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With the dramatic growth of fandom population, a considerable amount of research efforts have been
devoted to baseball video processing. However, little work focuses on the detailed follow-ups of ball hit-
ting events. This paper proposes a HMM-based ball hitting event exploration system for broadcast base-
ball video. Utilizing the strictly-defined layout of the baseball field, the proposed system first detects the
game-specific spatial patterns in the field, such as the field lines, the bases, the pitch mound, etc. Then,
the play region—the currently camera-focused region of the baseball field is identified for frame type
classification. Since the temporal patterns of presenting the game progress follow a prototypical order,
we consider the classified frame types as observation symbols and recognize ball hitting events using
HMM. Experiments conducted on broadcast baseball video show encouraging results in frame type clas-
sification and ball hitting event recognition. Three practical applications, including highlight clip extrac-
tion by user-designated query, storyboard construction, and similar event retrieval, are introduced to
address the applicability of our system.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction to reconstruct the 3D trajectory of the pitched ball with multiple
The explosively increasing amount of digital videos motivates
researchers to strive for various aspects of video analysis. In recent
years, the amount of multimedia information has grown rapidly.
This trend leads to the development of efficient sports video anal-
ysis in soccer [1–3], tennis [4–6], basketball [7–9], volleyball [10],
baseball [11–24], etc. Automatic sports video analysis has attracted
considerable attention, because sport video appeals to large audi-
ences. The possible applications of sports video analysis have been
found almost in all sports, among which baseball is a quite popular
one. It is time-consuming to watch the whole game video in
sequential way, while highlights abstract the game for quick
browsing. In addition, highlights can be contributive to tactic infer-
ence for coaches, players, and even professional sports fans. For
these motivations, we aim at developing a highlight semantics
exploring system for the baseball games.

Baseball video is characterized by a strictly-defined structure
containing a series of plays and each play starts with a pitch. Hence,
PC (pitcher–catcher) shot detection and semantic shot classification
play an important role in baseball highlight detection [11,12]. Fur-
thermore, various kinds of pitch analyses have been addressed to
derive the correlation between the ball trajectory and the rotation
by tracking the translation and rotation of a pitched ball [13], to
extract the ball trajectory based on physical characteristics [14],
ll rights reserved.

en).
cameras [15], and even to recognize the pitching style based on
the pitcher’s posture [16].

Due to broadcast requirement, there has been an essential de-
mand for highlight extraction which aims at abstracting a long
game into a compact summary to provide the audience a quick
browsing of the game. Moreover, highlight extraction/classification
also contributes to many applications such as efficient event index-
ing and retrieval, providing the reference for tactics inference to
the coach and players, user-designated highlight clip extraction,
etc. In the past few years, remarkable research has been devoted
to baseball video content analysis. Hung and Hsieh [17] categorize
shots into pitcher-catcher, infield, outfield, and non-field shots.
Combining the detected scoreboard information with the obtained
shot types as mid-level cues, Hung et al. use Bayesian Belief Net-
work (BBN) structure for highlight classification. Chu and Wu
[18] consider most of the possible conditions in a baseball game
based on the game-specific rules and extract the scoreboard infor-
mation for event detection. Though both Hung and Hsieh [17] and
Chu and Wu [18] achieve high accuracy in highlight classification
due to the additional information from the scoreboard, their rough
shot classification approaches are inadequate to analyze the ball
movement and play region transitions for ball hitting events. Gong
et al. [19] classify baseball highlights by integrating image, audio,
and closed caption cues based on MEM (Maximum Entropy Mod-
el). Fleischman et al. [20] use complex temporal features, such as
field type, speech, camera motion start time and end time. Tempo-
ral data mining techniques are exploited to discover a codebook of
frequent temporal patterns for baseball highlight classification.
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Because the positions of cameras are fixed in a game and the
ways of showing game progressing are similar in different TV
channels, each category of semantic baseball event usually has
similar scene transitions. For example, a typical ‘‘fly out’’ event
can be composed of a PC scene followed by an outfield scene and
then an in-grass scene. Hence, the statistical model of HMM is
broadly used for highlight detection and classification. Lien et al.
[21] extract significant color, object number, motion vector, and
player location as features to classify eight semantic scenes:
close-up, base, running, pitching, player, infield, outfield, and other.
Based on the classified scenes serving as the observation symbol
sequence, a 4-state ergodic HMM is applied to detect four baseball
events: base hit, ground out, air out, and strike out. Though, good
performance is achieved in Lien et al. [21], only four events are de-
tected. It is not so realistic to provide only four events to general
users, not to mention the professional players or the coach. Cheng
and Hsu [22] fuse visual motion information with audio features,
including zero crossing rate, pitch period and Mel-frequency ceps-
tral coefficients (MFCC), to extract baseball highlight based on hid-
den Markov model (HMM). Mochizuki et al. [23] provide a baseball
indexing method based on patternizing baseball scenes using a set
of rectangles with image features and a motion vector. Chang et al.
[24] assume that most highlights in baseball games consist of cer-
tain shot types and these shots have similar transitions in time.
Each highlight is described by a HMM and each hidden state is rep-
resented by its predefined shot type. Some features are used as
observations to train the HMM model for highlight recognition.
In Mochizuki et al. [23] and Chang et al. [24], low accuracy and
few highlight types are the main disadvantages because the infor-
mation is too little to detect various highlights and to get high
accuracy.

