
1604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 11, NOVEMBER 2012

A 385 MHz 13.54 K Gates Delay Balanced
Two-Level CAVLC Decoder for Ultra HD

H.264/AVC Video
Yuan-Hsin Liao, Gwo-Long Li, and Tian-Sheuan Chang, Senior Member, IEEE

Abstract—To satisfy the heavy performance requirement in
real-time high-resolution H.264/AVC, very large-scale integrated
implementation of the entropy decoder is necessary since it
dominates the overall decoder throughput. In this paper, we pro-
pose a high-throughput delay balanced two-level context-based
adaptive variable length coding (CAVLC) decoder with 21%
shorter critical path delay in comparison to the traditional two-
level decoder design. Furthermore, redundant decoding processes
are removed by a skipping mechanism. The proposed CAVLC
decoder only needs 127.13 cycles per macroblock on average to
support level 5.1 decoding with 13.54 k gate counts under 90-nm
CMOS technology.

Index Terms—Context-adaptive variable length decoder
(CAVLD), H.264.

I. Introduction

H .264 IS THE state-of-the-art video coding standard to
provide better compression efficiency compared to ear-

lier MPEG-4 and H.263 standards due to the adoption of
advanced coding techniques. The H.264/AVC coding stan-
dard specifies two entropy coding tools called context-based
adaptive variable length coding (CAVLC) and context-based
adaptive binary arithmetic coding (CABAC) [1], [2] with
context-based adaptive modeling. However, since the bitstream
boundary between successive codeword is only known after
the codeword length detection of the former one, the decoding
procedure is inherently sequential and is hard to be accel-
erated. In addition, as available network bandwidth becomes
higher and high-definition (HD) television gains popularity,
the demand for better visual quality grows fast. That means
video application system is expected to support HD or larger
resolution encoding and decoding. The larger resolution trend
and the heavy decoding requirement lead to the result that
more data has to be processed in the same time for video
decoders, and make it more difficult to work in real-time

Manuscript received March 4, 2011; revised August 24, 2011; accepted
March 6, 2012. Date of publication June 1, 2012; date of current version
October 26, 2012. This paper was recommended by Associate Editor J. Ridge.

Y.-H. Liao is with PixArt Imaging, Inc., Hsinchu 300, Taiwan (e-mail:
yhliao@dragons.ee.nctu.edu.tw).

G.-L. Li is with the Industrial Technology Research Institute, Hsinchu 302,
Taiwan (e-mail: glli@itri.org.tw).

T.-S. Chang is with the Department of Electronics Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
tschang@dragons.ee.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2012.2202081

for CPUs. Thus, very large-scale integrated acceleration of
entropy decoder is necessary since its throughput dominates
the overall decoder system performance.

To fit decoding of HD videos, multisymbol decoding is often
adopted by various approaches for acceleration, especially
for critical parsing stages such as trailing−ones−sign−flag,
level, and run−before. However, the main obstacle to parallel
decoding is how to break the recursive dependencies between
codewords. In the trailing−ones−sign−flag parsing stage, [3]
and [4] implemented the parsing procedure in a single cycle
since the number of TrailingOnes is already derived in the
coeff−token parsing stage. In the level parsing stage, two
level decoders were cascaded to produce two level symbols
in one cycle [5], but it induced a huge critical path delay. In
the run−before parsing stage, since the codewords of variable
length coding (VLC) table used for run−before are much
less and shorter than others, the data dependency obstacle is
much easier to be overcome, and thus several efficient multi-
run−before decoding architectures had been proposed to boost
the throughput of CAVLC decoder. Thus, in [5], it parsed
multiple run−before symbols with zero value in one cycle
by counting the bit length of the series of “1” bits of input
bitstream since the corresponding codeword was composed of
“1” bits when run−before is equal to 0. However, this method
is only effective in the high bit-rate coding but inefficient in the
low bit-rate coding where the residual blocks are very sparse.
Yu et al. [6] proposed a combined look-up table for decoding
successive two run−before symbols at the same time. Wen
et al. [7] adopted a bit-position VLC decoding approach that
all run−before symbols were decoded using less than three
cycles in one block to achieve high throughput at the expense
of significant hardware cost raise. Lee et al. [8] presented
a multisymbol decoder that can decode three run−before
symbols in one cycle. Furthermore, a pattern-search method
has been reported in [9]. In this method, a block can be
reconstructed directly without performing CAVLC decoding
procedure if a pattern was matched in a preestablished look-
up table. In summary, for the two critical loops, the level
parsing process and run−before parsing process, a lot of
techniques have been proposed to speed up run−before parsing
process, but few have been proposed to improve level parsing
performance.

