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Video Inpainting on Digitized Vintage Films via
Maintaining Spatiotemporal Continuity
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Hong-Yuan Mark Liao, Senior Member, IEEE

Abstract—Video inpainting is an important video enhancement
technique used to facilitate the repair or editing of digital videos. It
has been employed worldwide to transform cultural artifacts such
as vintage videos/films into digital formats. However, the quality
of such videos is usually very poor and often contain unstable lu-
minance and damaged content. In this paper, we propose a video
inpainting algorithm for repairing damaged content in digitized
vintage films, focusing on maintaining good spatiotemporal conti-
nuity. The proposed algorithm utilizes two key techniques. Motion
completion recovers missing motion information in damaged areas
to maintain good temporal continuity. Frame completion repairs
damaged frames to produce a visually pleasing video with good
spatial continuity and stabilized luminance. We demonstrate the
efficacy of the algorithm on different types of video clips.

Index Terms—Frame completion, motion completion, motion es-
timation, video inpainting.

I. INTRODUCTION

N recent years, transforming cultural and historical artifacts
I such as photographs and vintage films/videos into digital
format has become an important trend. However, because of
their age, the visual quality of such images and videos after
digitization is usually very poor and often contain unstable lu-
minance and damaged content. Video enhancement techniques
widely used to restore the visual content of vintage films in-
clude video denoising [27], video stabilization [23], and video
inpainting [9], [17], [18], [24], [28], [31], [35], [36]. Video in-
painting, one of the most challenging techniques, helps users
remove undesirable objects and repair areas where content is
missing or damaged.
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To deal with image inpainting problems, researchers initially
focused on removing or repairing small regions of an image
using interpolation or smoothing techniques. Subsequently,
more powerful methods were developed to perform image
inpainting on large continuous areas [11], [14], [32]. For
example, Criminisi et al. [11] proposed an exemplar-based
approach for repairing large continuous areas and obtained a
reasonably good quality image inpainting effect. The approach
takes a block as the basic unit and utilizes the concepts of
priority maps and confidence levels to guide the inpainting
process. A block with a higher confidence value indicates a
lower degree of damage, so the block has a higher priority in
the inpainting process. Textural information is then propagated
from the surrounding areas to repair damaged regions. In [32],
Sun et al. posited that most natural or artificial objects can
be described approximately by some representative curves. In
other words, the salient regions of an image can be sketched
before their textural characteristics are introduced. The algo-
rithm produces excellent inpainting results by drawing a few
simple representative curves.

In recent years, researchers have extended these well-de-
veloped image inpainting techniques to the repair of videos.
An intuitive approach involves applying image inpainting
techniques to each video frame so that the completed frames
are visually pleasing when viewed individually. However, this
approach neglects the issue of continuity across consecutive
frames, so the quality of the resulting video is usually unsat-
isfactory. To resolve the problem, both spatial (intra-frame)
and temporal (inter-frame) continuity must be considered in a
video inpainting process. Video inpainting has become more
popular because of its potential applications in our daily life
[91, [17], [18], [20], [24], [28], [31], [35], [36]. Venkatesh et
al. [9] proposed an efficient video object inpainting algorithm
to inpaint partially and completely occluded objects and their
algorithm can maintain motion consistency by using sliding
window registration and dynamic programming. In [24], Pat-
wardhan et al. extended the image inpainting concept proposed
in [11] to deal with digital videos. This approach first separates
the background and foreground of a video and then generates
the corresponding optical-flow mosaics. After inpainting the
background of the video sequence, holes in the foreground are
filled with patches extracted from adjacent frames directly by a
texture synthesis process. The method has limited applicability
because it only works well under certain types of constrained
camera motion. Zhang et al. [36] used a graph cut algorithm
to divide a video sequence into multiple layers based on the
motion in each layer. Each layer is then inpainted by applying
the proposed image inpainting algorithms. The drawback of this
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approach is that temporal consistency is not addressed. In [20],
Kokaram and Godisll employed a 3-D autoregressive model to
detect and reconstruct missing video data. The method uses an
interpolation technique instead of patch duplication. Only small
missing regions can be repaired and the issue of maintaining
temporal consistency is not addressed. Jia et al. [17] proposed
a two-phase sampling and alignment video inpainting approach
that predicts motion in the foreground before repairing damaged
foreground areas and adopted an image inpainting technique to
repair damaged areas of separated background. Subsequently,
they extended their algorithm to handle situations with varying
illumination [18]. The illumination mask used in [18] regulates
the intensity of inpainted frames until it is similar to the original
video. However, intensity flickers are viewed as visual defects
in vintage films. Therefore, when we do inpainting on damaged
vintage films, we not only recover the missing content but also
stabilize the intensity change across consecutive frames. The
objective of the above-mentioned moves is to guarantee the
recovery of visually pleasing results.