Even if the previous works claim good results on highlight
classification, they do not analyze a variety of ball hitting event
types and have no idea of the detailed batting process and ball
movement within a shot, such as: ‘‘The ball batted into the left
infield is picked up by an infielder and then thrown to the first
baseman.’’ In nature, the first/second/third basemen, the short-
stop as well as other players are important objects in terms of
event understanding. However, when the camera focuses on a
player, it is hard to recognize his fielding position. Hence, in this
paper we explore field shots (the shots follow the batted ball in
the field) and utilize the game-specific spatial patterns, e.g., the
bases and the pitch mound, to identify the regions which the ball
has passed through. With great success in speech recognition,
HMMs are effective models for time-varying patterns and have
been used widely in scene modeling for sports video [21–24].
Thus, we propose an HMM-based mechanism to detect and clas-
sify up to 11 ball hitting events: (1) single, (2) double, (3) pop up,
(4) fly out, (5) ground out, (6) two base hit, (7) foul ball, (8) foul
out, (9) double play, (10) home run, and (11) home base out. In
addition to providing the detailed description of each play, a
baseball exploration system is also developed, so users can effi-
ciently retrieve the batting clips desired. With the proposed
framework, highlight extraction and event indexing in baseball
video will be more powerful and practical, since comprehensive,
detailed, and explicit information about the game can be pre-
sented to users.

The rest of the paper is organized as follows. Section 2 describes
the system overview of the proposed ball hitting event recognition.
The processes of visual feature extraction and frame type classifi-
cation are explained in Sections 3 and 4, respectively. Section 5
elaborates how to recognize ball hitting events using HMM. Exper-
imental results and discussion are presented in Section 6. Section 7
introduces extensive applications based on the proposed system.
Finally, Section 8 concludes this paper and describes the future
work.
2. Overview of the proposed HMM-based ball hitting event
exploration system

With the foregoing motivation and limitations of the existing
works, we develop a HMM-based ball hitting event exploration
system for broadcast baseball video. As illustrated in Fig. 1, the sys-
tem contains three main components including visual feature
extraction, frame type classification, and HMM-based ball hitting
event recognition. In a baseball game, each play starts with a PC
(pitcher–catcher) shot and ends up with specific shots. To trim
out the uninteresting segments, e.g., commercials, the pre-process-
ing procedures of shot boundary detection, shot classification, and
PC shot detection [11,12,21,25] are required. The feature extraction
module extracts significant colors—white, green (grass), and brown
(soil), and then recognize the spatial patterns in the baseball field.
Fig. 2a shows the full view of a prototypical baseball field, and
Fig. 2b shows the spatial patterns to be recognized. Based on the
extracted visual features, the system performs frame classification
rather than shot classification as in the previous works. The infor-
mation of the ball movement and play region transitions within a
single shot greatly assist the system in comprehending the ball hit-
ting events. Taking the obtained frame types as observation sym-
bols, a HMM-based approach is designed for ball hitting event
recognition. Finally, extended applications such as highlight clip
extraction by user-designated query, storyboard construction,
and similar event retrieval can be implemented based on the pro-
posed scheme.

Compared with the existing works on baseball video analysis,
the main contributions of our proposed HMM-based ball hitting
event exploration system are summarized as follows. Most of the
existing works perform shot classification, and some works are
capable of discriminating between infields and outfields at most.
However, more explicit information within a field shot should be
extracted to comprehend the detailed process of a ball hitting
event. With the baseball domain knowledge, we recognize the
game-specific spatial patterns and the field layout so as to explore
the transition of the play region—the currently camera-focused re-
gion of the baseball field. The explicit information of the play re-
gion transition significantly facilitates extensive applications.
3. Visual feature extraction

In our proposed system, significant colors and game-specific
spatial patterns are extracted as visual features.
3.1. Significant colors

As depicted in Fig. 2, the baseball field is characterized by a
well-defined layout of specific colors. Moreover, important lines
and the bases are in white color to provide visual assistance for
players, umpires, and audience. Therefore, color is an effective vi-
sual feature in baseball video analysis, especially the significant
colors: white, green (grass), and brown (soil). The in-frame color
of each baseball game might vary due to different viewing angles
and lighting conditions. We propose to define dominant colors by
histogram. To obtain the color distribution of grass and soil in video
frames, several baseball clips from different video sources are input
to compute the color histograms in RGB and HSI (Hue-Saturation-
Intensity) color spaces. Fig. 3 shows the color histograms of base-
ball clips from different sources. The hue value in HSI color space
is adequate to define the dominant colors for two reasons: (1)
we have observed that the hue value is relatively stable within a
single game despite the lighting conditions, and (2) the hue value
has good discrimination since the grass and soil colors form salient
peaks in the hue histogram.



Fig. 1. Flowchart of the proposed HMM-based ball hitting event exploration system.

