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A b s t r a c t - - I n  this paper, we propose a simple, easily programmed exact method for obtaining 
the optimal design of a distributed computing system in terms of maximizing reliability subject to 
memory capacity constraints. We assume that a given amount of resources are available for linking 
the distributed computing system. The method is based on the partial order relation. To speed 
up the procedure, some rules are proposed to indicate conditions under which certain vectors in 
the numerical ordering that do not satisfy the capacity constraints can be skipped over. Simulation 
results show that the proposed algorithm requires less time and space than exhaustive method. 
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1. I N T R O D U C T I O N  

A distributed computer system (DCS) has been defined as a collection of nodes at which re- 
side computing resources that  communicate with each other via a set of links [1]. Large scale 

distributed computer systems are coming into use primarily because of the economy achieved 

through resource sharing [2]. The main objective of a DCS is to provide efficient communica- 

tion among various nodes in order to increase their utility and to make their service available to 

more users [3]. One of the fundamental considerations in designing such systems is that  of sys- 

tem reliability, which strongly depends on the topological layout of the communication links [4]. 

Reliability is a very good measure of DCS performance if all the needed network users are to 

be connected with each other, i.e., it is desired to establish a communication path between all 

the K-available nodes at one time. A DCS may be modelled by a graph in which the nodes 

correspond to the file servers and the edges to the communication links. 

Several heuristic methods [5-7] have been proposed for obtaining an optimal network topology 

that  gives maximum overall reliability of a given computer communication network, but there is 

no method that  provides an exact solution. All of the proposed methods find an approximate 

solution, because as the number of links increases, the number of possible layouts of the links grows 

faster than exponentially. However, an exact optimal solution is important where the topology 

will be used for an extended time. To date, the problem of maximizing the reliability of a DCS 

under memory constraints through exact methods does not appear to have been considered. In 
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this paper, we propose an exact method for obtaining an optimal DCS using the partial order 
relation of solving discrete optimization problems [8]. The method is simple, easy to understand, 
and easy to program. To speed up the procedure, rules indicating conditions under which certain 
vectors in the numerical ordering do not satisfy the capacity constraints can be skipped over. 
This reduces the evaluation count and execution time. 

The organization of the rest of this paper is as follows. In Section 2, assumptions, notation 
and definitions that  will be used throughout this paper are given. Section 3 presents the mathe- 
matical formulation of the problem and an algorithm with a flow chart of the solution procedure. 
Examples are used to illustrate the method and simulation results are obtained in Section 4. 
Section 5 concludes the paper. 

2.  A S S U M P T I O N S ,  N O T A T I O N  A N D  D E F I N I T I O N S  

ASSUMPTIONS. The method suggested here makes the following assumptions. 

1. The locations of the various computers and the possible locations of the connecting links 
axe known. 

2. The reliability of every link is known. 
3. The capacity of every node installed is specified. 
4. Each node is perfectly reliable. 
5. Every link is either in the working (ON) state or failed (OFF) state. 
6. The total capacity constraint on the DCS is known. 

NOTATION. The notation and definitions used in the rest of paper are summarized here. 

G = (N, L) 

Ni 
Li 
L = {L1, L2, . . . ,  L~} 
X ^ 
Xi 
Z = {x l ,  x2, 
C~ 
Ca 
Gk 
R n 

R ( a x )  
X* 

X < Y  
X < Y  

an undirected DCS graph in which the set of nodes N represents 
the PEs and the links L represent the communication links. 
a node representing a processing element i. 
an edge representing a communication link i. 
the set of all allowable links. 
denotes the vector which has current optimal solution R(Gx). 
a decision node, Xi = 1 if i is selected, else Xi = 0. 
the set of decision nodes, Xi = 0 or 1, i = 1, 2 , . . . , n .  
capacity of the i th node. 
memory capacity constraint in system. 
denotes the graph G with K-node specified. 
denotes the current optimal reliability solution. 
the reliability of X-node solution of the DCS graph G. 
first vector following X in the numerical ordering 
that  has the property X ~ X*. 
X is less than Y with numerical ordering. 
X is less than Y with vector partial ordering. 