Most of the above-mentioned algorithms discussed the use
of image inpainting techniques to repair damaged background
areas in videos. However, if the damaged areas are too large,
visual defects are still evident in the resulting videos. To address
this problem, Wexler et al. [35] proposed optimizing the patch
search process at different resolution levels. Holes in a frame are
filled using different portions of the same video. Although the in-
painting process yields high-quality results in small-sized videos,
the method is time consuming and computationally expensive.
Moreover, information about the missing content in every video
frame must be provided in advance. In [28], Shen et al. proposed
to construct motion manifolds of space-time volume and apply
structure propagation methods to recover the missing portions of
foreground object and background and maintain spatiotemporal
continuity. Although the output is acceptable, the method does
not work well when the missing portions of a space-time volume
are large. Shiratori ef al. [31] proposed to complete a damaged
video by transferring motion fields sampled from other portions
of the video. The limitation of this method is that it works only on
stationary video and may easily cause over-smoothing artifacts.
In a previous work [30], we proposed a video inpainting algo-
rithm that segments a video into an intrinsic motion layer (created
by the video camera) and an extrinsic motion layer (created by
the moving object) and then removes the selected areas from
different layers. The limitation of this method is that it can only
handle videos that have consistent luminance and are recorded
under stable camera motions such as panning.

Because restoration of digitized vintage films is an impor-
tant application area, researchers have also developed video en-
hancement techniques especially for vintage films. For example,
in [19], Joyeux et al. proposed a line scratch detection and re-
moval algorithm. Although the line scratch method is very effi-
cient, the authors only use an image interpolation method to re-
pair damaged content. In [15], Gullu e? al. used temporal coher-
ence analysis to detect scratches in video images. Both methods
[15] and [19] can only deal with small regions around defects.
Machi and Collura [22] proposed using spatiotemporal analysis
techniques to repair single frame defects, but they neglected the
issue of maintaining temporal continuity.
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Fig. 1. Inpainting results produced by previous methods and our proposed
method. (a) Existing video inpainting methods applying image inpainting-re-
lated techniques to inpaint a severely damaged video sequence tend to produce
poor inpainting results due to a lack of accurate motion information. (b) Our
proposed method can extract undamaged information from the entire video
sequence based on computed motion information to produce good inpainting
results.

Current inpainting methods can be divided into two ap-
proaches. The first approach inpaints the damaged areas of
an image using only data from the same frame. The second
approach searches both the current and neighboring frames to
find reference data for use in inpainting. To maintain temporal
continuity, both approaches use a simple motion estimation
process to compute motion information, then propagate the
inpainted information along the motion to neighboring frames.
However, when dealing with severely damaged frames, both
approaches usually yield poor inpainting results. In such cases,
the undamaged areas in the current frame or neighboring frames
are comparatively small, so the inpainting process has difficulty
finding undamaged reference information due to the lack of accu-
rate motion information. As a result, the inpainting process must
use the same reference block repeatedly to inpaint missing areas
and propagate the information to other frames. In addition, if the
motion information is inaccurate, the inpainting process may
also have to adjust the target block to maintain spatial continuity.

In our experiments, we found that when using existing video
inpainting techniques to repair old films or remove undesirable
objects, the unstable luminance and poor quality of the orig-
inal film frequently cause visible defects in the resulting video.
As a result, we believe a new approach is needed to tackle the
challenges presented by old films as well as by modern digital
videos. To this end, we propose a video inpainting algorithm
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Fig. 2. Proposed framework.

that can address those challenges and produce visually pleasing
results. When inpainting severely damaged videos, we begin by
filling gaps in the temporal information to help the inpainting
process obtain more reference data from the whole video se-
quence. Our proposed video inpainting algorithm involves two
key steps: motion completion and frame completion. The first
step, motion completion, tries to replace missing motion infor-
mation to help the inpainting process obtain reliable reference
data. The second step, frame completion, maintains the spatial
continuity of the referenced content before it is pasted onto the
corresponding missing area. This step is especially important
when the luminance in old films is unstable.

Fig. 1 shows some examples of using existing video inpainting
methods [17], [18], [24] applying image inpainting-related
techniques to inpaint a severely damaged video sequence. In
Fig. 1(a), the first and last frames contain undamaged reference
information. However, without accurate motion information, the
inpainting process can only use information derived from the
current and/or neighboring frames to repair missing areas. The
example shows how relying on spatial information from a single
frame may result in poor inpainting results. Fig. 1(b) shows how,
with complete motion information, the inpainting process can
extract undamaged information from the entire video sequence
and find reliable reference data to repair missing areas. In ad-
dition, experiment results demonstrate motion completion also
significantly improves the temporal continuity of the final result.