Fig. 2. Prototypical baseball field: (a) full view of a real baseball field; (b) illustration of spatial patterns.
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In a field shot, the initial frames mainly contain the baseball
field, while the later frames, which might zoom in on a player or
move to the audience, contain less proportion of the field. There-
fore, it is reasonable to compute the color histogram from the
initial frames of a field shot and define the grass and soil colors.
Fig. 4 demonstrates the spatial distribution of significant colors.
Fig. 4a shows a field frame. In the hue histogram of Fig. 4b,
significant colors can be defined: the peak of small hue value
representing the soil color and the peak of large hue value rep-
resenting the grass color. The regions segmented by significant
colors are shown in Fig. 4c, where grass regions are shown in
green, soil regions in brown, and others in black. The pixels of
high intensity values are detected as white pixels, as presented
in Fig. 4d.
3.2. Spatial patterns

With the extracted significant colors (grass, soil, and white), we
are ready to analyze the field shots and detect the spatial patterns:
left line LL, right line RL, pitch mound PM, home base HB, first base
1B, second base 2B, third base 3B, back auditorium BA, left audito-
rium LA, and right auditorium RA. Please refer to Fig. 2b. Figs. 5 and
6 exemplify the detection of spatial patterns. The detailed detec-
tion processes are elaborated as follows. For clarity, the names of
the spatial patterns are abbreviated in italic type.

3.2.1. Field lines: left line LL and right line RL
For visual clarity, the field lines and important markers are in

white color, as specified in the official game rules. However, there



Fig. 3. Color space of RGB and HSI of baseball clips from different sources. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Spatial distribution of significant colors: (a) field frame; (b) hue histogram; (c) segmented regions: grass regions shown in green, soil regions in brown, and others in
black; (d) detected white pixels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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may be other white objects in frames such as advertisement logos,
the uniforms of the players, and the clothes of the audience. Hence,
additional criteria and constrains are applied to white line pixel
detection [26,27]. As illustrated in Fig. 7, each square represents
one pixel and the central one drawn in gray is a candidate pixel.
Assuming that white lines are typically no wider than sd pixels
(sd = 4 in our system), we check the brightness of the four pixels,
marked ‘d’ and ‘s’, at a distance of sw pixels away from the candi-
date pixel on the four directions. The central candidate pixel is
identified as a white line pixel only if both pixels marked ‘d’ or
both pixels marked ‘s’ are with lower brightness than the candi-
date pixel. This process prevents most of the pixels in white
regions or white uniforms being detected as white line pixels.

Furthermore, we apply the line-structure constraint [26] to
exclude the white pixels in finely textured regions. The structure
matrix S [28] computed over a small window of size 2b + 1 (we
use b = 2) around each candidate pixel (px,py), as defined in Eq.
(1), is used to recognize texture regions, where I(x,y) represents
the intensity component in HSI color space and rI(x,y) is the
image gradient.



Fig. 5. Detection of spatial patterns: (a) back auditorium BA; (b) left line LL and left auditorium LA; (c) right line RL and right auditorium RA.

Fig. 6. Examples of spatial pattern detection.

Fig. 7. Illustration of part of an image containing a white line.
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S ¼
PPxþb

x¼Px�b

PPyþb

y¼Py�b
rIðx; yÞ � ðrIðx; yÞÞT ð1Þ

Depending on the two eigenvalues of matrix S, called k1 and k2

(k1 P k2), the texture can be classified into textured (k1, k2 are large),
linear (k1� k2), and flat (k1, k2 are small). On the straight field lines,
the linear case will apply to retain the white pixels only if k1 > ak2

(a = 4 in our system). Fig. 8 demonstrates the sample result of white
line pixel detection. The original frames are presented in Fig. 8a.
Fig. 8b shows the high intensity pixels before white line pixel detec-
tion. With the line-structure constraint, Fig. 8c shows that white
line pixel candidates are retained only if the pixel neighbor shows
a linear structure and the number of false detections is reduced.

With the white line pixels detected, a growing algorithm, which
produces a vector representation of the line segments [29], is ap-
plied to the extracted white pixels. Field lines LL and RL are then
obtained by joining together the line segments which are close
and collinear, as shown in Figs. 5b, c and 6.
3.2.2. Left auditorium LA, right auditorium RA, and back auditorium
BA

The left, right, and top areas which contain high texture and no
dominant colors are considered as the spatial patterns LA, RA, and



Fig. 8. Sample result of white line pixel detection: (a) original frame; (b) high intensity pixels; (c) white line pixel candidates with the line-structure constraint.

Fig. 9. Sixteen typical frame types.
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BA, respectively, as exemplified in Fig. 6. In Fig. 5a, the black area
above the white horizontal line is detected as BA. In Fig. 5b and
c, left and right black areas outside the vertical lines are the de-
tected LA and RA, respectively.
3.2.3. Pitch mound PM
An ellipse soil region surrounded by a grass region is recognized

as PM as shown in Fig. 6a and c. Some constraints are used reduce
false detections: (1) PM cannot be on LL or RL; (2) PM should be on



Table 1
Rules of frame type classification.

IR: {P(BA) 6 s1%, E(PM), L(PM) = left} ||
{P(BA) 6 s1%, �E(PM), E(RL), �E(1B)} ||
{P(BA) 6 s1%, �E(PM), E(RL), E(1B), P(soil) 6 s2%}

IC: {P(BA) 6 s1%, E(PM), L(PM) = center} ||
{P(BA) 6 s1%, �E(PM), �E(RL), �E(LL), E(2B), P(soil) 6 s2%}

IL: {P(BA) 6 s1%, E(PM), L(PM) = right} ||
{P(BA) 6 s1%, �E(PM), E(LL), �E(3B)} ||
{P(BA) 6 s1%, �E(PM), E(LL), E(3B), P(soil) 6 s2%}

