
Int. J. Production Economics 141 (2013) 327–334
Contents lists available at SciVerse ScienceDirect
Int. J. Production Economics
0925-52

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/ijpe
Permutation flowshop scheduling to minimize the total tardiness with
learning effects
Wen-Chiung Lee a, Yu-Hsiang Chung b,n

a Department of Statistics, Feng Chia University, Taichung, Taiwan
b Department of Industrial & Engineering Management, National Chiao Tung University, Hsinchu 300, Taiwan
a r t i c l e i n f o

Article history:

Received 4 January 2011

Accepted 1 August 2012
Available online 25 August 2012

Keywords:

Scheduling

Permutation flowshop

Total tardiness

Learning effect
73/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.ijpe.2012.08.014

esponding author. Tel.: þ886 3 928 395863;

ail address: yhchung.iem96g@nctu.edu.tw (Y.
a b s t r a c t

Scheduling with learning effects has received considerable attention recently. Often, numbers of

operations have to be done on every job in many manufacturing and assembly facilities. However, it is

seldom discussed in the general multiple-machine setting, especially without the assumptions of

identical processing time on all the machines or dominant machines. With the current emphasis of

customer service and meeting the promised delivery dates, we consider a permutation flowshop

scheduling problem with learning effects where the objective is to minimize the total tardiness. A

branch-and-bound algorithm and two heuristic algorithms are established to search for the optimal

and near-optimal solutions. Computational experiments are also given to evaluate the performance of

the algorithms.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In classical scheduling, the job processing times are assumed
to be fixed and known throughout the entire process. However,
this assumption might not reflect many real-life situations. For
example, Biskup (1999) pointed out that repeated processing of
similar tasks improves the worker skills; workers are able to
perform setup, to deal with machine operations or software, or to
handle raw materials and components at a greater pace. Biskup
(1999) and Cheng and Wang (2000) were among the pioneers
that brought the concept of learning effects into the scheduling
field. Many researchers have devoted to this young but vivid area
since. Biskup (2008) provided a comprehensive review of the
scheduling models and problems with learning effects.

Recently, Wang (2007) considered some single-machine pro-
blems with the effects of learning and deterioration, and proved
that the makespan and the sum of completion time problems
remain polynomially solvable. He also showed that the weighted
shortest processing time rule and the earliest due date rule provide
the optimal schedules for the weighted sum of completion time and
the maximum lateness problems in some special cases. Janiak and
Rudek (2008) considered a scheduling problem in which each job
provides a different experience to the processor. They relaxed one
of the rigorous constraints, and thus each job can provide different
experience to the processor in their model. They then formulated
ll rights reserved.

fax: þ886 3 572 9101.

-H. Chung).
the job processing time as a non-increasing k-stepwise function
that in general is not restricted to a certain learning curve, thereby
it can accurately fit every possible shape of a learning function. Lee
and Wu (2004) investigated a two machine flowshop scheduling
problem with learning consideration to minimize the total comple-
tion time. They utilized the branch-and-bound algorithm incorpo-
rated with several dominance properties and lower bounds to
obtain the optimal solution. An accurate heuristic algorithm was
also proposed to obtain the near-optimal solution. Cheng et al.
(in press) studied a two-machine flowshop scheduling problem with
a truncated learning function to minimize the makespan. They
utilized a branch-and-bound and three heuristic algorithms to derive
the optimal and near-optimal solutions. Wang (2008) studied some
single-machine problems with the sum-of-processing-time-based
learning effect. He showed by examples that the classical optimal
rules no longer provide the optimal solutions under the proposed
model. He also provided the optimal solutions for some single-
machine problems under certain conditions. Cheng et al. (2008),
Lee and Wu (2009), Yin et al. (2009) and Zhang and Yan (2010)
considered a variety of models in which the actual job processing
time not only depends on its scheduled position, but also depends on
the sum of the processing times of jobs already processed. They
provided the optimal schedules for some single machine problems.
Janiak and Rudek (2010) presented a new approach called multi-
abilities learning that generalizes the existing ones and models. On
this basis, they focused on the makespan problem and provided the
optimal polynomial time algorithms for some special cases. Lee et al.
(2010) investigated a single-machine problem with the learning
effect and release times where the objective is to minimize the

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2012.08.014
dx.doi.org/10.1016/j.ijpe.2012.08.014
dx.doi.org/10.1016/j.ijpe.2012.08.014
mailto:yhchung.iem96g@nctu.edu.tw
dx.doi.org/10.1016/j.ijpe.2012.08.014


W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334328
makespan. Chang et al. (2009) studied a single machine scheduling
problem, in which the learning/aging effect is considered. The
objective is to determine the common due date and the sequence
of jobs that minimizes a cost function.

Often numbers of operations have to be done on every job in
many manufacturing and assembly facilities (Pinedo, 2002; Tseng
and Lin, 2010; Wang et al., 2010; Zhao and Tang, 2012; Shabtay
et al., 2012; Sun et al., 2012). However, it is seldom discussed in the
general multiple-machine setting, especially without the assump-
tions of identical processing time on all the machines or dominant
machines. Wang and Xia (2005) studied some permutation flow-
shop problems when the learning effect is present. They provided
the worst-case bound of the shortest processing time rule for the
makespan and the total completion time problems. They also
showed that the makespan and the total completion time problems
remain polynomially solvable for two special cases. Xu et al. (2008)
provided heuristic algorithms for some permutation flowshop
problems. They also analyzed the worst case bounds for the
proposed algorithms. Wu and Lee (2009) considered a permutation
flowshop scheduling problem to minimize the total completion
time. They also analyzed the performance of the existing heuristic
algorithms when the learning effect is present.