Fig. 2 presents our proposed framework, which is comprised
of three procedures: motion map construction, motion comple-
tion, and frame completion. Motion map construction is a pre-
processing procedure. We begin by manually labeling damaged
areas in vintage films to divide each succeeding video frame into
a damaged layer and a background layer. The former shows the
missing area and the latter shows the rest of the video content.
Next, we estimate the motion information located in the back-
ground layer to construct a motion map for each frame. These
maps form the basis of our video inpainting process and are used
to replace the missing motion information in the motion com-
pletion procedure. Finally, the frame completion procedure uses
a patch adjustment mechanism to paste data from neighboring

or current frame onto the missing areas indicated in the dam-
aged layer.

The remainder of this paper is organized as follows. Section II
describes the construction of the motion map. Section II presents
the proposed video inpainting algorithm. Section IV details the
experiment results and Section V contains concluding remarks.

II. MOTION MAP CONSTRUCTION

Accurate motion information is the key to achieving good
video inpainting results. Assuming that true motion information
for the damaged layer and the background layer are available,
the video inpainting process can easily search the background
layer by tracking the true motion to find the best reference data
to complete the missing areas in the foreground. Based on this
assumption, we begin by constructing a motion map to track the
motion information in the background layer and then repair the
missing motion information in the motion completion step. We
employ a two-step preprocessing procedure to construct a mo-
tion map. First, since unstable luminance tends to degrade mo-
tion estimation, we adopt an intensity normalization procedure
to stabilize the video content. Second, we use global and local
motion estimation to construct a motion map to preserve the mo-
tion flow of each block. Though using only intensity value as
a criterion to judge similarity in vintage films may cause error
matching problems, the two-step motion estimation procedure
can really help improve estimation accuracy.

A. Intensity Normalization

Similarity comparison or template matching is the most com-
monly used search procedure in block-based motion estimation
algorithms. However, since the procedure is very sensitive to
changes in luminance, we need to normalize the average intensity
of every frame before performing motion estimation. The nor-
malization procedure first computes the difference between the
average intensity, I4; ¢ ¢, of two consecutive frames, F; and F; 11,
by
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Fig. 3. Normalization of the average intensity of video frames. (a) Original
video sequence. (b) Result of average intensity normalization.

where p and p’ denote undamaged pixels in frame F; and frame
Fi14, respectively; I(p) represents the intensity of pixel p and
|F}| and | F;1| denote the total number of pixels in frame F; and
frame F}, 1, respectively. Based on I4;5; , we adjust the inten-
sity of each pixel in frame F; to reduce the difference between
the average intensity of F; and F; . Fig. 3 shows an original
video sequence [Fig. 3(a)] and the sequence after intensity nor-
malization [Fig. 3(b)].

B. Construction of Motion Map

After stabilizing the intensity of every frame, we estimate the
motion flow for the remaining background layer. First, we apply
a global motion estimation (GME) process to estimate the global
motion between two adjacent frames. The result is then used by
the proposed local motion estimation (LME) process to reduce
the computational complexity and mismatch rate.

1) Global Motion Estimation: Two types of GME have been
well studied, namely, feature-based methods [3], [5], [6], [38]
and gradient-based methods [1], [7], [37]. Since feature-based
GME techniques are generally more efficient, we use the Lucas-
Kanade optical flow computation technique [21] in our algo-
rithm. This well-known technique estimates the optical flow
between two consecutive frames efficiently; however, it only
works well when the pixel replacement task is small. To improve
the estimation capability, Bouguet [2] developed an iterative
Lucas-Kanade optical flow algorithm for each resolution. We
employ Bouguet’s pyramidal version to estimate global motion.
In addition, we implement a feature extraction preprocess [29]
to select features with good texture properties for our GME pro-
cedure. Fig. 4 shows an example of global motion estimation.

2) Local Motion Estimation: We propose a correlation-based
motion estimation algorithm with a correction mechanism that
computes block motion vectors and removes undesirable mo-
tion simultaneously. We use a larger block (16*16) to compute a
motion vector and then refine the result to a smaller-sized block
(8*8). Our local motion estimation (LME) procedure, which is
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Fig. 4. Results of global motion estimation on an old film.
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Fig. 5. Mask for initial motion selection during re-estimation.

based on the modified motion estimation procedure proposed
by Cheung and Po [8], uses the initial motion obtained in the
previous GME step. Although Cheung and Po’s algorithm is ef-
ficient and robust in most cases, there may be some unreliable
motion vectors in the first estimation phase. Hence, we propose
using a re-estimation technique to identify such vectors and im-
prove the estimation accuracy. The steps of the proposed local
motion estimation algorithm are as follows.