To improve the CAVLC speed for the target applications,
this paper proposes a highly efficient two-level decoding

1051-8215/$31.00 c© 2012 IEEE

LIAO et al.: A 385 MHZ 13.54 K GATES DELAY BALANCED TWO-LEVEL CAVLC DECODER 1605

architecture. The proposed design is a delay balanced design
such that it can operate at higher clock rate. Besides, the design
is further accelerated by the proposed skipping techniques
to remove redundant decoding process. The final design can
satisfy the Level 5.1 decoding requirement in H.264/AVC.

The organization of this paper is as follows. In Section II,
we introduce the design principle and coding flow of CAVLC
in detail. Section III addresses the proposed CAVLC hardware
architecture design. The implementation results are shown in
Section IV and the conclusion is given in Section V.

II. Overview of CAVLC

The followings show the decoding flow of CAVLC. In
CAVLC, a residual block is represented by five types of syntax
elements (SEs). These SEs are defined as follows.

1) coeff−token: This SE indicates the total number of
nonzero coefficients (TotalCoeffs) including Trialin-
gOnes (a series of ±1). Since the coding units of
CAVLC are 4×4 and 2×2 blocks, TotalCoeffs can have
any value between 0 and 16 and TrialingOnes can have
anything between 0 and 3. The coeff−token decoding
needs to look up three variable-length codeword tables
and a fixed-length codeword table. The choice of look-up
table depends on the total number of nonzero coefficients
to the left and on top of the current block nA and nB,
respectively.

2) trailing−ones−sign−flag: This 1-bit SE indicates the sign
of TrialingOnes, and is coded in reverse order.

3) level: The SE level represents the value of remaining
nonzero coefficient and is also coded in reverse order.
Each level is composed of a prefix part (level−prefix)
and a suffix part (suffix−part).

4) total−zeros: The sum of zero coefficient numbers, except
for zeros after the last nonzero coefficient, is represented
by this SE. The choice of VLC table depends on the total
number of nonzero coefficients of the current block.

5) run−before: Number of zeros preceding each nonzero
coefficient is encoded as this SE. The VLC table for
coding each run−before is chosen according to the
number of zeros left (zerosLeft).

Fig. 1 shows the flow diagram of CAVLC decoding. The
decoding process consists of six steps: coeff−token pars-
ing, trailing−ones−sign−flag parsing, level parsing, total−zeros
parsing, run−before parsing, and residual block reconstruction.
Table I shows an example for the decoding procedure of a
CAVLC-coded residual block as depicted in Fig. 2 and its cor-
responding decoded information. The input bitstream provided
for the CAVLC decoder is “00001000−11100101−11101101,”
and after the decoding procedure, the 4×4 residual block, “0,
3, 0, 1, −1, −1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,” is reconstructed.