With the current emphasis of customer service and meeting the
promised delivery dates, in this paper we consider a permutation
flowshop scheduling problem to minimize the total tardiness with
the learning effect. Although the classical problem without the
consideration of learning effects has attracted the attention of
numerous researchers due to its simple definition, most of the
research focused on developing the heuristic or meta-heuristic
algorithms due to the complexity of the problem. Recently, Vallada
et al. (2008) provided a comprehensive review of the heuristic
algorithms. To the best of our knowledge, Kim (1995) and Chung
et al. (2006) were the only authors who derived the optimal
schedules. In this paper, we provide a branch-and-bound and two
heuristic algorithms when the learning effect is present. The rest of
the paper is organized as follows. In the next section we describe the
formulation of our problem. In Section 3, we construct a branch-and-
bound algorithm using an elimination rule and a lower bound to
speed up the search for the optimal solution. In Section 4, two
heuristic algorithms are proposed to solve this problem. In Section 5,
a computational experiment is conducted to evaluate the efficiency
of the branch-and-bound algorithm and the performance of the
heuristic algorithms. A conclusion is given in the last section.
2. Problem description

There are n jobs and m machines. For each job j, there are
associated with m operations O1j, O2j, y, Omj where operation Oij

must be processed on machine i, i¼ 1,2,. . .,m. Processing of
operation Oiþ1, j can start only after operation Oij is completed.
Moreover, we focus on the permutation flowshop case which
implies the job sequence is the same in all the machines. The
normal processing time of operation Oij is denoted by pij and the
due date of job j is dj. The actual processing time pijr of operation
Oij is a function of its position in a schedule. That is,

pijr ¼ pijr
a, i¼ 1,2,:::,m; r¼ 1,2,:::,n,

if it is scheduled in the rth position and ao0 is the learning effect.
For a given schedule S, let CijðSÞ denote the completion time of

job j on machine i, TjðSÞ ¼max0,CmjðSÞ�dj denote the tardiness of
job j, and Ci½j�ðSÞ denote the completion time of the job scheduled
in the jth position on machine i. The objective of this paper is to
find a schedule that minimizes the total tardiness, a widely used
performance measure in scheduling literature. That is, we want to
find a schedule Sn such that

P
TjðS

n
Þr

P
TjðSÞ for any schedule S.
3. A branch-and-bound algorithm

The problem under study is NP-hard since it already is even
without the learning effect (Pinedo, 2002). Thus, the branch-and-
bound algorithm might be a good way to obtain the optimal
solution. In this section, we first provide a dominance property,
followed by the lower bound to speed up the search process, and
finally the branch-and-bound algorithm.

3.1. Dominance property

Chung et al. (2006) gave a dominance property for the classical
problem. In this subsection, we modified the property to take the
learning effect into consideration. Before presenting the property,
we first state a lemma from Chung et al. (2006).

Lemma 1. max0,a�bZmax0,a�c�max0,b�c for arbitrary real
numbers a, b, and c.

Property 1. Suppose that S1 ¼ ðs1,pÞ and S2 ¼ ðs2,pÞ are two
sequences where s1 and s2 are partial sequences which contains
the same set of s jobs. If

Xs

j ¼ 1

T ½j�ðs2Þ�
Xs

j ¼ 1

T ½j�ðs1ÞZðn�sÞmax0, max
1r irm

Ci½s�ðs1Þ�Ci½s�ðs2Þ,

then S1 dominates S2.

Proof. By definition, the completion time of the nth job of S1 on
machine m is

Cm½n�ðS1Þ ¼ max
1r irm

Ci½n�1�ðS1Þþ
Xm

l ¼ i

pl½n�n
a ¼ Ci1 ½n�1�ðS1Þþ

Xm

l ¼ i1

pl½n�n
a

for some i1 where 1r i1rm. Similarly, the completion time of the
nth job of S2 on machine m is

Cm½n�ðS2Þ ¼ max
1r irm

Ci½n�1�ðS2Þþ
Xm

l ¼ i

pl½n�n
a ¼ Ci2 ½n�1�ðS2Þþ

Xm

l ¼ i2

pl½n�n
a

for some i2 where 1r i2rm. Thus, we have

Cm½n�ðS1Þ�Cm½n�ðS2Þ ¼ ½Ci1 ½n�1�ðS1Þþ
Xm

l ¼ i1

pl½n�n
a��½Ci2 ½n�1�ðS2Þþ

Xm

l ¼ i2

pl½n�n
a�

r ½Ci1 ½n�1�ðS1Þþ
Xm

l ¼ i1

pl½n�n
a��½Ci1 ½n�1�ðS2Þþ

Xm

l ¼ i1

pl½n�n
a�

rCi1 ½n�1�ðS1Þ�Ci1 ½n�1�ðS2Þr max
1r irm

Ci½n�1�ðS1Þ�Ci½n�1�ðS2Þ

By an induction argument, we have

Cm½j�ðS1Þ�Cm½j�ðS2Þr max
ir irm

Ci½s�ðS1Þ�Ci½s�ðS2Þ for j¼ sþ1,. . .,n ð1Þ

From Lemma 1 and Eq. (1), the difference between the total
tardiness of S1 and S2 is

Xn

j ¼ 1

T ½j�ðS2Þ�
Xn

j ¼ 1

T ½j�ðS1Þ ¼
Xs

j ¼ 1

T ½j�ðS2Þ�
Xs

j ¼ 1

T ½j�ðS1Þ�½
Xn

j ¼ sþ1

T ½j�ðS1Þ�
Xn

j ¼ sþ1

T ½j�ðS2Þ�

¼
Xs

j ¼ 1

T ½j�ðS2Þ�
Xs

j ¼ 1

T ½j�ðS1Þ�
Xn

j ¼ sþ1

ðmax0,Cm½j�ðS1Þ�d½j�

�max0,Cm½j�ðS2Þ�d½j�ÞZ
Xs

j ¼ 1

T ½j�ðS2Þ�
Xs

j ¼ 1

T ½j�ðS1Þ

�ðn�sÞmax0, max
1r irm

Ci½s�ðS1Þ�Ci½s�ðS2Þ

It implies that S1 dominates S2 and this completes the proof.

Property 1. can be simplified to the case of two adjacent jobs
which is stated without proof.



Table 1
Data of the demonstrative examples with a¼�0:152.

Problem 1

pij j

1 2 3 4 5

1 92 71 32 81 74

i 2 29 42 74 93 67

3 5 4 50 70 99

Due date 245 491 373 315 386

Problem 2

pij j

1 2 3 4 5

1 22 1 1 62 99

i 2 90 64 14 3 58

3 33 28 52 77 42

Due date 265 279 284 121 196

Problem 3

pij j

1 2 3 4 5

1 88 1 64 9 34

i 2 84 36 1 54 41

3 77 75 87 95 66

Due date 437 167 238 257 376

W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334 329
Corollary 1. Let S1 ¼ ðp,j1,j2,p0Þ and S2 ¼ ðp,j2,j1,p0Þ be two sche-
dules where partial sequence p contains s jobs. If

Tj1
ðS2ÞþTj2

ðS2Þ�Tj1
ðS1Þ�Tj2 ðS1Þ Z ðn�s�2Þmax0, max

1r irm
½Ckj2
ðS1Þ�Ckj1

ðS2Þ�,

then S1 dominates S2.

