpendicular to the scattering plane are ignored because they are
kinematically suppressed for four point scatterings in the high-energy limit. One can
then use the saddle-point method to calculate the high energy scattering amplitudes.
For simplicity, we choose k1, k3 and k4 to be tachyons and the final result of the
ratios of high energy, fixed angle string scattering amplitude are7),8)

T (N,2m,r)

T (N,0,0)
=
(
− 1

M2

)2m+r (1
2

)m+r

(2m − 1)!!. (3.2)

We now review the results obtained previously for the compactified open string
scatterings at fixed angle φ = finite.20) For simplicity, the second vertex was chosen
to be

|N, 0, r, i, l〉 =
(
αT
−1

)N−2r (
αL
−2

)r |k2, l2, i, l〉 (3.3)

at mass level M̂2
2 = 2 (N − 1) , which was scattered with three “tachyon” states

(with M̂2
1 = M̂2

3 = M̂2
4 = −2). The high-energy fixed angle open string scattering

amplitudes with one compactified coordinate were calculated to be (the trace factor
due to Chan-Paton was ignored)20)

T (N,0,r,i,l) � (−iq sinφ)N

⎛⎝−
(
p
√

q2 + M2
3 − q

√
p2 + M2

2 cos φ
)

M2q2 sin2 φ

⎞⎠r

·
r∑

j=0

(
r

j

)⎡⎣− p
(√

p2 + M2
1 +

√
p2 + M2

2

)
(
p
√

q2 + M2
3 − q

√
p2 + M2

2 cos φ
)
⎤⎦j

· B
(
−1 − 1

2
s,−1 − 1

2
t

)(
−1 − 1

2
s

)
N−2j

(
−1 − 1

2
t

)
2j

(
2 +

1
2
u

)−1

N

,

(3.4)

where (a)j = a(a + 1)(a + 2)...(a + j − 1) is the Pochhammer symbol, and (a)j = aj

for large a and fixed j.

3.1. Fixed winding modes

In the Gross regime, p2 	 K2
i and p2 	 N , Eq. (3.4) reduces to

T (N,0,r,i,l) �
(
−iE

sin φ
2

cos φ
2

)N (
− 1

2M2

)r

· B
(
−1 − 1

2
s,−1 − 1

2
t

)
. (3.5)

For each fixed mass level N , we have the linear relation for the scattering amplitudes

T (N,0,r,i,l)

T (N,0,0,i,l)
=
(
− 1

2M2

)r

(3.6)
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Exponential Fall-Off Behavior of Regge Scatterings 893

with ratios consistent with our previous result in Eq. (3.2). Note that in Eq. (3.5)
there is an exponential fall-off factor in the high-energy expansion of the beta func-
tion. The infinite linear relations in Eq. (3.6) “soften” the high-energy behavior of
string scatterings in the GR.

3.2. Super-highly winding modes

We next consider a more interesting regime, the Mende kinematic regime (MR).20)

For the case of φ = finite, the only choice to achieve UV power-law behavior is to
require (we choose (K25

1 )2 � (K25
2 )2 � (K25

3 )2 � (K25
4 )2)(

K25
i

)2 	 p2 	 N. (3.7)

In order to explicitly show that this choice of kinematic regime does lead to UV
power-law behavior, it was shown that in this regime

s = constant (3.8)

in the open string scattering amplitudes. This in turn gives the desired power-law
behavior of high-energy compactified open string scattering in Eq. (3.4). On the
other hand, it can be shown that the linear relations break down as expected in this
regime. For the choice of kinematic regime in Eq. (3.7), Eqs. (2.10) and (3.8) imply

lim
p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2

K25
1 K25

2

= lim
p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2(

2πl1−θj,1+θi,1

2πR

)(
2πl2−θj,2+θi,2

2πR

) = −1.