III. Proposed CAVLC Decoder

Based on the CAVLC decoding flow, the major throughput
obstacle is the level parsing procedure, which needs arithmetic
operations and accounts for a critical loop in the whole
CAVLC decoding procedure. However, directly cascading

TABLE I

CAVLC Decoding Procedure for 4 × 4 Residual

Block Depicted in Fig. 2

Bitstream: 000010001110010111101101
SE Codeword Value Output Array
coeff−token 100 TotalCoeffs = 5, N/A

TrailingOnes = 3
TrailingOne sign 0 + 1
TrailingOne sign 1 − −1, 1
TrailingOne sign 1 − −1, −1, 1
level 1 +1 1, −1, −1, 1
level 0010 +3 3, 1, −1, −1, 1
total−zeros 111 3 3, 1, −1, −1, 1
run−before 10 1 3, 1, −1, −1, 0, 1
run−before 1 0 3, 1, −1, −1, 0, 1
run−before 1 0 3, 1, −1, −1, 0, 1
run−before 01 1 3, 0, 1, −1, −1, 0, 1

Reconstructed block: 0, 3, 0, 1, −1, −1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

Fig. 1. CAVLC decoding flow.

level decoders for multilevel decoding will not gain any
throughput improvement since the inter-codeword dependency
and succession of arithmetic operations lead to an unavoidably
long critical path. Moreover, the inter-level dependency of
suffixLength, which cannot be calculated until the value of
current level is determined, makes it unable to exploit pipeline
structure. Thus, it seems both direct multisymbol decoding
and pipelining scheme do not work for the level decoding
process. A good speedup method needs to break the inter-
level dependency and the inter-codeword dependency. Hence,
in the followings, we will first investigate the characteristics of
the level decoding flow, and then propose our delay balanced
two-level decoding process.

1606 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 11, NOVEMBER 2012

Fig. 2. Transmitted bitstream for a 4 × 4 residual block.

Fig. 3. Original level decoding procedure defined in H.264/AVC standard.

A. Analysis for CAVLC

Fig. 3 shows the flow chart of the level decoding proce-
dure. The decoding procedure consists of two parts: bitstream
scanning process and level computating. The bit string of each
level is formed with level−prefix and level−suffix as

level−bitString = [level−prefix][level−suffix]

= [001][level−suffix] (1)

where level−prefix consists of a series of “0” bits followed by a
terminating “1” bit. The value of level−prefix is constrained in
the range of 0–15. In the bitstream scanning process, after the
value of level−prefix is determined by detecting the leading
zeros in the bitstream, the parameter levelSuffixSize, which
represents the bit length of level−suffix, is calculated as

if (level−prefix == 15)

levelSuffixSize = 12

elseif (level−prefix == 14&&suffixLength == 0)

TABLE II

Threshold Values for suffixLength Transition

Current suffixLength Threshold Value to Modify suffixLength
0 0
1 3
2 6
3 12
4 24
5 48
6 N/A

levelSuffixSize = 4

else

levelSuffixSize = suffixLength. (2)

Based on the levelSuffixSize, bits belonging to level−suffix
are scanned, and the initial value of levelCode is calculated as

levelCode = (level−prefix << suffixLength) + level−suffix.

(3)
In the second part, levelCode is adjusted in case of special

conditions. If level−prefix is equal to 15 and suffixLength is
equal to 0, levelCode will be increased by 15, and if the
number of TrailingOnes is less than 3, the first levelCode in
the level decoding procedure will be increased by 2. Once the
final value of levelCode is obtained, the value of level will
be determined as if levelCode is even, level = (levelCode +
2)/2, otherwise, level = (-levelCode − 1)/2. Finally, since the
absolute value of level tends to be larger in the level decoding
procedure, the adaptive probability model shall be changed
according to the previous decoded level. As a result, if the
absolute value of decoded level is larger than the threshold
listed in Table II, suffixLength must be modified to a more
suitable value since small suffixLength is for small level and
vice versa.

In above analysis, the main barriers to exploit parallel de-
coding are inter-level dependency of suffixLength and the un-
known demarcation between successive codewords. Although
the codeword length can be derived in the first part of level
decoding procedure as follows:

CodewordLength = level−prefix + 1 + levelSuffixSize (4)

the updated suffixLength that affects the levelSuffixSize of
next level cannot be obtained until the value of current level is
determined. However, a modified suffixLength detector (MSD)
algorithm [4] was presented to advance the computation of
suffixLength prior to the determination of the value of current
level. Fig. 4 depicts the MSD decoding procedure in which
the input signal of MSD is level−prefix instead of the value
of level. From the current decoding information and the
level−prefix, the suffixLength provided for next level decoding
process can be calculated in the first part. With this efficient
algorithm, the level decoding process can be realized as shown
in Fig. 5. However, despite the fact that the MSD algorithm
shortens the critical path delay of level decoding process,
multilevel decoding based on cascaded level decoders still

LIAO et al.: A 385 MHZ 13.54 K GATES DELAY BALANCED TWO-LEVEL CAVLC DECODER 1607

Fig. 4. MSD decoding procedure.