DEFINITION 1. K-node reliability is defined as the probabifity of successful communication, i.e., 
all K-nodes in Gx axe connected by working edges within the given memory capacity constraint. 

DEFINITION 2. An K-node DCS reliability problem is the problem of computing R(Gx). The 
problem is a member of the class of number K-complete problems that is a class of NP-complete 
problems. 

DEFINITION 3. An evaluation count is the number of computation of R(Gx) that axe needed to 
satisfy the capacity constraint. 

3. M A T H E M A T I C A L  F O R M U L A T I O N  O F  T H E  P R O B L E M  

The problem considered in this paper may be stated as follows: determine an optimal DCS 
that  gives maximum reliability within the given memory capacity constraint. In other words, 
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we are to find a set of X-nodes from the given set N which constitutes an optimal DCS in that  
X-node reliability is maximized and the total memory capacity satisfies the capacity constraint. 
The main problem can be stated mathematically as follows: 

Maximize R( Gx ), 

subject to: ~ 6'/>_ Cs. 
X i E K  

In this section, we discuss some preliminaries that  are essential for the description of the 
algorithm. We consider vectors X of the form X = (xl, x2 , . . . ,  Xn) which are binary in the sense 
that  each Xj is either 0 or 1. We say that  X _< Y if and only if Xj <_ Yj, for j = 1, 2 , . . . ,  n, e.g., 
X < Y where X = (01 0) and Y = (01 1). This is the vector partial ordering. Note that  the 
numerical ordering is a refinement of the vector partial ordering, i.e., X < Y implies n(x) < n(y), 
but n(x) < n(y) does not imply X < Y, where n(x), n(y) are numerical order. Suppose all binary 
n-vectors are listed in numerical order, i.e., 

(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1 ) , . . . ,  (1, 1, 1, 1), etc. 

Immediately following an arbitrary vector X, there may (or may not) be a number of vectors X '  
with the property that  X < X'.  Roughly speaking, these are vectors that  differ from X only in 
that  they have l ' s  in place of one or more of the rightmost O's of X, for example, immediately 
following X = (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), and (0, 1, 1, 1), each of which is greater than 
X in the vector partial ordering. 

We let X* denote the first vector following X in the numerical ordering that  has the property 
that  X :~ X*. For any given X, the vector X* is easily calculated on a computer as follows. 
Treat X as a binary number: 

(1) Subtract 1 from X, 
(2) Logically 'or' X and X - 1 to obtain X* - 1, 
(3) Add 1 to obtain X*. 

An example: 

Let X = 0101100, 
(1) X -  l = 0101011, 
(2) X* - 1 = 0101111, 
(3) X *  = 0110000. 

Note that  X* - 1 is greater than each of X, X + 1 , . . . ,  X* - 2, in the vector partial ordering. 
Consider the following simple optimal DCS problem: 

Maximize R(Gx), 

subject to: ~ 6'/ _> C,. 
X i E K  

We can solve this problem by examining each of the 2 n possible solution vectors in numerical 
order, beginning with X = (0, 0 , . . . ,  0) and ending with (1, 1 , . . . ,  1). However, this process can 
be shortened considerably by invoking certain rules, which are stated below. 

As we proceed through the list of vectors, we keep a record of the least capacity solution 
found to date. Let X ^ denote current optimal solution vector. Let X denote the vector that  is 
currently being examined. The following rules indicate conditions under which certain vectors in 
the numerical ordering can be skipped over. 
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RULE 1. If ~ X i e K  C~(X* - 1)~ < C8, then skip to X*. 

JUSTIFICATION. X is monotone nondecreasing, and X < X ÷ I  < X + 2  < , . . . ,  < X * - 2  ~_ X * - I ,  
thus, Ci(X)  <_ Ci(X + 1) _< Ci(X + 2) _<,..., Ci(X* - 2) < Ci(X* - 1) < Cs. 

RULE 2. I f  the vector partial ordering X >_ X A, then skip to X*. 