3.2. A lower bound

In this subsection, a lower bound is established to facilitate the
search process of the branch-and-bound algorithm. Let y¼ ðp,pcÞ

denote a sequence in which p contains s scheduled jobs and pc

contains n�s unscheduled jobs. Without loss of generality, we
assume that the job processing times of the n�s unscheduled jobs
on machine k are pkðsþ1Þrpkðsþ2Þr � � �rpkðnÞ when they are
arranged in non-decreasing order. We also assume that the due
dates of the n�s unscheduled jobs are dðsþ1Þrdðsþ2Þr � � �rdðnÞ
when they are arranged in non-decreasing order. By definition,
the completion time of the (sþ1)th job on machine k is

Ck½sþ1�ðyÞ ¼maxCk½s�ðyÞ,Ck�1½sþ1�ðyÞþpk½sþ1�ðsþ1Þa

ZCk½s�ðyÞþpk½sþ1�ðsþ1Þa:

By an induction argument, the completion time of the (sþ1)th
job on machine m is

Cm½sþ1�ðyÞZCk½s�ðyÞþðsþ1Þa
Xm

l ¼ k

pl½sþ1�:

Therefore, we have

Cm½sþ1�ðyÞZ max
1rkrm

Ck½s�ðyÞþðsþ1Þa
Xm

l ¼ k

pl½sþ1� ð2Þ

Similarly, the completion time of the (sþ2)th job on machine k

is

Ck½sþ2�ðyÞ ¼maxCk½sþ1�ðyÞ, Ck�1½sþ2�ðyÞþpk½sþ2�ðsþ2Þa

ZCk½sþ1�ðyÞþpk½sþ2�ðsþ2Þa

ZCk½s�ðyÞþpk½sþ1�ðsþ1Þaþpk½sþ2�ðsþ2Þa

By an induction argument, the completion time of the (sþ2)th
job on machine m is

Cm½sþ2�ðyÞZCk½s�ðyÞþpk½sþ1�ðsþ1Þaþðsþ2Þa
Xm

l ¼ k

pl½sþ2�:

Thus, we have

Cm½sþ2�ðyÞZ max
1rkrm

Ck½s�ðyÞþpk½sþ1�ðsþ1Þaþðsþ2Þa
Xm

l ¼ k

pl½sþ2� ð3Þ

Using the same argument as to derive Eqs. (2) and (3), it is
obtained that the completion time of the (sþ j)th job on machine
m is

Cm½sþ j�ðyÞZ max
1rkrm

Ck½s�ðyÞþ
Xj�1

v ¼ 1

pk½sþv�ðsþvÞaþðsþ jÞa
Xm

l ¼ k

pl½sþ j� ð4Þ

for 1r jrn�s. From Eq. (4), it implies that the total tardiness of
sequence y is

Xn

j ¼ 1

TjðyÞ ¼
Xs

j ¼ 1

TjðyÞþ
Xn�s

j ¼ 1

max0,Cm½sþ j�ðyÞ�d½sþ j�Z

Xs

j ¼ 1

TjðyÞ

þ
Xn�s

j ¼ 1

max0, max
1rkrm

Ck½s�ðyÞþ
Xj�1

v ¼ 1

pk½sþv�ðsþvÞa

þðsþ jÞa
Xm

l ¼ k

pl½sþ j��d½sþ j�Z
Xs

j ¼ 1

TjðyÞþ
Xn�s

j ¼ 1

max0, max
1rkrm

Ck½s�ðyÞ

þ
Xj�1

v ¼ 1

pkðsþvÞðsþvÞaþðsþ jÞamin
iApc

Xm

l ¼ k

pli�dðsþ jÞ
Thus, the lower bound on the total tardiness of sequence y
based on s scheduled jobs is

LBðyÞ ¼
Xs

j ¼ 1

TjðyÞþ
Xn�s

j ¼ 1

max0, max
1rkrm

Ck½s�ðyÞþ
Xj�1

v ¼ 1

pkðsþvÞðsþvÞa

þðsþ jÞamin
iApc

Xm

l ¼ k

pli�dðsþ jÞ:

3.3. Description of the branch-and-bound algorithm

A depth-first search is adopted in the branching procedure.
This method has the advantage that it only requires less storage
space. In this paper, the algorithm assigns jobs in a forward
manner starting from the first position. In the searching tree, we
choose a branch and systematically work down the tree until we
either eliminate it by virtue of the dominance property, the lower
bound or reach its final node, in which case this sequence either
replace the initial solution or is eliminated. The outline of the
branch-and-bound algorithm is described as follows.

Step 1. {Initialization} Implement the proposed heuristic algo-
rithm to obtain a sequence as the initial incumbent solution.
Step 2. {Reduction} Apply Corollary 1 to eliminate the domi-
nated partial sequence.
Step 3. {Branching} For the non-dominated nodes, compute the
lower bound on the total tardiness of the unfathomed partial
sequences or the total tardiness of the completed sequences. If
the lower bound on the total tardiness for the partial sequence is
greater than the initial solution, eliminate that node and all the
nodes beyond it in the branch. If the value of the completed
sequence is less than the initial solution, replace it as the new
solution. Otherwise, eliminate it.

4. The heuristic algorithms

The computation effort can be reduced by using a heuristic
solution as an upper bound prior to the application of the branch-
and-bound algorithm. Furthermore, the search for the optimal
solution for a problem with a large number of jobs is time
consuming, but an effective heuristic can provide a time-saving
approximate solution with a small margin of error. Recently, Vallada
et al. (2008) provided a review and comprehensive evaluation of



Table 2
The error percentages for the problems with different weights.

Optimal w¼ 0 w¼ 0:5 w¼ 1

Schedule (total tardiness) Schedule (total tardiness) Error (%) Schedule (total tardiness) Error (%) Schedule (total tardiness) Error (%)

Problem 1 3, 4, 1, 5, 2 (11.93) 4, 1, 3, 5, 2 (14.68) 23.05 4, 1, 3, 5, 2 (14.68) 23.05 3, 4, 1, 5, 2 (11.93) 0

Problem 2 3, 4, 2, 5, 1 (54.26) 3, 2, 4, 1, 5 (73.96) 36.31 3, 4, 2, 5, 1 (54.26) 0 3, 2, 4, 1, 5 (73.96) 36.31

Problem 3 2, 3, 4, 5, 1 (13.69) 2, 3, 4, 5, 1 (13.69) 0 2, 4, 3, 1, 5 (33.12) 141.93 2, 4, 3, 1, 5 (33.12) 141.93