Fig. 5. Modified level decoding procedure with MSD algorithm.

leads to an unavoidably long critical path, and thus remains
unsuitable for implementation.

In our approach, to further expedite the throughput of
CAVLC decoder instead of straight cascading level decoders,
we take advantage of MSD algorithm to exploit a high-
performance two-level decoding architecture. In general case,
the levelSuffixSize that indicates the codeword length of
level−suffix is equal to suffixLength. Consequently, the start
point of next level codeword in the bitstream can be decided
as soon as the level−prefix decoding has finished. Moreover,
the adjustment of levelCode in the second part is only applied
to the first level of the residual block. It means that those
two special conditional branches can be skipped in the second
level decoding. Based on these two features, we propose
a delay balanced two-level decoding (DBTLD) architecture
that efficiently shortens the critical path in comparison to the
traditional design that cascades two level decoders directly.

B. Proposed DBTLD

Fig. 6 shows the block diagram of proposed DBTLD
procedure. The second level decoding process is designed for
the general case that levelSuffixSize is equal to suffixLength.
Since the codeword length of first level can be determined
immediately after the level−prefix is decoded, and the exami-
nation process of levelCode increment is unnecessary for the
second level decoding process, a balanced structure can be
obtained.

The first level decoding process is the same as shown in
Fig. 5. For bitstream supplying for the second level decod-
ing process, the input bitstream is shifted according to suf-
fixLength and level−prefix−1. Afterward, instead of generating
levelSuffixSize−2, the level−suffix−2 is parsed directly by
fetching the output of first suffixLength−1 detector (SD−1)
that is referred to the MSD algorithm. Finally, without check-
ing the two special cases for increasing levelCode−2, the
level mapping process is executed directly. Compared to the
conventional approach to cascade two MSD algorithm-based
level decoders, the critical path delay of proposed DBTLD
engine is improved by 21% (from 3.25 ns to 2.56 ns) according
to the implementation result.

It is important to note that the second level is not always
valid. If the codeword length exceeds the bitstream width
(32 bits), which may occur when level−prefix = 15 or
level−prefix = 14 with suffixLentgh = 0, the decoded second
level must be flushed.

C. CAVLC Decoding Architecture Design

Based on the DBTLD engine, the CAVLC decoding archi-
tecture is designed as shown in Fig. 7. The overall flow follows
the decoding process as shown before, and the operations of
each block will be described below. First, the bitstream is
fetched by the bitstream fetcher unit, which is similar to other
VLC decoding unit with nonregistered Barrel Shifter. Then,
the coefficient token is decoded by the coeff−token unit. In
the TrailingOnes decoding unit, all sign flags are scanned in
one cycle. After level decoding procedure is done, all nonzero
coefficients are stored in a 16-entry-deep and 13-bit-wide
output buffer. Finally, in the run−before decoding unit, the
corresponding level is transmitted to its actual position in the
output buffer whenever a run−before symbol is decoded. In
the output buffer, the concept of prediction-based run−before
look-up table combination method [6] is employed here that
two run−before symbols are decoded in one cycle. As a result,
the overall critical path of our proposed CAVLC decoder
starts from the Barrel Shifter, then goes through the DBTLD
Decoder, and finally ends at the residual block reconstruction.