JUSTIFICATION. X is monotone nondecreasing, and X ^ ~_ X _ X + I  ~ X + 2  ~ , . . . ,  < X * - 2  ~ 
X* - 1 ,  thus, R (Gx A) _> R(G~) ~ R (Gz+l) >_ R(G~+2) > , . . . ,  > R (G~*-2) _> R (Gx*-l)  are all 
less than R (Gx^). 

RULE 3. If X is a feasible solution of R(Gx) < R A, then skip to X*. 

JUSTIFICATION. X is monotone nondecreasing, and X _< X + I  _< X + 2  _<,..., _< X * - 2  _< X * - I ,  
so R(Gx) ~ R (G~+I) _~ R (Gx+2) _~,..., _~ R (Gx*-2) _~ R (Gx*-l).  Of course, if Rule 3 applies 
and R(Gx) > R ̂ , then X ^ is substituted for X and R ̂  is substituted for R(Gk). 

To find an optimal solution, we do not consider an exhaustive method, since it is too time- 
consuming. Instead, we apply the Lawler-Bell algorithm [8] to find an optimal solution by skipping 
unsatisfactory conditions and executing only a portion of all the combinations. The problem of 
DCS can then be transformed into the following formulation: 

Maximize R( Gz ), 

subject to: ~ Ci _> Cs. 
X i ~ K  

The exact solution for our problem using the Lawler-Bell technique is described as follows: 

1. Node vector: 

X = (Xn, X n - 1 , . . . , X 1 ) ,  Xi = 0 or 1, i = 1, 2 , . . . , n .  

2. Numerical ordering: 

(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1 ) , . . . , (1 ,  1, 1, 1). 

3. Vector partial ordering: 

X < Y if and only if Xi <_ Y~, for i = 1, 2 , . . . ,  n, 

e.g., if X = (0, 1, 0, 0, 1), Y = (0, 1, 1, 0, 1), then, X <_ Y implies R (Gx) >_ R (Gy) and 
c i (x i )  < ci(Y ). 

4. X*: the first vector following X in the numerical ordering that has the property that  
X / ~  X*. The formulation is X* = (X bit or X - 1 bit) + 1, e.g., 

X = 0 1 0 1 1 0 0 ,  

X * = 0 1 1 0 0 0 0 .  

If X is monotone nondecreasing in each of the vector partial orderings, then 

X ~ X + I ~ X + 2 ~  . . . .  , ~ X * - 2 ~ X * - I ~ X ,  

implying that R(Gx) >_ R(Gx+I) >_ R(Gx+2) _>,...,_> R(Gx._2)  ~ R(G~._I) 
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ALGORITHM. The algorithm based on the above rules is given below. 

STEP 1. Determine whether the count number has overflowed. If X >overflow_X then stop; 

otherwise, go to the next step. 

STEP 2. Compare the capacity ~-]~=ln Ci(x* - 1)~ with capacity constraint Cs. If ~= ln  
Ci(x* - 1)i < Cs, then substitute X for X* and go to back to Step 1, else go to the next 
step. 

STEP 3. Compare the capacity ~-]~=1 C~X~ with capacity constraint Cs. If ~ 1  C~X~ < Cs, 
then X = X + 1 and go to back to Step 1, else go to the next step. 

STEP 4. Compare the vector partial ordering X with X A. If X > X ^, then X is substituted 
for X* and go to back to Step 1, else go to the next step. 

STEP 5. Compute reliability R(Gx) and compare with the current optimal solution R n. If 
R(Gx) > R ̂ , then substitute R n for R(Gx) and X n for X, else substitute X for X* and go to 
back to Step 1. 

STEP 6. Continue loop until X overflow. Then, last R (Gx^) reliability computed with the 
factoring algorithm [9] is obtained for our X-node reliability and X n is obtained for our optimal 
node vector. 

No 

Initial value 
X=X,~_ 0 

~,. R~-~ 1.0 

y•• No Rulo 1. 

Yes Rule2 

-I I 
No~ Rule3 

Figure 1. Flow chart of the actual solution procedure. 

v 

The actual solution algorithm followed is a variation of that  given by Lawler and Bell [8], 
modified for the sake of computational simplicity. The algorithm is illustrated with the flow 
chart in Figure 1. We determine the X-node reliability of a DCS iff the corresponding node 
capacity satisfies the given capacity constraints. 