W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334330
40 different heuristics and metaheuristics for the classical m-machine
permutation flowshop problem to minimize the total tardiness. They
found that ENS2 proposed by Kim et al. (1996) is one of the best
heuristic among the existing algorithms. The main idea of algorithm
ENS2 is modified from Nawaz et al. (1983) by applying the EDD rule
instead, and further improving the solution by the pairwise inter-
change movement. Thus, the algorithm ENS2 is used as the base for
subsequently analysis.
4.1. A weight combination search algorithm

In our preliminary tests, it was observed that a job should be
scheduled in an earlier position if it has a small value of the sum of the

job processing times
P

pij or a small value of due date dj. This

motivated the usage of a combination of these two factors. That is, we
would choose a proper weight w and arrange the jobs in a non-

decreasing order on the values of w
Pm

i ¼ 1

pijþð1�wÞdj. However, it was

very difficult to find the weight that could yield good solutions for all
the problems, as illustrated by the examples in Table 1. In problem 1,
the optimal solution was yielded when w¼ 1, but the error percen-
tages were both 23.05% whilew¼ 0 and w¼ 0:5. In problem 2, the
optimal solution was yielded when w¼ 0:5 and the error percentages
were both 36.31% for the other two cases. In problem 3, the optimal
solution was yielded when w¼ 0, but the error percentages were
both 141.93% for the other two cases. The results were recorded in
Table 2. This motivated the usage of a range of the weights, and the
near-optimal solution was chosen as the best one among the solutions
yielded from different weights. In our preliminary tests with 12 jobs, it
was found that the quality of the solutions was quite stable after a
partition of (0, 1) into 20 points. The proposed heuristic algorithm is
denoted as WSNEHþPI , and the procedures are given as follows.

WSNEHþPI algorithm :

Step 1. Set w¼ 0, Sn
¼ ð�, � � � ,�Þ with a total tardiness of 1:

Step 2. Arrange jobs in the non-decreasing order of

w
Pm

i ¼ 1

pijþð1�wÞdj. Let US denote the resulting sequence.

Step 3. Set k¼ 1, select the first job in US to create a partial
sequence PS.
Step 4. Update k¼kþ1. Select the kth job from US and insert it
in k possible positions in the current partial sequence PS.
Among k sequences, select the one with the minimum total
tardiness as the current partial sequence PS.
Step 5. If k¼ n, then replace Sn by PS if the total tardiness of PS

is smaller than that of Sn, else go to Step 4.
Step 6. If wo1, set w¼wþ0:05 and go to Step 2.
Step 7. Set k¼1.
Step 8. If kon, set l¼ kþ1 and go to Step 9. Otherwise, stop
and output the sequence Sn.
Step 9. Create a new sequence S by exchanging the jobs in
positions k and l in Sn. Replace Sn by S if the total tardiness of S

is smaller than that of Sn.
Step 10. If lon, then set l¼ lþ1 and go to Step 9. Otherwise,
set k¼ kþ1 and go to Step 8.

4.2. The simulated annealing algorithm

The simulated annealing (SA) algorithm, proposed by
Kirkpatrick et al. (1983), was among the most popular meta-
heuristic algorithms. The advantage of SA algorithm was that it
could avoid getting trapped in a local optimum. In this section,
the SA algorithm was utilized to derive a near-optimal solution. A
brief description of the SA procedure was as follows. Given an
initial sequence, a new sequence is created by a random neigh-
borhood generation. The new sequence is accepted if its objective
function has a smaller value than that of the original sequence;
otherwise, it is accepted with some probability that decreases as
the process evolves. The temperature is initially set to a high level
so that a neighborhood exchange happens frequently in early
iterations. It is gradually lowered using a predetermined cooling
schedule so that it becomes more difficult to exchange in later
iterations unless a better solution is obtained.

The most important implementations of the SA algorithm
included:
(1)
 Initial sequence: As pointed out by Vallada et al. (2008), ENS2
proposed by Kim et al. (1996) was one of the best heuristic
among the existing algorithms. Thus, it was used as the initial
sequence.
(2)
 Neighborhood generation: Neighborhood generation plays
an important role in the efficiency of the SA method. Three
neighborhood generation methods were used in the preliminary
trials. They are the pairwise interchange (PI), the extraction
and forward-shifted reinsertion (EFSR), and the extraction and
backward-shifted reinsertion (EBSR) movements. It was observed
that the PI movement yielded a better solution in the preliminary
trials. Thus, it was used in subsequently analysis.
(3)
 Acceptance probability: In SA, solutions are accepted accord-
ing to the magnitude of increase in the objective function and
the temperature. The probability of acceptance is generated
from an exponential distribution,

PðacceptÞ ¼ expð�a� DTCÞ,

where a is the control parameter and DTC is the change in the
objective function. In addition, the method of changing a at
the kth iteration is obtained from Ben-Arieh and Maimon
(1992) and is given by

a¼ k

b

where b is an experimental factor. After some pretests, we
chose b¼ 85,000. If the total tardiness increases as a result of
a random pairwise interchange, the new sequence is accepted
when PðacceptÞ4r, where r is a uniform random number
between 0 and 1.
(4)
 Stopping condition: Our preliminary tests showed that the
schedule is quite stable after 800n iterations, where n is the



Tabl
Perfo

m

3

5

W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334 331
number of jobs. Thus, 800n was used as the number of
iterations.
5. Computational experiments

In order to evaluate the performance of the branch-and-bound
and the heuristic algorithms, a computational experiment was
conducted. All the proposed algorithms were coded in Fortran 90
and run on a personal computer with 2.66 GHz Intel Core 2 Quad CPU
Q9400 and 3.25 GB RAM under Windows XP. The normal processing
times on the machines were generated from a uniform distribution
over the integers 1 to 99 as it was common in the literature. The due
dates were generated from another uniform distribution over the
integers between Tð1�t�R=2Þ and Tð1�tþR=2Þ, where R is the