B1: {P(BA) 6 s1%, �E(PM), E(RL), E(1B), P(soil) > s2%}

B2: {P(BA) 6 s1%, �E(PM), �E(RL), �E(LL), E(2B), P(soil) > s2%}

B3: {P(BA) 6 s1%, �E(PM), E(LL), E(3B), P(soil) > s2%}

OR: {s1% < P(BA) 6 s3%, E(PM), L(PM) = left} ||
{s1% < P(BA) 6 s3%, �E(PM), E(2B), L(2B) = left} ||
{s1% < P(BA) 6 s3%, �E(PM), �E(2B), E(RL), �E(LL)}

OC: {s1% < P(BA) 6 s3%, E(PM), L(PM) = center} ||
{s1% < P(BA) 6 s3%, �E(PM), E(2B), L(2B) = center}

OL: {s1% < P(BA) 6 s3%, E(PM), L(PM) = right} ||
{s1% < P(BA) 6 s3%, �E(PM), E(2B), L(2B) = right} ||
{s1% < P(BA) 6 s3%, �E(PM), �E(2B), E(LL), �E(RL)}
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the left/right side of RL/LL, if detected; (3) there should not be large
difference in the number of soil pixels between the top half region
and the bottom half region of the detected soil ellipse; (4) there
should not be large difference in the number of soil pixels between
the left half region and the right half region of the detected soil
ellipse.

3.2.4. Home base HB
HB is located at the intersection of LL and RL if both field lines

are detected, as shown in Fig. 6a.

3.2.5. First base 1B and third base 3B
The white square region located on RL, if detected, in soil region

is identified as 1B, as shown in Fig. 6a. Similarly, the white square
region located on LL, if detected, in soil region is identified as 3B, as
shown in Fig. 6b.

3.2.6. Second base 2B
In a soil region, a white square region on neither field line is

identified as 2B, as shown in Fig. 6a and c.
PS: {P(BA) 6 s1%, �E(PM), �E(2B), �E(RL), �E(LL), P(soil) > s2%}

PG: {s1% < P(BA) 6 s3%, �E(PM), �E(2B), �E(RL), �E(LL)} ||
{P(grass) > s4%, �E(PM), �E(2B), �E(RL), �E(LL)}

AD: {P(BA) > s3%}

AR: {s1% < P(RA) 6 s5%}

AL: {s1% < P(LA) 6 s5%}

TB: {s1% < P(BA) 6 s5%, P(soil) > s2%, E(RL), E(1B)} ||
{s1% < P(BA) 6 s5%, P(soil) > s2%, E(LL), E(3B)}

CU: {P(BA) 6 s1%, �E(PM), �E(2B), �E(RL), �E(LL), P(grass) + P(soil) < s5%}

Unknown: others
4. Frame type classification and annotation string generation

In order to comprehend the detailed process of the ball hitting
event, we have to recognize the play region, the currently cam-
era-focused region in the baseball field, for frame type classifica-
tion. Based on the detected spatial patterns, we classify each field
frame into one of the 16 types: IL (infield left), IC (infield center),
IR (infield right), B1 (first base), B2 (second base), B3 (third base),
OL (outfield left), OC (outfield center), OR (outfield right), PS
(player in soil), PG (player in grass), AD (audience), AL (audience
left), AR (audience right), TB (touch base), and CU (close-up), as
shown in Fig. 9. Note that B1, B2, and B3 here represent ‘‘frame
types’’ while 1B, 2B, and 3B in Section 3.2 represent ‘‘spatial
patterns.’’

With the baseball domain knowledge, we define explicit rules
for frame type classification, as listed in Table 1. The function
P(A) returns the percentage of the area A in a frame, and E(S) re-
turns whether the spatial pattern S exists or not. In addition, we
tri-partition a frame into left, center, and right parts. L(S) returns
which part the spatial pattern S is located in. The thresholds
s1 � s5 are determined by training. We ask an experienced baseball
expert to watch 122 training clips and label the frame types
through a simple user interface. The thresholds s1 � s5 are deter-
mined by seeking for the values which best classify the frame types
in the training data.

Each field frame is classified into one of the 16 types by apply-
ing the rules on the spatial patterns. Take IL (infield left) as an
example. A field frame would be identified as IR under the follow-
ing conditions:

(1) The percentage of BA area in a frame is no more than s1%, PM
exists and is located at the left one-third of a frame).

(2) The percentage of BA area in a frame is no more than s1%, PM
does not exist, RL exists, and 1B does not exist.

(3) The percentage of BA area in a frame is no more than s1%, PM
does not exist, RL exists, 1B exists, and the percentage of soil
area is no more than s2%.

The scheme of frame type classification within a field shot is
illustrated in Fig. 10. The spatial patterns are first detected by the
distribution of significant color pixels in field frames. According
to the rules on the spatial patterns, each field frame is then classi-
fied into one of the 16 typical play region types. To filter out instan-
taneous misclassifications of frame types, a fixed length temporal
window and majority voting are applied. Thus, an annotation string
which describes the transition of play regions contained in a field
shot can be generated. The content of the sample field shot in
Fig. 10 says that the ball is first batted into the left infield. Then,
the shortstop picks up the ball and throws it to the first baseman.
The batting process can be appropriately abstracted by the output
annotation string: IL (infield left) ? PS (player in soil) ? IR (infield
right) ? B1 (first base).
5. HMM-based ball hitting event recognition

This main objective of this paper is to develop a ball hitting
event exploration system to trace the play region transition and
recognize the ball hitting event. Regarding the classified frame
types as the observation symbols, we propose a HMM-based ap-
proach to recognize various ball hitting events, including: single,
double, pop up, fly out, ground out, two-base out, foul ball, foul
out, double play, home run, and home base out.