(3.9)
For finite momenta J1and J2, the power-law behavior can be achieved by scattering
of string states with “super-highly” winding nontrivial Wilson lines

(θi,1 − θl,1) → ∞, (θi,2 − θl,2) → −∞. (3.10)

Note that the directions of momenta K25
1 and K25

2 are opposite. Since
(
K25

i

)2 	 p2

and by Eq. (2.9), we can do the expansion of Eq. (3.9) to get

−K25
1 K25

2 (1 + p2

2(K25
1 )2

)(1 + p2

2(K25
2 )2

) + p2

K25
1 K25

2

= −1, (3.11)

which in turn, to the first order of the expansion, gives

−K25
1 K25

2

(
1 +

p2

2(K25
1 )2

+
p2

2(K25
2 )2

)
+ p2 = −K25

1 K25
2 . (3.12)

A simple calculation then gives

(λ1 + λ2)2 = 0, (3.13)

where signs of λ1 = p
K25

1
and λ2 = − p

K25
2

are chosen to be the same. It can be seen now
that the kinematic regime in Eq. (3.7) does solve Eq. (3.13). In conclusion, there is
a φ = finite regime with UV power-law behavior for the high-energy compactified
open string scatterings. This new phenomenon never happens in the 26D string
scatterings. The linear relations break down as expected in this regime.
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§4. Regge scatterings

We now begin to consider the compactified Regge string scatterings. It is im-
portant at this point to note that in the high-energy, t25 = finite approximation,
all M̂2

i can be neglected and we have

cos φ � 1 +
2t25

s25
, p sin φ � √−t25, (4.1)

where we have used Eqs. (2.18) to (2.21) to do the calculation. It is easy to see that
high-energy fixed t25 = finite (instead of fixed t) approximation corresponds to the
small angle φ or Regge regime (RR). In the high-energy limit, p2 = q2 = s25/4. In
this paper, we are going to consider two different Regge regimes (RR) correspond-
ing to fixed winding modes (K25

i )2 � p2 and highly winding modes (K25
i )2 � p2

respectively.

4.1. Fixed winding modes

We first consider the following RR

t25 = finite, (K25
i )2 � p2 	 N. (4.2)

In this regime
t25 � t + (K25

2 − K25
3 )2. (4.3)

A class of high-energy vertex at fixed mass level N =
∑

n,m npn + mqm is31),33)

|pn, qm, i, l〉 =
∏
l>0

(αT
−n)pn

∏
m>0

(αL
−m)qm |k2, l2, i, l〉 . (4.4)

The conformal invariant property of the above vertex was discussed in 33). Note
that states containing operators

(
α25−n

)
are of sub-leading order in energy and are

neglected. For simplicity, we will only consider the states

|N, 2m, r, i, l〉 =
(
αT
−1

)N−2m−2r (
αL
−1

)2m (
αL
−2

)r |k2, l2, i, l〉 (4.5)

at mass level M̂2
2 = 2 (N − 1) scattered with three “tachyon” states (with M̂2

1 =
M̂2

3 = M̂2
4 = −2). Equation (4.5) is the most general high-energy vertex in the

fixed angle regime. The vertex considered previously at fixed angle in Eq. (3.3)
corresponds to m = 0 only and thus was not completed. The relevant kinematics can
be calculated to be

eP · k1 � − s25

2M2
, eP · k3 � −t25 − M2

2 − M2
3

2M2
= − t̃25

2M2
; (4.6)

eL · k1 � − s25

2M2
, eL · k3 � −t25 + M2

2 − M2
3

2M2
= − t̃′25

2M2
; (4.7)

and
eT · k1 = 0, eT · k3 � −√−t25. (4.8)
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Exponential Fall-Off Behavior of Regge Scatterings 895

We are now ready to calculate the Regge scattering amplitudes. Note that eP �=
eL in the RR.31)–33) We will calculate eL amplitudes in this paper. The corresponding
eP amplitudes can be similarly calculated. The s − t channel of the compactified
Regge string scattering amplitudes in the regime Eq. (4.2) can be calculated to be
(We will ignore the trace factor due to Chan-Paton in the scattering amplitude
calculation. This does not affect our final results in this paper.)