due date range, t is the tardiness factor, and T is max
1r irm

Pn

j ¼ 1

pij

þ min
1r jrn

ð
Pi�1

l ¼ 1

pljÞþ min
1r jrn

ð
Pm

l ¼ iþ1

pljÞ,which is a lower bound of the

makespan (1995).
The computational experiment consisted of three parts. In the

first part, the job size was fixed at 10 and the numbers of
machines were m¼3 and 5. The due date factors ðt,RÞ took the
values of (0.4, 0.8), (0.4, 1.0), (0.5, 0.8) and (0.5, 1.0) and the
values of the learning effects were taken to be 90% and 80%, which
corresponded to a¼�0:152 and �0:322 according to Biskup’s
(1999) model. To test the efficiency of the dominance property
and the lower bound separately, the branch-and-bound algorithm
with only the dominance property was denoted as BBp, the
branch-and-bound algorithm with only the lower bound was
denoted as BBL, and the branch-and-bound algorithm with both
the property and the lower bound was denoted as BBPþ L. The
results were compared with the enumeration method. The mean
and maximum number of nodes and the mean and maximum CPU
time (in seconds) were reported for the branch-and-bound algo-
rithms, while only the mean and maximum CPU time (in seconds)
were given for the enumeration method. As a consequence, there
were 16 experimental conditions examined in the first part of the
experiment, and 100 replications were randomly generated for
each condition. The results were presented in Table 3. It was seen
that the dominance property and the lower bound are efficient in
the searching process for the optimal solution. Moreover, it was
noted that the lower bound is more efficient than the dominance
e 3
rmance of the branch-and-bound algorithms and the enumeration method (n¼ 1

t R A (%) Number of nodes

BBP BBL BBPþL

Mean Max Mean Max Mean

0.4 0.8 90 86,445.2 306,377 1876.1 21,474 1390.5

80 58,910.3 467,754 348.8 4,985 286.5

1.0 90 99,352.7 336,606 1199.5 17,138 860.4

80 84,013.7 478,202 327.4 3,179 255.6

0.5 0.8 90 101,868.8 499,679 2463.1 17,206 1558.6

80 73,966.9 294,852 507.3 7,392 377.9

1.0 90 98,875.7 271,798 1635.0 11,577 1036.0

80 89,270.3 280,130 413.3 5,962 286.6

0.4 0.8 90 148,516.4 516,225 1289.7 10,438 1052.3

80 96,536.0 420,392 289.9 3,032 264.5

1.0 90 160,427.6 501,092 897.7 8,093 732.2

80 130,483.0 524,809 259.0 2,339 236.0

0.5 0.8 90 222,501.4 661,605 1965.9 14,354 1552.8

80 122,595.4 605,737 390.4 3,656 338.0

1.0 90 220,272.3 779,452 1503.3 12,731 1194.4

80 143,913.9 383,365 335.5 2,711 293.1
property in terms of the execution time and the number of nodes.
It was also noticed that the performance of the property is not
influenced by the number of machines, while the lower bound is
more powerful as the number of machines increases.

In the second part of the experiment, the impacts of the tardiness
and the range factors were studied. The number of jobs was fixed at
12, the number of machines was fixed at 5, and the learning effect
was 90%. As in Kim et al. (1996), the values of t and R ranged from
0.1 to 0.5 and from 0.8 to 1.8. The combinations of t and R were
selected in a way that the due dates generated were nonnegative.
As a result, 20 combinations of t and R were examined. 100
replications were generated for each situation, and the results were
given in Table 4. When the range factor was fixed, it was seen that the
problems are harder to solve as the tardiness factor increases. On the
other hand, there was no significant trend on the range factor when
the tardiness factor was fixed. Thus, we would choose the last
5 values of t and R in subsequently experiments.

In the last part of the computational experiments, three
different job sizes (n¼14, 16, and 18) and two numbers of
machines (m¼3 and 5) were tested. The values of the learning
effects were chosen to be 90% and 80%. The combination of ðt,RÞ
took the values of (0.4, 0.8), (0.4, 1.0), (0.4, 1.2), (0.5, 0.8), and (0.5,
1.0). As a consequence, 60 experimental situations were examined.
A set of 100 instances were randomly generated for each situation,
and the results were presented in Tables 5–7. The same sets of
instances were used to test the performance of the branch-and-
bound and the heuristic algorithms. For the branch-and-bound
algorithm, the mean and the maximum execution times (in
seconds) as well as the mean and the maximum number of nodes
were reported. It was noted in Table 7 that the branch-and-bound
algorithm was terminated if the number of nodes explored was
over 108, which was approximately 6 h in terms of the execution
time. The instances with more than 108 nodes were denoted as
unsolvable instances (USI), which were also reported in Table 7. For
the heuristic algorithms, the mean and the maximum error per-
centages were noted. The error percentage of the solution produced
by the heuristic algorithm is calculated as

ðV�Vn
Þ

Vn
� 100%

where V is the total tardiness of the solution generated by the
heuristic method and Vn is the total tardiness of the optimal
schedule. It was noticed that there might be some instances where
0).

CPU time

BBP BBL BBPþL Enumeration

Max Mean Max Mean Max Mean Max Mean Max

17,501 1.23 4.16 0.07 0.63 0.05 0.58 13.57 13.81

4,195 0.80 5.69 0.02 0.19 0.01 0.19 13.49 13.69

13,904 1.38 4.48 0.04 0.52 0.04 0.47 13.58 13.83

2,783 1.13 5.77 0.01 0.13 0.01 0.13 13.51 13.72

11,418 1.43 6.81 0.09 0.50 0.06 0.45 13.54 13.70

5,192 1.03 3.70 0.02 0.23 0.02 0.19 13.50 13.72

5,074 1.38 3.89 0.06 0.36 0.04 0.20 13.55 13.73

3,026 1.22 3.56 0.02 0.17 0.01 0.09 13.50 13.69

7,564 3.27 10.89 0.08 0.48 0.07 0.44 21.81 22.16

2,919 2.10 8.73 0.02 0.19 0.02 0.20 21.68 21.91

5,953 3.48 10.08 0.05 0.41 0.05 0.34 21.83 22.11

2,242 2.77 10.64 0.02 0.14 0.02 0.16 21.69 21.94

9,528 4.74 13.16 0.11 0.56 0.10 0.42 21.78 22.02

3,181 2.66 11.77 0.03 0.22 0.03 0.22 21.66 21.98

8,584 4.67 15.02 0.08 0.52 0.08 0.45 21.80 22.08

2,372 3.07 7.98 0.02 0.16 0.02 0.16 21.67 21.97



W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334332
the tardiness value of the branch-and-bound algorithm is zero but
that of the heuristic algorithm is not. In that case, the error
percentage was not computed, and denoted as E1 in the tables.
Thus, the error percentages in Tables 5–7 could only be regarded as
the lower bounds of the errors. The computational times of the
heuristic algorithms were not recorded since they were finished
within a second. It was observed from the tables that the number of
nodes and the execution time grow exponentially as the number of
jobs increases. There were 5 unsolvable instances out of a total of
2000 when n¼ 18. The most time-consuming solvable case took
about 4.9 h. It was observed that the impact of the number of
machines on the performance of the branch-and-bound algorithm
Table 4
Performance of the branch-and-bound algorithm with respect to t and R

(n¼ 12,m¼ 5 and LE¼90%).