Generally, HMM is expressed by a 3-tuple parameters
k = {A,B,p}. The segmental K-means algorithm is used to create ini-
tial HMM parameters and the standard Baum–Welch algorithm is
used to optimize the model parameters [30]. The conventional
implementation issues in HMM include: (1) number of states, (2)
initialization, and (3) distribution of observation at each state.
The essential HMM elements of our proposed system are summa-
rized as follows.

State S: The state numbers are selected empirically depending
on different baseball events.

Observation O: The classified frame types are taken as the obser-
vation symbols.

Observation distribution matrix B: We use K-means algorithm
and choose the Gaussian distribution at each state [31].



Fig. 10. Illustration of frame type classification and annotation string generation.
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Transition probability matrix A: The state transition probability
can be learned by the segmental K-means algorithm.

Initial state probability matrix p: The probability of occurrence of
the first state is initialized by segmental K-means algorithm after
determining the number of states.

The idea behind using the HMMs is to construct a model for
each ball hitting event that we want to recognize. HMMs give a
state based representation for each event. Based on the classified
frame types serving as the observation symbol sequence O, the
parameters {A,B,p} for HMM are estimated using the Baum–Welch
algorithm [30]. Given the observation symbol sequence O =
[o1,o2, . . . ,ow], the observation probability P(O|k) for each ball hit-
ting event is computed via the forward–backward procedure
[30]. A forward variable at(i) is defined to compute the probability
of partial observing sequence of state i at time t for the model k de-
noted as P(o1o2. . .ow, qw = i|k). P(O|k) is computed as follows.

ðaÞ Initialization: atðiÞ ¼ pibiðo1Þ ð2Þ

ðbÞ Induction: atþ1 ¼
PN
i¼1

awðiÞaij

� �
bjðow þ 1Þ;1 6 w 6W � 1 ð3Þ

ðcÞ Termination: PðOjkÞ ¼
PN
i¼1

awðiÞ ð4Þ

Finally, we can then recognize the ball hitting event via finding
the model with the highest probability.

6. Experimental results and discussion

To demonstrate the effectiveness of the proposed frame type
classification and ball hitting event recognition approaches, we
conduct the experiments on the video data of MLB (Major League
Baseball) and JPB (Japanese Professional Baseball) games. In total,
we have 253 video clips recorded from live broadcast television
programs and compressed in MPEG-2 video standard with frame
resolution of 352 � 240 (29.97 fps). For the evaluation of our
proposed methods, 122 clips are randomly selected for training
and the other 131 clips are for testing.

6.1. Frame type classification

In order to comprehend the ball hitting event content and the
region transition, we recognize the play region of each frame based
on the detected spatial patterns. Each frame is classified into one of
the 16 frame types: IL (infield left), IC (infield center), IR (infield
right), B1 (first base), B2 (second base), B3 (third base), OL (outfield
left), OC (outfield center), OR (outfield right), PS (player in soil), PG
(player in grass), AD (audience), AL (audience left), AR (audience
right), TB (touch base), and CU (close-up). Please refer to Fig. 9
for the 16 frame types. The experimental result of frame type clas-
sification is presented in the Table 2, where the column ‘‘total’’
indicates the total times of the frame type (designated in the first
column) appearing. There are eight unknowns, which are regarded
as misses in frame type classification. Note that a shot does not
comprise only one frame type. The ground-truth frame types con-
tained in each shot are manually identified. The ‘‘correct’’ and
‘‘false alarm’’ represent the number of correct detections and false
alarms. The precision and recall are defined by Eqs. (5) and (6).

precision ¼ #correct
#correct þ#false alarm

ð5Þ

recall ¼ #correct
#correct þ#miss

; ð#correct þ#miss ¼ #totalÞ ð6Þ

As in Table 2, the obtained precision and recall rates are about
90%, except for the precision rates of B2 (second base) and AD
(audience), and the recall rates of B2 (second base), PS (player in
soil), and TB (touch base). By inspecting the experimental process,
we have some observations. The low precision and recall rates of
frame type B2 mainly result from the incorrect detection or false
alarm of the spatial pattern 2B. For example, the ball in the soil re-
gion may be detected as 2B, as shown in Fig. 11. Moreover, the



Table 2
Performance of frame type classification.

Frame type Total Correct False alarm Precision (%) Recall (%)

IL 66 60 5 92.3 90.9
IR 112 102 3 97.1 91.1
IC 92 84 4 95.5 91.3
OL 57 52 6 89.7 91.2
OR 81 78 6 92.9 96.3
OC 76 68 9 88.3 89.5
B1 323 306 6 98.1 94.7
B2 62 51 8 86.4 82.3
B3 43 42 5 89.4 97.7
PG 513 489 45 91.6 95.3
PS 381 328 35 90.4 86.1
AD 97 89 15 85.6 91.8
AR 84 84 4 95.5 100
AL 73 73 5 93.6 100
TB 84 68 5 93.2 81.0
CU 129 119 11 91.5 92.2

Overall 2273 2093 172 92.4 92.1

Table 3
Performance of ball hitting event recognition.