1) Use the modified CDHS algorithm proposed in [8] with
the initial motion computed in global motion estimation
step to compute the block motion vectors for frame F}. The
distance between a source block B; and a target block B;
in the HSI color space is calculated by

dlS(BZIBJ) = HSISSD(M-) (2)

where the distance in each HSI color component is calcu-
lated individually by the sum of squared difference (SSD)
shown in (3) at the bottom of the page.

2) Copy all blocks from F} to generate a pseudo frame Fy,
based on the motion vectors calculated in step 1. Frame
F}, is used to identify poorly estimated blocks by com-
paring its contents with those of frame Fi ;.

3) Compare the differences between Fy;; and Fy,,. The
differences can be viewed as a map of poorly estimated
blocks.

4) For each poorly estimated block indicated in step 3, re-es-
timate the motion vectors by the CDHS algorithm with the
initial motion obtained from surrounding valid motion vec-
tors. Fig. 5 shows a mask used to perform initial motion se-
lection. One can search the surrounding blocks (ordered by
digits from 1 to 5) to identify a valid motion vector and then
use it in the search process. However, if all surrounding

p=1lg=1

HSIssp,,, =Y Y \(HSL(i+a,j+b)? = (HSLiya(i+ a+dz,j + b+ dy))? 3)

a=0 b=0
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Fig. 6. Motion maps obtained with different motion estimation methods. (a) By
the local motion estimation method 4SS [26]. (b) By the proposed local motion
estimation method. (c) By the proposed global motion estimation and local mo-
tion estimation method.

blocks are poorly estimated, one can randomly choose a
direction that has a smaller estimation error to proceed.

5) Construct a motion map based on the final motion vectors

calculated for each block.

Fig. 6 shows the results of implementing different motion
estimation techniques. We use different colors to indicate dif-
ferent motion directions (e.g., green indicates “moving down”
and red indicates “moving up”). In this example, all areas where
motion information is missing are shown in white. As shown
in Fig. 6(a), a lot of undesirable motions are produced when
we only use a normal local motion estimation algorithm [26].
Fig. 6(b) and (c) shows that the proposed motion estimation al-
gorithm reduces the number of undesirable motions effectively
and estimates the motion vectors for each block precisely.

The constructed motion map of a frame reflects the motion
flow of every block in that frame. This information can be used
as a guideline when seeking available information from other
frames and to maintain temporal continuity. After constructing
the motion maps of each frame, we apply our motion completion
procedure to recover missing motion information.

III. VIDEO INPAINTING BY MAINTAINING
SPATIOTEMPORAL CONTINUITY

Most video inpainting methods use a search process to find the
most suitable patch in the current frame or neighboring frames.
After the best-matched result has been found, the target patch
is pasted directly onto the missing area (to maintain good spa-
tial continuity) and then propagated to other frames (to main-
tain temporal continuity). However, three problems often arise
with this type of video inpainting process. First, as mentioned
earlier, the process may fail to find reliable spatial information
to inpaint missing areas when motion information is not avail-
able. Second, propagation of patches based on inaccurate mo-
tion degrades the quality of the resulting video. If areliable patch
cannot be found, some video inpainting processes employ a one-
step motion segmentation procedure to trace the motion flow of
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Fig. 8. Flowchart of the proposed motion and frame completion procedure.

each block. However, since there are usually noisy or irregular
motions in the segmentation results, such processes may propa-
gate target patches derived from inaccurate motion information
to other frames. Inaccurate propagation usually results in mis-
matched boundaries and also destroys the temporal continuity.
Third, pasting the most similar patch onto the missing area may
result in visual defects, especially in old videos with unstable lu-
minance. Because the patch search procedure only looks for the
“most similar patch” in terms of the observed luminance, there
is no guarantee that the selected patch will maintain good spa-
tial continuity in the inpainted video. Fig. 7 shows an example of
visual defects generated when best-matched patches are pasted
onto a damaged area directly.