A(N,2m,r,i,l) =
∫ 1

0
dxxk1·k2(1 − x)k2·k3

[
eT · k3

1 − x

]N−2m−2r

·
[
eL · k1

−x
+

eL · k3

1 − x

]2m [
eL · k1

x2
+

eL · k3

(1 − x)2

]r

� (
√−t25)N−2m−2r

(
t̃′25

2M2

)r ∫ 1

0
dxxk1·k2(1 − x)k2·k3−N+2m

·
2m∑
j=0

(
2m

j

)(
s25

2M2x

)j ( −t̃′25

2M2(1 − x)

)2m−j

= (
√−t25)N−2m−2r

(
t̃′25

2M2

)r (
t̃′25

2M2

)2m

·
2m∑
j=0

(
2m

j

)
(−1)j

(
s25

t̃′25

)j

B (k1 · k2 − j + 1, k2 · k3 − N + j + 1) . (4.9)

Note that the term eL·k1
x2 in the bracket is subleading in energy and can be neglected.

In the high-energy limit, the beta function in Eq. (4.9) can be approximated by

B (k1 · k2 − j + 1, k2 · k3 − N + j + 1) � B

(
−1 − 1

2
s,−1 − t

2

)(
−s

2

)−j
(
−1 − t

2

)
j

.

(4.10)
Finally, the leading order amplitude in the RR can be written as

A(N,2m,r,i,l) = B

(
−1 − s

2
,−1 − t

2

)√−t25
N−2m−2r

(
1

2M2

)2m+r

22m(t̃′25)
rU

(
−2m ,

t

2
+ 2 − 2m ,

t̃′25

2

)
, (4.11)

which is UV power-law behaved as t = finite in the beta function by Eq. (4.3). U
in Eq. (4.11) is the Kummer function of the second kind and is defined to be

U(a, c, x) =
π

sinπc

[
M(a, c, x)

(a − c)!(c − 1)!
− x1−cM(a + 1 − c, 2 − c, x)

(a − 1)!(1 − c)!

]
, (c �= 2, 3, 4...)

(4.12)
where M(a, c, x) =

∑∞
j=0

(a)j

(c)j

xj

j! is the Kummer function of the first kind. U and M

are the two solutions of the Kummer equation

xy
′′
(x) + (c − x)y′(x) − ay(x) = 0. (4.13)
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It is crucial to note that, in our case of Eq. (4.11), c = t
2 + 2 − 2m and is not a

constant as in the usual definition, so U in Eq. (4.11) is not a solution of the Kummer
equation.

It is important to note that there is no linear relation among high-energy string
scattering amplitudes of different string states for each fixed mass level in the RR
as can be seen from Eq. (4.11). This is very different from the result in the GR
in Eq. (3.2). In other words, the ratios A(N,2m,r,i,l)/A(N,0,0,i,l) are t̃′25-dependent
functions. In particular, we can extract the coefficients of the highest power of t̃′25

in A(N,2m,r,i,l)/A(N,0,0,i,l). We can use the identity of the Kummer function

22m(t̃′25)
−2m U

(
−2m,

t

2
+ 2 − 2m,

t̃′25

2

)
= 2F0

(
−2m,−1 − t

2
,− 2

t̃′25

)

≡
2m∑
j=0

(−2m)j

(
−1 − t

2

)
j

(
− 2

t̃′25

)j

j!