Fig. 8 shows the architecture of residual block reconstruc-
tion. After TrailingOnes and levels are pushed into the output
buffer in order, one or two level symbols are moved to their
final locations, respectively, depending on the coeffsLeft and
zerosLeft information in each cycle. The movement starts
from the last coefficient and ends until no more run−befores
are decoded. The parameter coeffsLeft denotes the remaining
number of nonzero coefficients needs to be moved, and
zerosLeft represents the remaining number of zeros to be
decoded.

1608 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 11, NOVEMBER 2012

Fig. 6. Proposed delay balanced two-level decoding procedure.

Table III shows an example for the reconstruction process.
In the beginning, all nonzero coefficients are arranged in order,
output buffer index 0 to (TotalCoeffs − 1). After total−zeros
is decoded, coefficients are moved to the indices that are
calculated as (coeffsLeft + zerosLeft − 1) in reverse order,
and the value of the original position of the moved coefficient
is replaced by 0. In this example, first, the last coefficient
1 is moved to index 8 (6 + 3 − 1), and the coefficient
−1 is moved to index 6 (5 + 2 − 1). In the next cycle,
only one run−before symbol is valid since no more zeros left
to be decoded, and the coefficient −2 is moved to index 4
(4 + 1 − 1).

To further accelerate the decoding procedure, a skipping
mechanism is employed to remove redundant decoding pro-
cesses as follows.

1) Zero Block Skip: When TotalCoeffs is equal to 0, the
remaining decoding processes are skipped since nonzero
coefficients do not exist in the block.

Fig. 7. Proposed CAVLC decoder.

2) Level Skip: When TotalCoeffs is equal to TrailingOnes,
the level decoding procedure is skipped since there are
no nonzero coefficients left to be decoded.

LIAO et al.: A 385 MHZ 13.54 K GATES DELAY BALANCED TWO-LEVEL CAVLC DECODER 1609

TABLE III

Example of Residual Block Reconstruction Process

Decoded Symbol coeffsLeft zerosLeft Output Buffer
total−zeros = 3 x x 4 3 2 −2 −1 1 0 0 0 0 0 0 0 0 0 0
run−before−1 = 1 6 3 4 3 2 −2 0 0 −1 0 1 0 0 0 0 0 0 0
run−before−2 =
run−before−1 = 1 4 1 4 3 2 0 −2 0 −1 0 1 0 0 0 0 0 0 0
run−before−2 = x

Fig. 8. Residual block reconstruction architecture.

TABLE IV

Performance Comparisons for Different CAVLC

Decoders for 4 K × 2K Sequences

Min. Working Max. Frame Rate
Frequency (With 0.18 μm Technology)

Yu [6] 174 MHz 19.1
Tsai [5] 138 MHz 30.8
Proposed 125 MHz 41.1

Min. working frequency = (Max. MB processing rate) * (Average
cycle/MB) Max. frame rate = (Max. frequency)/(Average
cycle/MB)/(Max. MBs/frame)

3) Total Zeros Skip: When TotalCoeffs is equal to max-
imum number of coefficients (maxNumCoeff), the
total−zeros decoding procedure and run−before decod-
ing procedure is bypassed because there are no zero
coefficients to be decoded.

4) Run Skip: When total−zeros is equal to 0 or TotalCoeffs
is equal to 1, run−before decoding procedure is not
necessary.

Moreover, in the CAVLC decoding procedure, because
coeff−token, trailing−ones−sign−flag, level, total−zeros, and
run−before decoding units are not operated simultaneously,
only one of them is designated to work in each cycle. As a
result, idled units are turned off by functional gating to save
power consumption.

IV. Implementation Results

Table IV shows the average decoding performance of the
proposed CAVLC decoder. To fairly compare with previous
works, we use the same testing environment and technology
as others that all the sequences with resolution of 4K × 2K
(4096 × 2034) are intra coded.

Compared to Tsai’s work [5], the main differences are the
implementation strategies for the two critical loops of CAVLC
decoding (level and run−before parsing process). For level
decoding, we adopt the MSD algorithm in [4] to establish an
efficient two-level decoding solution while the literature [5]
employed a cascaded architecture with retiming technique to
aim at efficient multilevel decoding. For run−before decoding,
we adopt our previous work [6] since it provides a stable two-
symbol throughput in general case while the performance of
[5] depends on the distribution of coefficients in the residual
block.