Event type Total Correct False
alarm

Precision
(%)

Recall
(%)

1. Single 25 20 4 83.3 80.0
2. Double 8 2 1 66.7 25.0
3. Pop up 7 7 2 77.8 100
4. Fly out 22 18 6 75.0 81.8
5. Foul out 4 2 0 100 50.0
6. Ground out 29 27 4 87.1 93.1
7. Two-base out 4 2 0 100 50.0
8. Foul ball 18 18 3 85.7 100
9. Double play 4 4 2 66.7 100
10. Home run 6 5 1 83.3 83.3
11. Home base out 4 3 0 100 75.0

Overall 131 108 23 82.4 82.4
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missed detection of the spatial pattern B2 will cause a 2B frame to
be classified into the frame type PS. We should set a search win-
dow for B2. However, it is difficult to decide the threshold of the
window size since the size of B2 varies in frames due to the camera
zooming. The proposed system may confuse TB (touch base) and
AD (audience) because a TB frame may contain high texture and
no dominant colors, just like an AD frame. These problems can
be improved by enhancing spatial pattern detection, refining the
rules of frame type classification, and even adding the procedure
of player detection. Overall, the proposed system achieves good
performance in frame type classification, which facilitates the sub-
sequent analyses.
6.2. Ball hitting event recognition

HMMs give a state-based representation for each ball hitting
event which we want to recognize. Based on the classified frame
types regarded as the observation symbols, we apply an HMM-
based approach to recognize 11 ball hitting events, including: sin-
gle, double, pop up, fly out, ground out, two-base out, foul ball, foul
out, double play, home run, and home base out. The performance
of ball hitting event recognition is presented in the Table 3, where
the terms ‘‘total,’’ ‘‘correct,’’ ‘‘false alarm,’’ ‘‘precision,’’ and ‘‘recall’’
have the same meanings as in Section 6.1.

As shown in Table 3, the propose system is able to accurately
recognize most of the ball hitting events, except for ‘‘double,’’ ‘‘foul
out,’’ ‘‘double play,’’ and ‘‘two-base out.’’ The low recall rates of
‘‘double’’ and ‘‘two-base out’’ are mainly caused by the incorrect
classification of frame type B2. In addition, a ‘‘double’’ event and
a ‘‘home run’’ event have almost the same transitions of play re-
gions in the case of the batter hitting the ball to the auditorium
wall. More ambiguous cases are discussed and illustrated in the
Fig. 11. Ambiguity in the spatia
following. In Fig. 12, a ‘‘ground out’’ event and a ‘‘double play’’
event have almost the same transitions of play regions when the
batter hits the ball toward the second base. Fig. 13 shows an exam-
ple of incorrect recognition between ‘‘foul ball’’ and ‘‘home run’’
due to the quite similar transitions of play regions. Fig. 14a–c
shows the three events: ‘‘ground out,’’ ‘‘foul ball,’’ and ‘‘single,’’
respectively. However, the patterns of play region transition and
camera motion are essentially the same in these cases. Actually,
the players perform almost the same actions in the three cases:
the batter runs to the first base, a fielder catches the ball and throw
it to the first baseman. The only difference is that the umpire
judges the ball hitting result as ‘‘ground out,’’ ‘‘foul ball,’’ or ‘‘sin-
gle’’ according to what he has seen, subjectively and empirically.

In summary, the reasons causing errors in ball hitting event rec-
ognition include: (1) similar shot transitions, (2) incorrect spatial
pattern detection, and (3) ambiguity in umpire judgment. These
problems could be overcome by detecting the ball and players or
involving additional cues such as the scoreboard information. So
far, we obtain encouraging experimental results and achieve an
acceptable performance of the average precision and recall rates
above 80%.

6.3. Comparison with existing algorithms of baseball event
classification

In the literature, many approaches of baseball event classification
have been developed. For performance comparison, two existing
works including Lien’s HMM-based event classification [21] and Fle-
ischman’s temporal feature induction (TFI)-based method [20] are
implemented and evaluated using the same data set, except for
the ‘‘foul ball’’ cases, which are not dealt with in Lien et al. [21]
and Fleischman et al. [20]. Besides, our testing data set contains four
‘‘foul out’’ cases. They are regarded as the ‘‘air out’’ class when eval-
uating [21], and for [22] three of them belong to the ‘‘infield out’’
class and the other one is ‘‘outfield out.’’ On the other hand, our test-
ing data set does not include the ‘‘strike out’’ and ‘‘walk’’ events,
l pattern 2B (second base).



Fig. 12. Similar play region transitions in (a) ground out and (b) double play.

Fig. 13. Comparison between (a) foul ball and (b) home run.

Fig. 14. Ambiguous cases of (a) ground out, (b) foul ball, and (c) single.
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because our proposed system mainly focuses on the events when the
ball is hit out by the batter (the so-called ‘‘ball hitting events’’).

With Lien’s work [21], the boundaries of 442 shots (out of the
total 464 shots) are corrected detected, and the accuracy rate
(#correct/#total) of shot boundary detection is 95.3%. Eight scene
types including pitching, base, running, other, close-up, player, in-
field, and outfield are classified using the features of global motion,
color distribution, and object information. As presented in Table 4,
the experimental results show that all the pitching scenes can be
correctly detected (recall rate = 100%) with a precision rate of



Table 4
Scene classification results of Lien et al. [21].