t R Branch-and-bound algorithm

Number of nodes CPU time

Mean Max Mean Max

0.1 0.8 907.7 43,155 0.097 3.938

0.1 1.0 1,633.4 110,311 0.168 10.031

0.1 1.2 300.7 7,317 0.042 0.922

0.1 1.4 401.1 13,319 0.053 1.484

0.1 1.6 954.0 37,936 0.110 3.719

0.1 1.8 1,198.4 56,129 0.133 4.953

0.2 0.8 3,323.0 117,571 0.343 11.844

0.2 1.0 2,572.4 34,737 0.262 3.094

0.2 1.2 899.2 17,019 0.110 1.766

0.2 1.4 1,233.5 40,551 0.133 3.203

0.2 1.6 915.8 25,563 0.114 2.797

0.3 0.8 4,324.9 67,270 0.435 6.031

0.3 1.0 2,727.8 29,106 0.291 2.938

0.3 1.2 2,652.3 38,465 0.284 3.250

0.3 1.4 2,535.7 54,157 0.266 4.453

0.4 0.8 8,463.7 76,582 0.779 5.969

0.4 1.0 6,416.3 68,311 0.617 6.078

0.4 1.2 2,044.0 20,851 0.226 1.750

0.5 0.8 12,890.6 95,669 1.153 7.938

0.5 1.0 9,212.9 83,816 0.840 6.109

Table 5
Performance of the branch-and-bound and the heuristic algorithms (n¼ 14 ).

m a t R Branch-and-bound algorithm Lower bound

Number of nodes CPU time ENS2

Mean Max Mean Max Mean Ma

3 90% 0.4 0.8 31,665.4 745,932 2.8 59.8 4.43

0.4 1.0 16,479.1 320,261 1.5 23.4 5.68

0.4 1.2 29,930.9 918,455 2.4 71.6 2.65

0.5 0.8 164,189.2 3936,793 12.0 274.9 10.37

0.5 1.0 27,701.1 494,319 2.4 40.3 4.09

80% 0.4 0.8 14,133.8 1290,356 1.0 83.7 5.48

0.4 1.0 2,243.5 38,408 0.2 4.4 3.92

0.4 1.2 4,122.0 244,220 0.4 16.4 2.45

0.5 0.8 5,607.0 105,935 0.5 8.4 26.79 2

0.5 1.0 13,962.1 247,802 1.1 19.1 1.89

5 90% 0.4 0.8 67,788.0 2218,760 7.8 152.8 10.77

0.4 1.0 32,581.3 433,044 4.4 48.7 4.81

0.4 1.2 13,864.8 322,278 2.1 41.5 2.23

0.5 0.8 78,784.8 850,160 10.1 93.1 6.21

0.5 1.0 40,729.5 552,293 5.5 66.5 3.12

80% 0.4 0.8 3,740.1 50,277 0.7 8.5 135.48 12

0.4 1.0 2,582.3 27,599 0.5 4.6 3.88

0.4 1.2 2,306.7 38,603 0.4 5.2 44.53 4

0.5 0.8 7,614.9 89,364 1.1 11.5 2.48

0.5 1.0 4,257.0 62,313 0.7 10.0 2.72
is not significant when the values of the other parameters were
fixed. It was seen that the problems are easier to solve as the
learning effect is stronger. As stated earlier, the problems are harder
to solve as the tardiness factor increases. On the other hand, there
was no significant trend on the range factor when the tardiness
factor was fixed. As the performance of the heuristic algorithms, it
was seen from the error percentage of ENS2 that the problems are
harder when the learning effect is considered. It was observed that
both the weight combination and the SA approaches significantly
improved the quality of the near-optimal solutions. However, there
was no absolutely dominance relation between the performance of
the WSNEHþPI and the SA approaches. It was worth to mentioned
that out of the 5995 solvable instances, ENS2 has 33 instances that
the tardiness value of the branch-and-bound algorithm is zero but
that of the heuristic algorithm is not, WSNEHþPI has 7 instances, and
SA has only 2 instances. Although the error percentages of the
WSNEHþPI and the SA algorithms were still high for some instances,
it was due to the fact that the optimal tardiness values are relatively
small. For instance, the tardiness values of the WSNEHþPI and the SA

algorithms were 5.56 and 9.56, while the optimal tardiness value
was 2.055. This yielded an error percentage of 170.56% and
365.21%, respectively when n¼ 16, m¼ 3, ðt,RÞ¼(0.4, 0.8), and
the learning effect was 90%. The overall performances of the
WSNEHþPI and the SA algorithms were quite good and they were
recommended when the learning effect was present.
6. Conclusion

In this paper, we studied an m-machine permutation flowshop
problem to minimize the total tardiness with the learning effect.
The computational experiments showed that the dominance rule
and the lower bound facilitate the search for the optimal solution.
The results also showed that the proposed branch-and-bound
algorithm could solve most of the problems with up to 18 jobs in
a reasonable amount of time. In addition, computational experi-
ments showed that the performance of the proposed heuristics
were good for instances of up to 18 jobs.
on the error percentage of the heuristics E1

WSNEHþPI SA ENS2 WSNEHþPI SA

x Mean Max Mean Max

66.66 0.81 30.91 0.45 32.42 2 0 0

178.62 0.39 14.77 0.33 25.61 1 0 0

35.44 0.46 10.70 0.25 9.58 0 0 0

364.86 4.68 364.86 2.39 198.56 0 0 0

92.53 0.31 5.27 0.13 4.00 0 0 0

148.65 0.47 44.98 0.04 4.18 3 1 0

75.40 0.25 7.64 0.05 3.21 3 0 0

130.28 0.13 4.13 0.04 2.88 1 0 0

,336.72 0.54 12.58 0.07 5.53 0 0 0

18.08 0.16 3.97 0.05 3.37 0 0 0

166.27 2.06 27.16 0.73 11.27 0 0 0

38.03 0.45 4.81 0.42 5.35 0 0 0

18.44 0.54 9.28 0.22 3.22 0 0 0

47.95 1.70 30.28 0.60 8.80 0 0 0

20.57 0.92 9.04 0.43 5.75 0 0 0

,580.30 0.85 53.30 0.86 34.55 1 0 0

126.19 0.30 9.09 0.10 4.85 0 0 0

,037.97 22.38 2138.06 14.63 1453.15 0 0 0

27.15 0.48 8.31 0.29 8.02 0 0 0

63.46 0.39 8.43 0.30 6.90 0 0 0



Table 6
Performance of the branch-and-bound and the heuristic algorithms (n¼ 16 ).