CAMWA 29:4-H 
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4. E X A M P L E S  A N D  R E S U L T S  

The exact method is illustrated below by means of two examples. 

4.1. Example 1 
Consider the six node DCS with eight links depicted in Figure 2. Here, our problem is to 

determine an optimal DCS which includes some of the nodes X1, X2,. •., X6, whose total capacity 
exceeds the memory capacity constraint of 70 units. The optimization can be formulated as the 
following mathematical problem: 

Maximize R(Gz), 

subject to: ~ C~ _> 70. 
X i c K  

Using a C computer program based on the proposed algorithm and the flow chart in Figure 1, 
an optimal DCS was obtained by an Intel-486 personal computer in 2 clock cycle execution 
time. The optimal K-DCS topology with node vector (X1, X2, X3, Xs)was found in the DCS 
with maximum reliability of 0.7628 and memory capacity of 70 units. The evaluation count 
was only 17, compared with a count of 32 for the exhaustive method. This is a rather modest 
reduction in computing, but much greater saving will be made in problems with a larger DCS. 

X2 
0.6 

0.8 

X1 0.9 

0.8 
X3 

X4 

%; x6 0.6 

X5 
Figure 2. A six node distributed computing system. 

X2 X3 

0.8 7 ) 

X1 

X4 

X5 

X7 X( 
Figure 3. An ARPA-net distributed computing system. 

C1=20 
C2=15 
C3=10 
C4=30 
C5:25 
C6=25 

C1=20 
C2=30 
C3=18 
(:4=26 
C5=40 
C6=20 
O7=10 
C8=35 

4.2. Example 2 
Consider a simplified version of the well-known ARPA network having eight nodes and 12 links, 

as depicted in Figure 3. Here, our problem is to determine an optimal DCS which includes some 
of the nodes X1, X2, . . . ,  Xs, the total capacity of which exceeds the memory capacity constraint 
of 100 units. The problem can be stated mathematically as follows: 

Maximize R(Gz ), 

subject to: ~ Ci _> 100. 
X i E K  
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Using a C c o m p u t e r  p rog ram based  on the  p roposed  a lgo r i thm and  the  flow char t  in F igure  1, 

an  o p t i m a l  DCS was ob t a ined  by  an Intel-486 persona l  c o m p u t e r  in 54 clock cycle execu t ion  

t ime.  T h e  o p t i m a l  K - D C S  wi th  node  vec tor  (X1, X2, X3, X4, XT) was found in the  DCS wi th  

m a x i m u m  re l iab i l i ty  of 0.8245 and m e m o r y  capac i ty  of 104 units.  The  eva lua t ion  count  was 

only  78, as c o m p a r e d  wi th  a count  of 128 for the  exhaus t ive  me thod .  A l t h o u g h  78 eva lua t ion  

counts  need to  be  examined ,  on ly  a small  po r t ion  of  the  78 need to  use fac tor ing  a lgo r i t hm [9] to  

c o m p u t e  re l i ab i l i ty  R ( G x ) .  Therefore ,  rules can reduce execut ion  t ime  effectively. 

5. C O N C L U S I O N  

T h e  presen t  m e t h o d  for the  de t e rmin ing  of the  op t ima l  X - n o d e  in a DCS so as to  max imize  

the  K - n o d e  re l iab i l i ty  is based  on the  pa r t i a l  order  re la t ion.  However,  the  p roposed  a lgo r i t hm 

requi res  less execut ion  t ime  and  space t han  the  exhaus t ive  me thod ,  because  we a p p l y  several  

rules to  d i sca rd  mos t  of the  infeasible eva lua t ion  count  before compu t ing  the  re l i ab i l i ty  R (Gx)  

and  reduce  the  c o m p u t a t i o n  t ime.  Thus,  the  rules are very  effective. The  a lgo r i t hm presen ted  is 

s t r a igh t fo rward  and  easi ly  t r ans fo rmed  into a p rogram.  
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