Scene type Total Correct False alarm Precision (%) Recall (%)

1. Pitching 113 113 12 90.4 100
2. Base 19 13 5 72.2 68.4
3. Running 44 38 17 69.1 86.4
4. Other 42 33 24 57.9 78.6
5. Close-up 101 71 4 94.6 70.3
6. Player 17 15 3 83.3 88.2
7. Infield 69 64 0 100 92.8
8. Outfield 59 47 5 90.4 79.7

Overall 464 394 70 84.9 84.9

Table 5
Performance of HMM-based event classification of Lien et al. [21].

Event type Total Correct False alarm Precision (%) Recall (%)

1. Base hit 41 27 8 77.1 65.9
2. Ground out 37 37 16 69.8 100
3. Air out 35 20 5 80.0 57.1
4. Strike out 0 – – – –

Overall 113 84 29 74.3 74.3

Table 6
Performance of TFI-based event classification of Fleischman et al. [20].

Event type Total Correct False alarm Precision (%) Recall (%)

1. Home run 6 3 3 50.0 50.0
2. Outfield hit 30 18 18 50.0 60.0
3. Outfield out 25 12 11 52.2 48.0
4. Infield hit 5 1 0 100 20.0
5. Infield out 47 38 9 80.9 80.9
6. Strike out 0 – – – –
7. Walk 0 – – – –

Overall 113 72 41 63.7 63.7
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90.4%, and the overall precision and recall rates of scene classifica-
tion are about 85%. Despite the satisfying results of scene classifi-
cation, the average precision and recall rates of baseball event
classification for [21] are about 74%, as shown in Table 5. The crit-
ical factor causing errors in the event classification is that only one
key-frame extracted for each video shot is insufficient. A field shot
following the ball batted out may contain more than one scene.
The scene transitions within a shot bring significant information,
but if only one key-frame is extracted for the shot, much informa-
tion may be neglected. This is also why our proposed system per-
forms within-shot frame type classification.

In Fleischman’s temporal feature induction (TFI)-based method
[20], temporal patterns are mined from the low-level features of
scene types (pitch/field/other), camera motions (pan/tilt /zoom),
and sound classes (speech/cheer/music) for baseball event classifi-
cation. The maximum depth of the temporal pattern mined is set to
five, which is verified by Fleischman et al. [20] to result in a peak
performance. The results of the TFI-based baseball even classifica-
tion of Fleischman et al. [20] are presented in Table 6, wherein the
average precision and recall rates are about 64%. Compared with
our proposed system, Fleischman’s work adds audio features and
exams the temporal relations among features. However, only three
scene types (pitch/field/other) used in Fleischman et al. [20] seem
unable to bring sufficient information to classify various baseball
events effectively. Overall speaking, our proposed system has
the advantage of extracting the information of the ball movement
and scene transitions within a single shot, which significantly
assists in classifying various ball hitting events. The experimental
results and comparison indicate that our proposed method
outperforms Lien’s HMM-based event classification [21] and Fle-
ischman’s temporal feature induction (TFI)-based method [20].
7. Applications

7.1. Highlight clip extraction by user-designated query

We have implemented a preliminary prototype of the user
interface of the proposed baseball exploration system, as shown
in Fig. 15. The video is displayed in area A and the visual presenta-
tion of the video analysis is provided in B. Area C gives the informa-
tion about the detected spatial patterns. Furthermore, users are
allowed to designate play region types in D for exploration. The
highlight clips containing the user-designated play region types
are retrieved and listed in E with their respective annotation
strings.
7.2. Storyboard production

To quickly browse numerous baseball video clips, a storyboard
which provides a concise video content representation based on
the video content would be really appreciated. Fig. 16 shows some
storyboard examples of baseball games. A storyboard allows the
users to have an idea of the video content without having to watch
the video entirely. Recently, storyboard production has been the
goal of the so-called video summarization techniques, which
compute the difference between frames and/or the importance of
each frame based on visual features for extracting the relevant
frames. In this section, we present an approach to produce compact
and complete storyboards with high expressiveness and informa-
tion for baseball video clips based on the annotation strings gener-
ated in Section 4.

Storyboard production involves an important task: the selection
of the relevant frames to be displayed. Since a pitch shot has little
camera motion, the frames in a pitch shot are similar to each other.
Thus, no matter which frame is chosen as the relevant frame for
storyboard production, users are able to perceive that the shot is
to convey the pitch action (please see the leading picture of each
row in Fig. 16). Similarly, users can have an idea that a shot is to
present the overview of the audience or the close-up of the pitcher,
batter or couch after seeing one of the frames in the idle shot.
Hence, for computational simplicity, we select the first frame of a
pitch shot or an idle shot as the relevant frame to be displayed in
the storyboard.

However, in a field shot, the camera tends to follow the ball
moving in the field. Only one frame cannot provide adequate infor-
mation for users to comprehend the route of the ball batted out.
How to select as few relevant frames in a field shot as possible
but to provide adequate information is the major problem we as-
pire to work out. In Section 4, we classify the frame types based
on the visual features and spatial patterns in the baseball field.
Thus, we can further divide a field shot into sub-shots in each of
which the frames have the same play region type. We can say that
the frames in a sub-shot are similar semantically and visually,
since they contain the same spatial patterns and have similar vi-
sual features. Hence, only one frame for each sub-shot needs to
be displayed in the storyboard. Here, we select the middle frame
in a sub-shot as the relevant frame because the middle frame is
distinct from the frames in the neighboring sub-shots while the
frames close to the boundaries of the sub-shot might be similar
to the frames in the neighboring sub-shots. Take Fig. 10 for exam-
ple. The play regions appearing in the field shot are IL (infield left,
frames #1–27), PS (player in soil, frame #28–78), IR (infield right,
frames #79–102), and B1 (first base region, frames #103–142).
Thus, the field shot is divided into four sub-shot, and the frames



Fig. 16. Storyboards of baseball games.