From these reasons, we conclude that spatiotemporal con-
tinuity is the key to guaranteeing visually pleasing video in-
painting results. As previously discussed, our proposed video
inpainting algorithm implements two key procedures, a motion
completion procedure and a frame completion procedure, which
try to inpaint damaged video content while maintaining good
temporal continuity of the inpainted video. The flow chart of the
algorithm is shown in Fig. 8. After constructing a motion map
of each frame (as described in Section II), we apply the motion
completion procedure to recover areas where motion informa-
tion is damaged (e.g., the white area in Fig. 6). The motion map



TANG et al.: VIDEO INPAINTING ON DIGITIZED VINTAGE FILMS VIA MAINTAINING SPATIOTEMPORAL CONTINUITY 607

- . P ey ®:Source Region
H 1 kS

£

i e [,

¥ \P\

i \

"\ Q: Missing Portion

Fig. 9. Notations used in our the motion completion procedure.

is updated when the missing motion vectors are obtained. Then,
we use the updated map to find the best-matched patch from ei-
ther the current frame or other video frames based on the motion
vectors in the map. Furthermore, to enhance the visual quality,
we employ a patch adjustment process to regulate the content of
the target patch, followed by a luminance stabilization process
to stabilize the luminance of each frame.

A. Motion Completion

The objective of motion completion is to recover the motion
information for missing areas by propagating the motion vectors
obtained in the motion map construction step. In our video in-
painting algorithm, the basic unit is a patch, which we define as
a block. Motion completion involves two procedures: priority
computation and patch searching. First, the priority computa-
tion process determines the completion order for each missing
block. Second, the patch search process tries to find the most
similar patch in the spatial and temporal domains to recover the
missing information.

1) Priority Computation: Priority computation, a concept
proposed by Criminis et al. [11], determines the inpainting pri-
ority of each patch. In [23], Patwardhan er al. first extends this
concept into video painting procedure to repair missing por-
tions on motion mosaics. In our previous work [33], we intro-
duced the priority computation procedure with modified data
term into a video inpainting procedure to repair missing portions
of aged films. Although the results are acceptable, there are still
some visual defects generated by high patch reusing rate during
the inpainting process. To incorporate the priority computation
concept into our video inpainting process properly, we extend
the original 2-D spatial domain to a 3-D video space (i.e., the
2-D spatial domain plus the temporal domain) to ensure that the
patch with the least damage along the spatial and temporal di-
mensions is inpainted first. We also include a weighting factor to
ensure that the inpainting process will propagate unused infor-
mation to missing areas, rather than reuse information already
used for other patches. Finally, we modify the data term defined
in [11] to speed up the computation and better maintain the in-
formation structure.

We now describe the motion completion procedure in detail.
As shown in Fig. 9, let I be a video frame that comprises a
missing portion 2 and a source region (i.e., the remaining areas)
@, thatis, I = ¢ U 2. The notation 62 denotes the front contour
on 2 and ¥, is an arbitrary patch centered at a pixel p € 6€2.

We define the priority term P(p,t) for the patch centered at
pixel p in frame F} by

P(p,t) = C(p,t) * D(p,t) * W(F}) 4)

where C'(p, t), D(p, t), and W (F}) denote the confidence term,
data term, and weighting factor, respectively.

The weighting factor W (F};) measures the percentage of the
source area available in each frame. A higher W (F}) value in-
dicates that the frame F}; contains more source data; thus, it has
a higher inpainting order. The definition of W ( f;) is as follows:

| D¢

W(F) = T

&)
where || is the size of frame F} and |¢;| is the size of the source
area ¢ in frame Fj.

The confidence term C(p,t) measures the percentage of
source data in a target patch W, ;). Before we compute the
term, we initialize the confidence value of each pixel in I by

1.0,

As shown in Fig. 9, ¥, is a patch centered at pixel p. We define
the confidence C(p, t) of an arbitrary patch ¥,, as follows:

Z CO((]7 t)
qE€(Y(p,1)NP)

Yool
Vp, q € Fy, p € 0%, q € Y1)

if and only if p € ®

if and only if p € Q. ©)

C(p,t) =

N

where ¥, )] is the size of U (, 4).

A patch with a higher confidence value means its missing
area is smaller and its priority in the video inpainting process is
higher. However, the confidence term only indicates the degree
of damage in a single patch; in other words, it does not provide
higher level structural information about all patches. Therefore,
the term can only play an auxiliary role by providing a rough
guideline on where to start the inpainting process. Usually, a
number of patches have high confidence values. To determine
which one has the highest priority, we introduce a data term to
strengthen the confidence term and solve the above-mentioned
problem.