The register transfer level simulation result shows that
Lee’s design [8], which only focuses on boosting run−before
decoding procedure, can achieve higher decoding speed in the
low bit-rate coding such as high quantization parameter or
simple image since the residual block is very sparse. However,
in the high bit-rate coding that really demands high decoding
speed, our proposed design prevails over other existing designs
since we take both level and run−before decoding procedures
into speedup consideration.

Table V shows the synthesis results of the proposed CAVLC
decoder and a comparison with other existing works. The
proposed CAVLC decoder is synthesized with CMOS 90-
nm technology. Our design can enhance the throughput by
exploiting multisymbol decoding scheme for both level and
run−before symbols while allowing the maximum work-
ing frequency to be 385 MHz with 13.54 k gate count and
193 MHz with 14.37 k gate count in CMOS 90-nm and 0.18-
μm technology, respectively. Lin’s design [3] has minimum
hardware cost, but its decoding speed of the two main
critical loops, level and run−before, is only one symbol
per cycle, which is merely half in comparison to our de-
sign. In contrast, for our design, two run−before symbols
can be decoded in each cycle by applying the prediction-
based run−before look-up table combination method [6].
Furthermore, with the DBTLD engine, not only two level
symbols can be decoded at the same cycle, but also 21%
critical path delay is saved in comparison to the traditional
two-level decoder. Table VI shows the maximum frame
rate (frames per second) for different Level limits defined
in H.264/AVC standard. The result shows that our pro-
posed CAVLC decoder can achieve real-time decoding for
all Level conditions. In addition, the maximum frame rate
of our design reveals that our proposal can decode more
than 82 f/s in real time for 4096×2304 frame resolution
and thus suitable for H.264/AVC scalable and multiview
extension.

1610 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 11, NOVEMBER 2012

TABLE V

Implementation Result Comparisons for Different CAVLC Decoder Designs

Specifications Proposed Lin [3] Yu [6] Lee [8] Alle [4] Tsai [5]
Technology 90 nm 0.18 μm 0.18 μm 0.18 μm 0.13 μm 0.13 μm 0.18 μm
Max. frequency 385 MHz 193 MHz 213 MHz 125 MHz 125 MHz 250 MHz 160 MHz
Area: Logic part 13 544 14 373 6771 13 192 15 602 17 202 13 175
(gate count)
Area: Memory part W/O W/O W/O W/O 5120 W/O
(bits)
Average cycle/MB 127.13 N/A 177 148.8 N/A 141

TABLE VI

Working Frequency for Different Level Limits

Level Max. MBs/Frame Max. MB Processing Rate Max. Frame Max. Specified Working Max. Frame Rate of Our
(MBs/s) Format Frame Rate Frequency Design (f/s)

1 99 1458 QCIF 15.0 0.19 MHz 30589.9
2 396 11 880 CIF 30.0 1.52 MHz 7647.5
3 1620 40 500 625 SD 25.0 5.15 MHz 1869.4
3.1 3600 108 000 720p HD 30.0 13.73 MHz 841.2
3.2 5120 216 000 SXGA 42.2 27.46 MHz 591.5
4 8192 245 760 2K × 1K 30.0 31.25 MHz 369.7
4.2 8704 522 240 2K × 1080 60.0 66.4 MHz 347.9
5 22 080 589 824 3672 × 1536 26.7 74.95 MHz 137.2
5.1 36 864 983 040 4096 × 2304 26.7 125.13 MHz 82.2

V. Conclusion

To realize high decoding performance and low hardware
cost real-time entropy decoding systems, a high-throughput
and fully hardwired entropy decoder for H.264/AVC was
proposed. Unlike previous multisymbol CAVLC decoding
architectures, which only accelerated the decoding procedure
of run−before symbols, our proposed CAVLC decoder can
further elevate the throughput by applying the DBTLD ar-
chitecture that can decode two level symbols in one cycle
and shorten the critical path delay by 21% in comparison to
the conventional approach of cascading two level decoders,
and allowed the maximum working frequency to be about
385 MHz. Implementation results showed that our proposed
entropy decoder can support up to level 5.1 entropy decoding
with only 13.54 k gate counts.