Fig. 15. User interface of the proposed baseball exploration system.
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#14, #53, #90, and #122 are selected to be displayed in the story-
board. In this way, we are able produce a storyboard which uses as
few frames as possible to provide adequate information and con-
vey the video content.

7.3. Similar event retrieval

Usually, after viewing a highlight clip, users tend to view some
other similar or relevant highlight clips. Furthermore, baseball fans
and professionals may have interests in some special events, high-
lights or specific defense patterns. They would like to retrieve sim-
ilar ball hitting events from different games for viewing and
comparison. In this section, we propose an effective algorithm to
retrieve similar ball hitting events based on the proposed spatial
pattern detection and frame type classification method.

Similar event retrieval involves two aspects: one is the choice of
representation for the data and the other is the definition of simi-
larity measurement. In Section 4, we present a method to classify



Fig. 17. Example of similar ball hitting event retrieval.
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the frames of a ball hitting clip into 16 categories. Thus, each ball
hitting event can be represented as a sequence of play region labels
(one label per frame). Then, we can apply the dynamic program-
ming algorithm of string-edit distance [32] to measure the distance
(dissimilarity) between ball hitting events. The distance between
two strings is defined as the minimum number of edit operations.
The edit operations include:

Insertion: IL B3 IR B1 ? IL B3 PS IR B1.
Deletion: IC IL B3 IR B1 ? IL B3 IR B1.
Substitution: IC IL B3 IR B1 ? IC IL PS IR B1.
Finally, similar sequences are listed according to their distances
to the query sequence in ascending order, together with story-
boards and play region strings. An example of similar batting event
retrieval is shown in Fig. 17.

To evaluate the effectiveness of the proposed similar event retrie-
val approach, we use 40 randomly selected query sequences and cal-
culate the average precision for top-k returned similar ball hitting
events. Here, we select k = 1, 3, 5, and 10. Fig. 18 illustrates the exper-
imental results, where the horizontal axis indicates k and the verti-
cal axis gives the precision. We can see that the precisions of top-3
and top-5 retrieved results are about 85% and 80%, respectively. Even



Fig. 18. Precision of top-k retrieved results.
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though the precision goes down to 64% for top-10 returned results,
we still can say that the application of similar event retrieval indeed
assists baseball fans and professionals in retrieving, viewing, and
comparing similar ball hitting events from different games.

8. Conclusions and future work

In this paper, we propose a HMM-based ball hitting event
exploration system for broadcast baseball video capable of spatial
pattern detection, frame type classification and event recognition.
Convincing results and encouraging performance are obtained.
Furthermore, the proposed system also facilitates extensive appli-
cations, such as highlight clip extraction by user-designated query,
storyboard construction and similar event retrieval.

Compared with existing works on baseball video analysis, the
proposed system has some outstanding points. Based on the base-
ball domain knowledge, we utilize the well-defined field layout
and the game-specific spatial patterns to extract more explicit
information within a field shot via frame classification, instead of
the shot classification which most of the existing works execute.
Up to 10 spatial patterns, 16 frame types, and 11 ball hitting events
are analyzed and recognized to enhance the robustness and practi-
cability of our system. Extensive applications can be developed
based on our proposed spatial pattern detection, frame type classi-
fication and event recognition.

There are some limitations in our scheme that open the doors
for new exploration. First is that the spatial pattern B2 is easily
missed or mis-detected, which might causes errors in the subse-
quent processing of frame type classification and event recogni-
tion. Since B2 is typically located on the vertical bisector of the
field, it is a possible solution to utilize the symmetry of field layout
to assist in detecting and identifying B2. Besides, we will apply the
proposed system to the video sequences of higher resolution, in
which spatial patterns are clearer, and it can be expected that high-
er accuracy will be achieved. Second, our proposed system works
well on MLB and JPB games with prototypical field/stadium lay-
outs. However, some baseball fields/stadiums have different lay-
outs. For example, Koushien baseball stadium, which is one of
the most famous baseball stadiums in Japan, has no grass in the in-
field. Our proposed method may not be able to detect the pitch
mound (PM) well for this type of baseball stadiums. We have ongo-
ing research for more robust spatial pattern recognition so as to
adapt our system to more kinds of baseball video sources. The last
limitation is that the proposed system cannot distinguish two dif-
ferent events of similar play region transitions. Possible solutions
includes: (1) utilizing scoreboard information to solve some ambi-
guities of baseball events, (2) locating players and tracking the ball
to raise the accuracy of event classification. Furthermore, we will
integrate the proposed baseball exploration system in this paper
with the research efforts of pitching style recognition [16], baseball
trajectory extraction [14], and strike zone shaping [33]. A powerful,
practical and professional baseball analysis system will be imple-
mented for automatic content abstraction, pitch-bat strategy infer-
ence, and statistics gathering.
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