m a t R Branch-and-bound algorithm Lower bound on the error percentage of the heuristics E1

Number of nodes CPU time ENS2 WSNEHþPI SA ENS2 WSNEHþPI SA

Mean Nax Mean Max Mean Max Mean Max Mean Max

3 90% 0.4 0.8 317,003.3 13,430,827 33.4 1,102.5 11.92 425.99 2.20 170.56 4.02 365.21 1 0 0

0.4 1.0 902,345.2 62,734,480 84.0 5,486.7 4.17 48.75 0.43 8.62 0.57 16.70 1 0 0

0.4 1.2 35,242.6 772,007 4.6 85.6 1.98 46.37 0.47 7.28 0.21 5.56 0 0 0

0.5 0.8 488,873.8 13,790,144 51.9 1,155.7 7.14 85.12 0.96 17.04 1.47 44.90 2 1 0

0.5 1.0 984,992.0 48,954,248 92.5 4,217.7 3.64 77.19 1.16 76.91 0.27 4.20 0 0 0

80% 0.4 0.8 8,214.9 219,510 1.3 34.2 6.24 133.90 1.15 106.50 0.19 9.87 1 0 0

0.4 1.0 19,829.1 1,030,480 2.7 122.9 4.31 121.02 0.09 5.12 0.42 14.88 0 0 0

0.4 1.2 9,718.4 344,404 1.4 44.2 2.32 99.44 0.96 83.31 0.05 2.15 0 0 0

0.5 0.8 19,266.9 549,328 2.7 70.0 8.13 289.41 1.14 19.56 0.33 12.86 0 0 0

0.5 1.0 41,233.2 578,872 5.2 67.8 2.20 33.10 0.75 28.91 0.17 7.62 0 0 0

5 90% 0.4 0.8 340,616.4 17,409,072 60.0 2,766.1 17.25 655.79 7.53 553.15 1.33 17.41 0 0 0

0.4 1.0 169,525.6 4,801,822 32.5 804.9 5.28 73.63 1.24 10.77 1.35 55.72 0 0 0

0.4 1.2 151,007.9 6,301,920 27.4 931.5 2.33 15.05 0.28 6.32 0.25 6.32 0 0 0

0.5 0.8 1,091,356.8 12,536,075 181.8 2,137.6 7.43 37.60 1.98 14.60 1.37 16.67 0 0 0

0.5 1.0 1,138,042.9 76,265,448 180.6 11,481.7 4.88 43.04 1.04 9.42 0.74 14.66 0 0 0

80% 0.4 0.8 5,666.1 115,270 1.5 25.8 13.60 223.82 3.42 143.14 0.41 12.79 0 0 0

0.4 1.0 9,055.9 231,672 2.1 52.6 4.16 65.41 0.26 9.50 0.22 6.73 1 0 0

0.4 1.2 14,295.0 191,760 3.4 39.5 3.32 180.18 0.36 7.12 0.31 12.56 0 0 0

0.5 0.8 33,986.5 805,828 7.2 170.6 5.84 115.27 1.20 37.41 0.48 15.47 0 0 0

0.5 1.0 20,231.7 436,435 4.5 82.5 2.77 28.83 0.30 5.82 0.28 4.35 0 0 0

Table 7
Performance of the branch-and-bound and the heuristic algorithms (n¼ 18 ).

m a t R Branch-and-bound algorithm Lower bound on the error percentage of the heuristics E1 USI

Number of nodes CPU time ENS2 WSNEHþPI SA ENS2 WSNEHþPI SA

Mean Max Mean Max Mean Max Mean Max Mean Max

3 90% 0.4 0.8 713,301.6 19,509,458 112.2 2,739.4 309.17 26,525.00 12.33 1089.64 21.63 1896.62 2 1 0 0

0.4 1.0 1,193,123.5 59,651,120 192.2 9,211.3 14.12 602.08 4.07 340.34 0.79 54.74 3 0 0 0

0.4 1.2 368,085.7n 9,941,654n 68.1n 1,931.5n 2.79 50.51 0.75 39.27 0.15 5.06 0 0 0 1

0.5 0.8 3,807,059.3n 69,093,792n 499.2n 9,345.5n 17.82 798.11 2.44 109.39 2.14 109.39 2 0 0 2

0.5 1.0 1,464,720.8n 38,858,224n 218.2n 5,040.9n 2.56 37.01 0.53 7.14 0.51 10.28 0 0 0 1

80% 0.4 0.8 99,529.5 7,693,594 18.0 1,308.8 1.53 63.88 0.00 0.00 0.02 1.72 1 0 0 0

0.4 1.0 63,843.9 2,911,862 12.3 532.1 5.26 114.00 0.24 5.34 0.18 7.79 1 1 0 0

0.4 1.2 110,169.3 8,875,314 18.1 1,338.4 1.55 23.17 0.15 6.09 0.21 7.35 0 0 0 0

0.5 0.8 198,012.8 9,168,472 33.7 1,389.6 10.11 282.92 0.34 9.75 0.76 53.80 0 0 0 0

0.5 1.0 364,668.3 29,460,512 61.1 4,730.8 3.25 70.22 0.90 31.28 0.43 17.92 0 0 0 0

5 90% 0.4 0.8 693,555.3n 9,369,027n 182.4n 2,280.3n 11.96 364.93 3.53 123.37 3.58 163.08 2 1 2 1

0.4 1.0 234,498.1 4,391,182 67.2 1,279.4 10.13 479.05 3.84 276.03 0.78 30.40 0 0 0 0

0.4 1.2 442,895.6 14,758,786 120.3 3,244.0 2.69 32.28 0.58 10.14 0.55 18.29 0 0 0 0

0.5 0.8 3,615,769.3 83,501,184 828.2 17,656.1 8.53 62.14 1.89 19.04 2.60 62.14 0 0 0 0

0.5 1.0 3,187,206.0 50,813,748 764.4 12,792.8 5.34 66.97 1.37 19.85 0.84 19.14 0 0 0 0

80% 0.4 0.8 25,074.3 753,083 7.6 242.0 10.99 191.43 0.40 20.27 0.89 48.92 3 2 0 0

0.4 1.0 97,149.0 7,736,601 24.8 1,816.3 12.24 624.45 1.17 52.76 6.80 624.45 1 0 0 0

0.4 1.2 48,316.4 2,568,162 14. 668.4 2.61 30.63 0.38 11.06 0.36 12.01 0 0 0 0

0.5 0.8 54,895.8 1,435,597 16.0 332.0 5.44 100.05 0.68 19.06 0.43 13.91 1 0 0 0

0.5 1.0 99,501.8 1,743,517 29.9 435.4 2.91 31.20 0.66 15.54 0.28 4.68 0 0 0 0

n These are the lower bounds on the mean values or max values because of the unsolvable instances in these sets.