=
2m∑
j=0

(
2m

j

)(
−L − t̃′25

2

)
j

(
2

t̃′25

)j

(4.14)

to get

A(N,2m,r,i,l)

A(N,0,0,i,l)
= (−1)m

(
− 1

2M2

)2m+r

(t̃′25 − M2
2 + M2

3 )−m−r(t̃′25)
2m+r

·
2m∑
j=0

(−2m)j

(
−L − t̃′25

2

)
j

(−2/t̃′25)
j

j!
+ O

{(
1

t̃′25

)m+1
}

, (4.15)

where
L = 1 − N − (K25

2 )2 + K25
2 K25

3 . (4.16)

If the leading order coefficients in Eq. (4.15) extracted from the high energy string
scattering amplitudes in the RR are to be identified with the complete ratios in
Eq. (3.2) calculated previously among high energy string scattering amplitudes in
the GR31),32)

lim
t̃′25→∞

A(N,2m,r,i,l)

A(N,0,0,i,l)
=
(
− 1

M2

)2m+r (1
2

)m+r

(2m − 1)!! =
T (N,2m,r,i,l)

T (N,0,0,i,l)
, (4.17)

we need the following identity:
2m∑
j=0

(−2m)j

(
−L − t̃′25

2

)
j

(−2/t̃′25)
j

j!

= 0(−t̃′25)
0 + 0(−t̃′25)

−1 + ... + 0(−t̃′25)
−m+1 +

(2m)!
m!

(−t̃′25)
−m + O

{(
1

t̃′25

)m+1
}

.

(4.18)
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Note that the ratios calculated previously at fixed angle in Eq. (3.6) corresponds
to m = 0 only in Eq. (4.17) and thus was not completed. The ratios in Eq. (4.17)
calculated in this paper by the indirect method through the RR amplitudes are the
most general ones. The coefficient of the term O

{(
1/t̃′25

)m+1
}

in Eq. (4.18) is
irrelevant for our discussion. The proof of Eq. (4.18) turns out to be nontrivial. The
standard approach by using integral representation of the Kummer function seems
not applicable here. Presumably, the difficulty of the rigorous proof of Eq. (4.18) is
associated with the nonconstant c mentioned previously.

Mathematically, the complete proof of Eq. (4.18) for arbitrary real values L was
recently worked out in 36) by using an identity of signless Stirling number of the first
kind in combinatorial theory. The proof of the identity for L = 0, 1, was previously
given in 31)–33) based on a set of identities of signed Stirling number of the first
kind.35) It is interesting to see that, physically, the identities for arbitrary real values
L can only be realized in high-energy compactified string scatterings considered in
this paper. This is due to the dependence of the value L on winding momenta
K25

i . All other high-energy string scattering amplitudes calculated previously31)–33)

correspond to integer value of L only.

4.2. Highly winding modes

In this subsection, we consider the more interesting RR

t25 = finite, (K25
i )2 � p2 	 N. (4.19)

In this regime, Eqs. (2.11) and (2.19) imply

t25 � t − 2
√

p2 + M̂2
2 ·

√
q2 + M̂2

3 + 2
√

p2 + M2
2 ·

√
q2 + M2

3 − 2K25
2 K25

3 . (4.20)

It is easy to see that in general∗) t is as large as p2 in this regime. The most general
high-energy vertex at each fixed mass level N is

|N, 2m, r, i, l〉 =
(
αT
−1

)N−2m−2r (
αL
−1

)2m (
αL
−2

)r |k2, l2, i, l〉 . (4.21)

Note that states containing operators
(
α25−n

)
are again of sub-leading order in energy.

For simplicity, we will only consider the states

|N, 0, r, i, l〉 =
(
αT
−1

)N−2r (
αL
−2

)r |k2, l2, i, l〉 (4.22)

at mass level M̂2
2 = 2 (N − 1) scattered with three “tachyon” states (with M̂2

1 =
M̂2

3 = M̂2
4 = −2). The s− t channel of the high-energy scattering amplitude can be

calculated to be

A(N,0,r,i,l) =
∫

d4x ·
∏
i<j

(xi − xj)
ki·kj

·
[

ieT · k1

x1 − x2
+

ieT · k3

x3 − x2
+

ieT · k4

x4 − x2

]N−2r

·
[

eL · k1

(x1 − x2)
2 +

eL · k3

(x3 − x2)
2 +

eL · k4

(x4 − x2)
2

]r

.