We use the data term to assess the importance of a target
patch. Criminisi et al. [11] used the strength of isophotes to
judge whether a target patch is important. Since the time com-
plexity of computing isophotes is high, we propose computing
the data term based on an edge map. Our modification of the data
term defined in [11] is based on the observation of continuous
structure derivation. First, we apply the Canny edge detector on
1 to obtain a binary edge map BI.Let ®¢ C BI be the area cor-
responding to ® C I; that is, ®¢ is the edge map of the source
area ®. We then compute the percentage of the edge and the
complexity of a patch’s constituent colors to decide whether the
patch is important. Our data term is defined as follows:

max (1, > )c) X var (1/)(th))

q€(u’1 Pt OQE
D(p,t) = Lk :
V)]
Vp, q € Ft, p € 04, q € Yy (®)
var(thp 1) = J 9)

1% ]
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Fig. 10. Inpainting results derived by different strategies. (a) Damaged frame.
(b) Incorrect inpainting result when only the confidence term is used. (c) In-
painting result when both the confidence term and the data term are considered.

The max function ensures a nonzero summation of the pixel
count in the edge map and var(¥ , ;) is used to compute the
degree of intensity variation in the patch ¥, +. The use of in-
tensity variation is to ensure the miss-detection of edge will not
degrade the quality of inpainting result.

One may use the confidence term or the data term to deter-
mine the patch with the highest priority. If only the confidence
term is used, the patches at the outer boundary would be pro-
cessed first; however, the inpainting result may be incorrect, as
shown in Fig. 10(b). On the other hand, if only the data term
is used, the inpainting process would consider the available in-
formation contained in a patch, but the proportion of missing
data in the patch will be neglected. As a result, the inpainting
process would be biased. Fig. 10(c) shows an inpainting result
when both terms are considered.

2) Patch Searching: After determining the inpainting priority
of the patches in each frame, we search the best-matched patch
for each damaged patch in order of priority. If a patch has the
highest priority in the spatial and temporal domains, there is a
better chance of finding a patch with the best quality. This is be-
cause our proposed approach considers the degree of damage,
the relations with surrounding patches, and the degree of com-
plexity when determining the priority of patches. Hence, we can
ensure the quality of the search process. Let ¥ (,,» ) be the patch
with the highest priority; that is

Upn gy = argmax(P(p,t)), p € 6. (10)

An arbitrary patch template, I',n 4y, of W(,n 1) is expressed as
follows:

Fipry = Usropr o) (Ypry N @) # ¢ (11)

where ¢ is an empty set and +kW,» represents the domain
that covers the patch W, ;) and its surrounding pixels out-
side W(,n ;) within a distance k. The value of k is set as half
the width of the patch. In our experiments, the size of a patch
is 3 x 3. The top two rows of Fig. 11(a) and (b) illustrate the
steps of the proposed patch search algorithm. In the previous
stage, we constructed the motion map of the background layer.
We now follow the motion vectors obtained from that motion
map to search for a similar patch. We start from the neighboring
frames to see if there are any possible candidate patches [the
green blocks in Fig. 11(a)]. The search process begins with the
neighboring blocks and then moves to blocks that are farther
away. If this step fails to find similar blocks among the neigh-
boring frames, we perform an intra-frame search to locate a sim-
ilar patch in the current frame [frame f; in Fig. 11(b)].
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Let ', +) be the best matched patch among all the candidate
patches; that is

F(q/\,t/) = I‘(q/\7t1)1éi£(q7t/)r(d(r(pA’t)7F(qA’t)))7 Vq € P, (12)
where (qu y C ®, represents a square region of size r X r

centered at g and d(I'(pr 1), I'(gn +)) is a distance function that
measures the difference between I'(,» 4y and I'4n 1) by

d(r(p/\,t)7 F(q/\ ,t)) = ;S’;S’l)(:[‘(p/\,f)7 F(q/\,t))

* max (1, Z (q,t’)e(F(q/\,t)n‘I’E)c>

+ fd(t, 1) (13)
1 sl
n— m./ ift 7ét
f(t.t) { el (14)

In (13), SSD denotes the sum of the squared distance. The dis-
tance function defined in the equation considers three factors:
the SSD, the number of undamaged pixels in the patch tem-
plate, and the temporal distance fd(t,t’). The constant, ¢ = 1,
indicates the weight of an undamaged pixel and fd(¢,t’) in the
distance function ensures that the most similar patch within the
distance range will be selected.

After selecting the target patch, we copy the motion vector of
W,a to Yo in order to maintain temporal continuity. Fig. 11
illustrates the steps of the motion completion procedure. As
shown in Fig. 11(a), the procedure starts with an inter-frame
search to find the most similar patch in the neighboring frames.
After an undamaged patch I, ;) is identified, the missing mo-
tion information in p is updated with a motion vector (z, ;) to
reference the targeted patch in frame f;. Fig. 11(b) shows that
if a reference patch cannot be found in the neighboring frames,
the process performs an intra-frame search to locate the most
similar patch in the current frame. After the best-matched un-
damaged patch I'(, ;) is identified, the missing motion informa-
tion in p is updated with a motion vector (x;,y;) to reference
the targeted patch in the current frame.