W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334 333
Acknowledgements

The authors are grateful to the editor and the referees, whose
constructive comments have led to a substantial improvement in
the presentation of the paper. This work was supported by the
NSC of Taiwan, ROC, under NSC 98–2221-E-035-033-MY2.

References

Ben-Arieh, D., Maimon, O., 1992. Annealing method for PCB assembly scheduling
on two sequential machines. International Journal of Computer Integrated
Manufacturing 5, 361–367.

Biskup, D., 1999. Single-machine scheduling with learning considerations. Eur-
opean Journal of Operational Research 115, 173–178.
Biskup, D., 2008. A state-of-the-art review on scheduling with learning effect.
European Journal of Operational Research 188, 315–329.

Chang, P.C., Chen, S.H., Mani, V., 2009. A note on due-date assignment and single
machine scheduling with a learning-aging effect. International Journal of
Production Economics 117, 142–149.

Cheng, T.C.E., Wang, G., 2000. Single machine scheduling with learning effect
considerations. Annals of Operations Research 98, 273–290.

Cheng, T.C.E., Wu, C.C., Lee, W.C., 2008. Some scheduling problems with sum-of-
processing-times-based and job-position-based learning effects. Information
Sciences 178, 2476–2487.

Cheng, T.C.E., Wu, C.C., Chen, J.C., Wu, W.H., Cheng, S.R. Two-machine flowshop
scheduling with a truncated learning function to minimize the makespan.
International Journal of Production Economics, http://dx.doi.org/10.1016/j.
ijpe.2012.03.027, In press.

Chung, C.S., Flynn, J., Kirca, O., 2006. A branch and bound algorithm to minimize
the total tardiness for m-machine permutation flowshop problems. European
Journal of Operational Research 174, 1–10.

dx.doi.org/10.1016/j.ijpe.2012.03.027
dx.doi.org/10.1016/j.ijpe.2012.03.027


W.-C. Lee, Y.-H. Chung / Int. J. Production Economics 141 (2013) 327–334334
Janiak, A., Rudek, R., 2008. A new approach to the learning effect: beyond the
learning curve restrictions. Computers and Operations Research 35,
3727–3736.

Janiak, A., Rudek, R., 2010. A note on a makespan minimization problem with a
multi-abilities learning effect. Omega 38, 213–217.

Kim, Y.D., 1995. Minimizing total tardiness in permutation flowshops. European
Journal of Operational Research 85, 541–555.

Kim, Y.D., Lim, H.G., Park, M.W., 1996. Search heuristics for a flowshop scheduling
problem in a printed circuit board assembly process. European Journal of
Operational Research 91, 124–143.

Kirkpatrick, S., Gelatt, C., Vecchi, M., 1983. Optimization by simulated annealing.
Science 220, 671–680.

Lee, W.C., Wu, C.C., 2004. Minimizing total completion time in a two-machine
flowshop with a learning effect. International Journal of Production Economics
88, 85–93.

Lee, W.C., Wu, C.C., 2009. Some single-machine and m-machine flowshop schedul-
ing problems with learning considerations. Information Sciences 179,
3885–3892.

Lee, W.C., Wu, C.C., Hsu, P.H., 2010. A single-machine learning effect scheduling
problem with release times. Omega 38, 3–11.

Nawaz, M., Enscore, E.E., Ham, I., 1983. A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega 11, 91–95.

Pinedo, M., 2002. Scheduling: Theory, Algorithms and Systems, second ed..
Prentice-Hall, Englewood Cliffs, NJ.

Shabtay, D., Bensoussan, Y., Kaspi, M., 2012. A bicriteria approach to maximize the
weighted number of just-in-time jobs and to minimize the total resource
consumption cost in a two-machine flow-shop scheduling system. Interna-
tional Journal of Production Economics 136, 67–74.

Sun, L.H., Sun, L.Y., Wang, M.Z., Wang, J.B., 2012. Flow shop makespan minimiza-
tion scheduling with deteriorating jobs under dominating machines. Interna-
tional Journal of Production Economics 138, 195–200.
Tseng, L.Y., Lin, Y.T., 2010. A genetic local search algorithm for minimizing total
flowtime in the permutation flowshop scheduling problem. International
Journal of Production Economics 127, 121–128.

Vallada, E., Ruiz, R., Minella, G., 2008. Minimising total tardiness in the m-machine
flowshop problem: a review and evaluation of heuristics and metaheuristics.

Computers and Operations Research 35, 1350–1373.
Wang, J.B., 2007. Single-machine scheduling problems with the effects of learning

and deterioration. Omega 35, 397–402.
Wang, J.B., 2008. Single-machine scheduling with general learning functions.

Computers and Mathematics with Applications 56, 1941–1947.
Wang, L., Sun, L.Y., Sun, L.H., Wang, J.B., 2010. On three-machine flow shop

scheduling with deteriorating jobs. International Journal of Production Eco-

nomics 125, 185–189.
Wang, J.B., Xia, Z.Q., 2005. Flow-shop scheduling with a learning effect. Journal of

Operational Research Society 56, 1325–1330.
Wu, C.C., Lee, W.C., 2009. A note on the total completion time problem in a

permutation flowshop with a learning effect. European Journal of Operational
Research 192, 343–347.

Xu, Z.Y., Sun, L.Y., Gong, J.T., 2008. Worst-case analysis for flow shop scheduling
with a learning effect. International Journal of Production Economics 113,
748–753.

Yin, Y.Q., Xu, D.H., Sun, K.B., Li, H.X., 2009. Some scheduling problems with general
position-dependent and time-dependent learning effects. Information

Sciences 179, 2416–2425.
Zhang, X.G., Yan, G., 2010. Machine scheduling problems with a general learning

effect. Mathematical and Computer Modelling 51, 84–90.
Zhao, C.L., Tang, H.Y., 2012. Two-machine flow shop scheduling with deteriorating

jobs and chain precedence constraints. International Journal of Production
Economics 136, 131–136.


	Permutation flowshop scheduling to minimize the total tardiness with learning effects
	Introduction
	Problem description
	A branch-and-bound algorithm
	Dominance property
	A lower bound
	Description of the branch-and-bound algorithm

	The heuristic algorithms
	A weight combination search algorithm
	The simulated annealing algorithm

	Computational experiments
	Conclusion
	Acknowledgements
	References