(4.23)
∗) For some regime, t can be finite. For example, for K25

2 = K25
3 � p2 � N, t � t25 = finite by

Eq. (4·20).
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After fixing the SL(2, R) gauge and using the kinematic relations Eqs. (2.26) to
(2.31) and Eq. (4.1) derived previously, we have

A(N,0,r,i,l) =
(−i

√−t25

)N

(
p
√

q2 + M2
3 − q

√
p2 + M2

2

M2t25

)r

·
∫ 1

0
dx · xk1·k2 (1 − x)k2·k3−N+2r

·
⎡⎣ p

√
p2 + M2

1 + p
√

p2 + M2
2(

p
√

q2 + M2
3 − q

√
p2 + M2

2

)
x2

− 1
(1 − x)2

⎤⎦r

=
(−i

√−t25

)N

(
p
√

q2 + M2
3 − q

√
p2 + M2

2

M2t25

)r

·
r∑

j=0

(
r

j

)[
−p

√
p2 + M2

1 + p
√

p2 + M2
2

p
√

q2 + M2
3 − q

√
p2 + M2

2

]j

·
∫ 1

0
dx · xk1·k2−2j (1 − x)k2·k3−N+2j

=
(−i

√−t25

)N

(
p
√

q2 + M2
3 − q

√
p2 + M2

2

M2t25

)r

·
r∑

j=0

(
r

j

)[
−p

√
p2 + M2

1 + p
√

p2 + M2
2

p
√

q2 + M2
3 − q

√
p2 + M2

2

]j

· B
(
−1

2
s + N − 2j − 1,−1

2
t + 2j − 1

)
, (4.24)

where B(u, v) is the Euler beta function. We can do the high-energy approximation
of the gamma function Γ (x) and end up with

A(N,0,r,i,l) =
(−i

√−t25

)N

(
p
√

q2 + M2
3 − q

√
p2 + M2

2

M2t25

)r

·
r∑

j=0

(
r

j

)[
−p

√
p2 + M2

1 + p
√

p2 + M2
2

p
√

q2 + M2
3 − q

√
p2 + M2

2

]j

· Γ
(−1 − 1

2s + N − 2j
)
Γ
(−1 − 1

2 t + 2j
)

Γ
(
2 + 1

2u
)

� (−i
√−t25

)N

(
p
√

q2 + M2
3 − q

√
p2 + M2

2

M2t25

)r

·
r∑

j=0

(
r

j

)[
−p

√
p2 + M2

1 + p
√

p2 + M2
2

p
√

q2 + M2
3 − q

√
p2 + M2

2

]j

· B
(
−1 − 1

2
s,−1 − 1

2
t

)(
−1 − 1

2
t

)
2j

(
−1 − 1

2
s

)N−2j (
2 +

1
2
u

)−N
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=
(

i

√−t25

(u
s )

)N
(

p
√

q2 + M2
3 − q

√
p2 + M2

2

M2t25

)r

· B
(
−1 − 1

2
s,−1 − 1

2
t

)

·
r∑

j=0

(
r

j

)[
−p

√
p2 + M2

1 + p
√

p2 + M2
2

p
√

q2 + M2
3 − q

√
p2 + M2

2

4
s2

]j (
−1 − 1

2
t

)
2j

. (4.25)

Finally, since t is as large as p2 in the regime Eq. (2.26), we can easily do the
summation and end up with

A(N,0,r,i,l) =
(

i

√−t25

(u
s )

)N (
− 1

M2

)r

· B
(
−1 − 1

2
s,−1 − 1

2
t

)
[
−p

√
q2 + M2

3 − q
√

p2 + M2
2

t25
+

p
√

p2 + M2
1 + p

√
p2 + M2

2

t25

(
t

s

)2
]r

,

(4.26)

where ( t
s) and (u

s ) are fixed numbers. Since t is as large as s in this regime, the
beta function B(−1 − s

2 ,−1 − t
2) in Eq. (4.26) implies that the UV behavior of the

amplitude is exponential fall-off. On the other hand, it is clear that there is no linear
relation in this regime. In conclusion, we have discovered a small angle φ � 0 regime
with UV exponential fall-off behavior for the high-energy compactified open string
scatterings. This new phenomenon never happens in the 26D string scatterings.