References

[1] Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification (ITU-T Rec.H.264 ISO/IEC 14496-10 AVC),”
document JVT-G050, Joint Video Team (JVT) of ISO/IEC MPEG and
ITU-T VCEG, Mar. 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[3] H.-Y. Lin, Y.-H. Lu, B.-D. Liu, and J.-F. Yang, “A highly efficient VLSI
architecture for H.264/AVC CAVLC decoder,” IEEE Trans. Multimedia,
vol. 10, no. 1, pp. 31–42, Jan. 2008.

[4] M. Alle, J. Biswas, and S. K. Namdy, “High performance VLSI archi-
tecture design for H.264 CAVLC decoder,” in Proc. IEEE Int. Conf.
Applicat.-Specific Syst., Architect. Processors, Sep. 2006, pp. 317–322.

[5] T.-H. Tsai, T.-L. Fang, and Y.-N. Pan, “A novel design of CAVLC decoder
with low power and high throughput considerations,” IEEE Trans. Circuits
Syst. Video Technol., vol. 31, no. 3, pp. 311–319, Mar. 2011.

[6] G.-S. Yu and T.-S. Chang, “A zero-skipping multi-symbol CAVLC
decoder for MPEG-4 AVC/H.264,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2006, pp. 5583–5586.

[7] Y.-N. Wen, G.-L. Wu, S.-J. Chen, and Y.-H. Hu, “Multiple-symbol parallel
CAVLC decoder for H.264/AVC,” in Proc. IEEE Asia Pacific Conf.
Circuit Syst., Dec. 2006, pp. 1240–1243.

[8] G.-G. Lee, C.-C. Lo, Y.-C. Chen, H.-Y. Lin, and M.-J. Wang, “High-
throughput low-cost VLSI architecture for AVC/H.264 CAVLC decod-
ing,” IET Image Process., vol. 4, no. 2, pp. 81–91, 2010.

[9] S.-Y. Tseng and T.-W. Hsieh, “A pattern-search method for H.264/AVC
CAVLC decoding,” in Proc. IEEE Int. Conf. Multimedia Expo., Jul. 2006,
pp. 1073–1076.

Yuan-Hsin Liao received the B.S. and M.S. degrees
in electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2008 and 2010,
respectively.

In 2010, he joined the PixArt Imagine, Inc.,
Hsinchu. His current research interests include video
processing, computer vision, and intellectual prop-
erty and system-on-a-chip design.

Gwo-Long Li received the B.S. degree from the
Department of Computer Science and Information
Engineering, Shu-Te University, Kaohsiung, Taiwan,
in 2004, the M.S. degree from the Department of
Electrical Engineering, National Dong Hwa Univer-
sity, Hualien, Taiwan, in 2006, and the Ph.D. degree
from the Department of Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan,
in 2011.

He is currently an Engineer with the Industrial
Technology Research Institute (ITRI), Hsinchu. His

current research interests include video signal processing and its very large-
scale integrated architecture design.

Dr. Li was the recipient of the Excellent Masters Thesis Award from the
Institute of Information and Computer Machinery in 2006.

Tian-Sheuan Chang (S’93–M’06–SM’07) received
the B.S., M.S., and Ph.D. degrees in electronic
engineering from National Chiao Tung University
(NCTU), Hsinchu, Taiwan, in 1993, 1995, and 1999,
respectively.

He is currently a Professor with the Department of
Electronics Engineering, NCTU. From 2000 to 2004,
he was a Deputy Manager with Global Unichip
Corporation, Hsinchu. His current research interests
include (silicon) intellectual property and system-
on-a-chip design, very large-scale integration signal

processing, and computer architecture.