B. Frame Completion

After recovering the missing motion information from the
motion maps, we implement the frame completion process to
repair the missing areas and regulate the luminance of the video
frames. The process involves two steps: patch pasting and frame
adjustment. The former reduces the number of undesirable ar-
tifacts caused by unstable illumination and mismatched edges
conditions and the latter uses a panoramic mosaic of the video
to regulate the luminance of each frame and reduce the intensity
of flicker in the video.

Fig. 12 illustrates the patch pasting process. After the missing
motions in motion maps are completed, we stack the patches in
the temporal domain according to the computed motion map
and construct the space-time volume. A video can be viewed as
a composition of several space-time volumes. Then, the patch
pasting process will select similar undamaged patches from the
same space-time volume and paste them into damaged areas.
Fig. 13 shows an example that we apply the patch pasting
process on an aged film. Fig. 13(a) shows a space-time volume
produced by stacking all the patches in the temporal domain
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Fig. 11. Tllustration of the proposed motion completion algorithm. (a) Inter-frame search: the search process tries to find the best-matched patch in the neighboring
frames f;. (b) Intra-frame search: if there is no undamaged patch in the neighboring frames, the procedure performs an intra-frame search to find the best-matched
patch in the current image. After the best-matched undamaged patch is identified, the corresponding motion map is updated with a motion vector (z, y) to the

targeted patch.

based on the computed motion maps. Fig. 13(b) shows the result
that we apply the Poisson image editing technique proposed
by Perez et al. [25] to seamlessly blend the reference patch
into the damaged areas. The technique assumes that the source
and target images have similar textures and colors across the
boundary. Although this assumption could be a limitation for
some applications, our case suffers no such limitation because
the referenced patch is selected from the same space-time
volume. Some examples of our patch pasting process are shown
in Fig. 14. Fig. 14(a) and (c) shows the artifact derived by
pasting a path directly onto a missing area; while Fig. 14(b) and
(d) is the results of using the proposed patch pasting method.
After repairing all the missing areas, we use the multi-resolu-
tion spline technique proposed by Burt and Adelson [4] to com-
posite all the repaired frames and generate a panoramic mosaic.
The technique is widely used to combine two or more images in
order to generate a large image mosaic. The objective is to blend
low frequencies over a large spatial range and high frequencies
over a small spatial range. During the blending process, the spa-
tial information in the images, i.e., the luminance and color, is
regulated so that the images match. We employ this technique in

the frame adjustment process to stabilize the luminance of con-
secutive frames and then use a simple 3-band scheme to com-
posite all the video frames and generate a panoramic mosaic P:

r=J B

t=1toN

15)

where N is the number of frames in a video, f] is a repaired
frame at time ¢, and B is the frame blending function. Fig. 15
present a composition result, which shows that the luminance of
video frames can be regulated successfully during the blending
process.

During the frame blending process, we also record the loca-
tion of each frame in the mosaic P. Hence, P can be decom-
posed into several pseudo frames p; according to the relative
locations of the frames in P. A pseudo frame p; is defined as
follows:

Vt € N,p: = P(fs,, fr, fw, fu) (16)

where N is the number of frames; (f;, , f,) is the relative loca-
tion of frame F} in P, and fyy and fg are the width and height of
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Fig. 12. Tllustration of the proposed patch pasting process. After we building motion maps of each frame and complete missing motions [as shown in (a)], patches
p: Piin each frame f;; which have similar content can be tracked [as shown in (b)] and stacked in the temporal domain according to computed motion information
[as shown in (c)]. Finally, undamaged patches in whole space-time volume can be used to inpaint the damaged areas [as shown in (d)].

(@) (b)

Video sequence Space-time Space-time
volume volume

(@ (b)

Fig. 15. Example of frame composition. (a) Camera motion Shaky. (b) Pseudo
frame of P,.

Fig. 13. Proposed patch pasting process, which selects undamaged data from
the same space-time volume and pastes it onto the missing areas by applying a
Poisson equation.

2 0]
oo
(a) (b) (©) ()

Fig. 14. Differences between pasting a patch directly and using our patch . ) .
pasting method. (a) and (c) are the results of pasting a patch directly onto a  Of completed frames ftl . Fig. 16 shows an example of Intensity
missing area. (b) and (d) are the results derived by the proposed patch pasting regulation.

method.

(b)

Fig. 16. Example of intensity regulation. (a) Completed frames. (b) Results of
intensity regulation.