§5. Conclusion

In this paper, we have mainly achieved three new results for high-energy string
scattering amplitudes. First, we calculate massive string scattering amplitudes of
compactified open string in the Regge regime. We can then extract the complete
infinite ratios among high-energy amplitudes of different string states in the fixed
angle regime from these Regge string scattering amplitudes. The complete ratios
calculated by this indirect method include and extend the subset of ratios calculated
previously19),20) by the more difficult direct fixed angle calculation.

Second, by studying the high-energy string scattering for the compactified open
string, we discover in this paper a realization of arbitrary real values L in the identity
Eq. (4.18) which was proposed recently to link fixed angle and Regge string scattering
amplitudes. All other high-energy string scatterings calculated previously31),33),34)

correspond to integer value of L only. Physically, the parameter L is related to the
mass level of an excited string state and can take non-integer values for Kaluza-Klein
modes. Mathematically, the identity in Eq. (4.18) was explicitly proved recently for
arbitrary real values L in 36) by using the signless Stirling number in combinatorial
theory.

Finally, we discover a kinematic regime which shows the unusual exponential
fall-off behavior in the small angle scattering. This is complimentary with a fixed
angle regime discovered previously,20) which shows the unusual power-law behavior
in the compactified string scatterings.

 at N
ational C

hiao T
ung U

niversity L
ibrary on M

ay 1, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/


900 S. He, J. C. Lee and Y. Yang

Acknowledgements

This work is supported in part by the National Science Council, 50 Billions
Project of MOE and National Center for Theoretical Science, Taiwan, R.O.C. We
would like to thank the hospitality of KITPC where part of this work was completed
during our visits in the summer of 2010. J. C. Lee and Yi Yang would like to thank
discussions on this subject with Prof. C. I. Tan of Brown University, Prof. B. Feng of
Zhejiang University and Dr. Y. Mitsuka. S. He would like to thank Prof. Mei Huang
and Prof. Sang Jin Sin’s warm support. He is grateful to APCTP and CQUeST in
Korea for their hospitalities at various stages of this work.

References

1) D. J. Gross and P. F. Mende, Phys. Lett. B 197 (1987), 129; Nucl. Phys. B 303 (1988),
407.

2) D. J. Gross, Phys. Rev. Lett. 60 (1988), 1229; Philos. Trans. R. Soc. London A 329 (1989),
401.

3) D. J. Gross and J. L. Manes, Nucl. Phys. B 326 (1989), 73. See Section 6 for the details.
4) C. T. Chan and J. C. Lee, Phys. Lett. B 611 (2005), 193.

J. C. Lee, hep-th/0303012.
5) C. T. Chan and J. C. Lee, Nucl. Phys. B 690 (2004), 3.
6) C. T. Chan, P. M. Ho and J. C. Lee, Nucl. Phys. B 708 (2005), 99.
7) C. T. Chan, P. M. Ho, J. C. Lee, S. Teraguchi and Y. Yang, Nucl. Phys. B 725 (2005),

352.
8) C. T. Chan, P. M. Ho, J. C. Lee, S. Teraguchi and Y. Yang, Phys. Rev. Lett. 96 (2006),

171601.
9) C. T. Chan, P. M. Ho, J. C. Lee, S. Teraguchi and Y. Yang, Nucl. Phys. B 749 (2006),

266.
10) C. T. Chan, J. C. Lee and Y. Yang, Nucl. Phys. B 738 (2006), 93.
11) C. T. Chan, J. C. Lee and Y. Yang, Nucl. Phys. B 749 (2006), 280.
12) C. T. Chan, J. C. Lee and Y. Yang, Nucl. Phys. B 764 (2007), 1.
13) J. C. Lee and Y. Yang, Phys. Lett. B 646 (2007), 120, hep-th/0612059.
14) J. C. Lee, Phys. Lett. B 241 (1990), 336; Phys. Rev. Lett. 64 (1990), 1636; Prog. Theor.

Phys. 91 (1994), 353.
J. C. Lee and B. Ovrut, Nucl. Phys. B 336 (1990), 222.
J. C. Lee, Phys. Lett. B 326 (1994), 79.

15) T. D. Chung and J. C. Lee, Phys. Lett. B 350 (1995), 22; Z. Phys. C 75 (1997), 555.
J. C. Lee, Eur. Phys. J. C 1 (1998), 739.

16) H. C. Kao and J. C. Lee, Phys. Rev. D 67 (2003), 086003.
C. T. Chan, J. C. Lee and Y. Yang, Phys. Rev. D 71 (2005), 086005.

17) G. W. Moore, hep-th/9305139.
G. W. Moore, hep-th/9310026.
P. C. West, Mod. Phys. Lett. A 10 (1995), 761.
N. Moeller and P. West, Nucl. Phys. B 729 (2005), 1.
G. S. Danilov and L. N. Lipatov, Nucl. Phys. B 754 (2006), 187.
M. Kachelriess and M. Plumacher, hep-ph/0109184.
O. Andreev, Phys. Rev. D 71 (2005), 066006.

18) P. F. Mende, Phys. Lett. B 326 (1994), 216, hep-th/9401126.
19) J. C. Lee and Y. Yang, Nucl. Phys. B 784 (2007), 22.
20) J. C. Lee, T. Takimi and Y. Yang, Nucl. Phys. B 804 (2008), 250.
21) J. C. Lee, Eur. Phys. C 7 (1999), 669, hep-th/0005227.
22) J. C. Lee, Eur. Phys. C 13 (2000), 695, hep-th/0005228.
23) D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B 197 (1987), 81.
24) D. Amati, M. Ciafaloni and G. Veneziano, Int. J. Mod. Phys. A 3 (1988), 1615.
25) D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B 216 (1989), 41.
26) M. Soldate, Phys. Lett. B 186 (1987), 321.

 at N
ational C

hiao T
ung U

niversity L
ibrary on M

ay 1, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/


Exponential Fall-Off Behavior of Regge Scatterings 901

27) I. J. Muzinich and M. Soldate, Phys. Rev. D 37 (1988), 359.
28) R. C. Brower, J. Polchinski, M. J. Strassler and C. I. Tan, hep-th/0603115.
29) G. S. Danilov and L. N. Lipatov, Nucl. Phys. B 754 (2006), 187.
30) M. Kachelriess and M. Plumacher, hep-ph/0109184.
31) S.-L. Ko, J. C. Lee and Y. Yang, J. High Energy Phys. 06 (2009), 028; arXiv:0811.4502;

arXiv:0909.3894 (published in the SLAC eConf series).
32) J. C. Lee and Y. Yang, Phys. Lett. B 687 (2010), 84.
33) S. He, J. C. Lee, K. Takahashi and Y. Yang, Phys. Rev. D 83 (2011), 066016,

arXiv:1001.5392.
34) J. C. Lee, Y. Mitsuka and Y. Yang, Prog. Theor. Phys. 126 (2011), 397, arXiv:1101.1228.
35) M. Mkauers, J. Symbolic Computation 42 (2007), 948.
36) J. C. Lee, C. H. Yan and Y. Yang, SIGMA 8 (2012), 045; arXiv:1012.5225.

 at N
ational C

hiao T
ung U

niversity L
ibrary on M

ay 1, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/