IV. EXPERIMENT RESULTS

frame F}, respectively. An example of p, is shown in Fig. 15(b). To evaluate the effectiveness of the proposed algorithm, we
Pseudo frames are used to regulate the global and local intensity  tested on different types of videos, including home videos, video
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Fig. 17. Old film with unstable luminance camera motion and several moving objects. (a) Original video frames. (b) Inpainting results derived by [24]. (c) In-
painting results derived by [30]. (d) Inpainting results derived by the proposed algorithm.

TABLE 1
DETAIL INFORMATION OF THE TEST VIDEOS

. Inpainting
Fig. Resolution nl::::;:r Dﬁ:l}:l;g:irl;l:)els Time
(per frame)
17 640 x 480 173 79003 2212.09 sec
18(a) and (b) 800 x 608 56 48538 1208.95 sec
18(c)and (d) 800 x 608 97 20797 478.34 sec
18(e) and (f) 800 x 608 100 36818 736.36 sec

games, and old films in the experiments. The proposed video
inpainting algorithm was implemented on a P-4 2.6-GHz ma-
chine. The detail information of the test videos used in the in-
painting process are summarized in Table I. All experiment re-
sults related to this work are available at http://research.twnct.
net/VInpainting/.

In the following experiments, we compare the results derived
by our algorithm with those of the methods in [24] and [30]
for old films preserved by the National Archives Administration
R.O.C. In Fig. 17, we first try to remove several large objects
contained in an aged film to evaluate the efficacy of the pro-
posed method when the video is severely damaged. This video
also contains unstable luminance and camera motion. As previ-
ously mentioned, when large missing areas are present, existing
inpainting methods usually fail to find sufficient reference in-
formation to repair the missing area. As a result, many visual
defects can be seen in the videos produced by the two methods
[24], [30]. In comparison, our proposed algorithm first applies
motion completion to recover the missing motion, then conducts
frame completion to stabilize the luminance while inpainting the
missing area. Our result in Fig. 17(d) shows that the proposed

algorithm is capable of repairing large missing areas and also
achieves good inpainting results with stabilized luminance.
Fig. 18 shows the results of using the proposed algorithm to
restore three old films. The three video sequences, which were
preserved by the Chinese Taipei Film Archive, contain several
types of defects caused by poor storage conditions. Since we
have not yet developed a method for automatically detecting
these defects, for this experiment, we manually labeled these
defects. The results in Fig. 18 show that our proposed inpainting
algorithm can repair the severely damaged old films effectively.

V. DISCUSSION AND CONCLUSION

We have proposed a novel video inpainting algorithm for digi-
tized aged films. The algorithm consists of two procedures: mo-
tion completion and frame completion. In addition, a prepro-
cessing procedure constructs a motion map to record the motion
information in undamaged source areas. The motion completion
procedure restores the motion in each missing area based on the
completion order determined by the priority computation step.
The completed motion map is used to improve the temporal con-
tinuity and find the best-matched result for inpainting damaged
areas. The frame completion procedure seamlessly repairs all
the damaged areas and reduces the intensity of video flicker.
During the frame completion phase, we use a panoramic mo-
saic to help stabilize the global and local luminance and thereby
obtain better restored videos.

We conducted experiments on several damaged aged films
to demonstrate the efficacy of our proposed algorithm. Our re-
sults show that our proposed algorithm is better than previous
algorithms in dealing with videos containing unstable motion
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Fig. 18. Three old films with severely damaged contents and their corresponding repaired results. (a), (c), and (e) are the damaged video sequences, and

(b), (d), and (f) are the respective results derived by the proposed algorithm.

and luminance, and it can produce visually pleasing results.
In addition, the proposed inpainting process recovers missing
parts of videos by using original undamaged information from
all video frames whenever possible. Our approach reduces the
block reuse rate and the restored videos are close to original
state.

From a technical perspective, our contribution is twofold.

* We have shown that the motion map construction algorithm
and the proposed motion completion procedure are critical
when inpainting videos with large damaged areas.

e The frame completion procedure, which implements
patch pasting and frame adjustment steps, yields visu-
ally pleasing results with seamless boundaries and stable
luminance.

Our proposed algorithm has some limitations. First, our video
inpainting method relies heavily on the results of motion com-
pletion and frame completion. If the damaged content covers
a large area in every frame, visual defects may appear in the

resultant video, as most of the useful reference data can only
be obtained from neighboring areas nearby. Second, since the
algorithm uses fixed-sized blocks in the local motion estima-
tion and frame completion procedure, it may not be able to
handle videos with large amounts of zoom-in/out camera mo-
tion. Third, shadows of undesired objects cannot be removed
completely because they cannot be extracted precisely in our
target segmentation procedure. In future work, we will try to
improve results by combining some scale-invariant features and
employing different block sizes during motion estimation and
frame completion.
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