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Abstract

The lamination arrangemenis of moderately thick Luninated composite plates for optimal dynamic characteristics are studied
via a constrained multi-start global optimization technique. In thc optimization pracess. the dynamical analysis of laminated
composite plates is accomplished by utibzing a shear deformable laminated composite finite element, in which the exact
expressions for determiv ing shear correction factors were adopted. and the modal damping model constructed based on an energy
concept. The optimal layups of laminated composite plates with maximum fundamental frequency or modal damping are then
designed by maximizing the frequency or modal damping capacity of the plate via the multi-start global optimization technique.
The effects of length-to-thickness ratio, aspect ratio and number of layer groups upon the optimum fiber orientations or layer
group thicknesses are investigated by means of a number of examples of the design of symmetrically laminated composite plates.

1. Introduction

Because of their light weight and many superior properties, laminated composite plates or panels
have been widely used in the construction of vehicle, aircraft and spacecraft structures. In general,
these structures are subjected to dynamical loadings and, if the structures are not properly designed,
they may fail due to dynamical instability or fatigue. Therefore, the study of dynamic behavior of
fiber-reinforced composite plates has attracted close attention in recent years. In particular, since
damping has the beneficial effects on stabilizing vibration and elongating fatigue life of structures, the
studies of damping capacities of laminated composite structures have been carried out by many
investigators |1-8]. For instance, Adams and his associates [1-3] studied the modal damping capacity of
laminated composite beams and plates based on an ¢nergy concept. Alam and Asnani {4] investigated
the modal damping of laminated composite plates via the complex modulus approach. It is noted that
the results obtained by the previous rescarchers were only available for thin laminated composite plates
(length-to-thickness ratio was about 150). To take advantage of the flexibility of iaminated composite
materials in tailoring, it is worth investigating the optimal layups that can make laminated composite
structures possess the best dynamic characteristics. Recently, Kam and his associates [9-12] used an
unconstrained global optimization technique to investigate the optimal fiber angles for enhancing the
mechanical performance of laminated composite plates. Since ply group thicknesses have important
effects on the dynamic behavior of laminated composite structures, in addition to fiber angles it is worth
including ply group thicknesses in the optimal design of laminated composite structures for better
dynamic performance. As is well known, the transverse siiear dcformation may have significant effects
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on the behavior of moderately thick laminated composite plates due to the thickness effect and the low
transverse shear modulus relative to the in-plane Young's moduli. It is, thercfore, worth studying how
the transverse shear deformation as well as the other factors such as aspect ratio, length-to-thickness
ratio and number of layer groups affect the lamination arrangement for optimal dyn.mic characteristics
of moderately thick laminated composite plates.

This paper uses a previously proposed shear deformable finite element [13] and the modal damping
model established based on an energy concept to study the dynamic characieristics of moderately thick
laminated composite plates. The optimal layups for the plates with maximum fundamental frequency or
modal damping are determinred by maximizing, respectively, the frequency or modal damping capacity
of the plates via a constrained multi-start global opiunization technique. The effects of length-to-
thickness ratio, aspect ratio and number of layer groups upon the optimum lamination arrangements
and the values of frequency or damping of the piates are investigated by means of a number of
examples.

2. Vibration of iaminated composiie plate

Consider a rectangular plate of area a X b and constant thickness /1 subject to dynamic forces as
shown in Fig. 1. The plate is composed of a finite number of layer groups in which each layer group
contains several orthotropic layers of same fiber angle and uniform thickness. The ¥ and y coordinates
of the plate are taken in the midplane of the plate. The displacement field is assumed to be of the form

(e, ¥, 2, 0} = uy(x, y, ) + 24 (x, y, 1)
wyx, y,z,0y=vy(x, y. )+ z-4{x, y, 1) (1)
uy(x, y,z, 1) =wlx, y, 1)

where ¢ is time; &, u,, u, are displacements in the x, y, z directions, respectively, and u,, v,, w the

assoctated midplane displacements; and , and ¢, are shear rotations.
The plate constitutive equations are written as

u=g
v:
z w=0
%=0
-y
P(xy.t) N
(1m v
u=0 v=0
v=0 w=0
a =0 =0
1“layer group, 1/“;:() %
s u=0
w={
¥%=0
! l b -
f
x he fNI."‘ layer group
X
(a) Loading condition (b} Boundary conditions

Fig. 1. Laminated composite plate.
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[N (A, A 0 ¢ A, By B, 8] ., -‘
N, A, An 0 0 A, B, B, B, Yo
Q. 0 0 A, A, 0 [y 0 V] Wt
Q, 0 0 Ay A, O 0 0 0 W,
N, = Ay A 0 0 A, By By B, ty + Uy, @)
M, B, B, ¢ b By Dy Dy Dy, b,
M, By, B, 0 0 By, Dy Dy Dy, W,
LM(x_ _Bu\ B:h 0 ¢ Bm. Dl!. D:n Dn(._ Ld’h\ ¥ lll\.\-
where N, N,...., M, arc stress resultants; and material components A, . B, and D; are given by
h2
(A, B;. D)= Q“’”( lz,z)dz (i.j=1,2,6) (3a)
LY
and
. - hi2
Ay =kekg Ay Ay=g 0 Qds T 4S a=6 i B-6-)) (3b)

where Q, are material constants; the superscript m denotes layer number and k, are shear correction
factors which can be evaluated from the exact expressions given by Whitney [14]. The derivation of the
equation of motion for the plate is based on the virtual work cquation. The introduction of virtual
displacements 6u, to the plate under dynamic equilibrium gives the virtual work equation as [15]

1
-2'8 J’ (o,8,)dV + f pii 8u, &V — J pbu,dS=0 (4)
v v .\"_

where V is the volume, p the mass density, &, the accelerations and p, surface tractions acting over the
area S, of the plate; It is noted that if plate dampmg is included in the above equation, the moduli will
be w'nplex in the form E®(1 +in), where E” is the storage modulus and n the material loss factor, in
accordance with the principle of linear viscoelasticity. For simplicity, the damping effect is neglected in
the derivation of the equation of motion and frequency analysis of the plate. However, the damping of
the plate will be considered separately in the fellowing section on damping analysis of composite plate
using the modal damping model constructed via an energy concept.

3. Finite element formulation

The virtual work equation of the plate discretized into NE elements can be written as

NE

1
E] {55 L (o) AV + L piidu, dV — L pdu, dS} =0 )
= . e Sie k

where V,, S, is the volume and surface of an clement, respectively. The midplane displacements (u,,,
Uy, W, ., ¢1.) within an element are given as functions of 5 x ¢ discrete nodal displacements and in
matrix form they are expressed as

u—Z[H, V.. =HV, (6)

where g is the number of nodes of the element; H, are shape functions; 7 is a 5% 5 unit matrix; H is
shape {unction marrix; \’ ={%, V. ....V,}" and the nodal displacements V,; at a node are

vmz{“msuun Wi, ‘I/xx-'\!‘}:}l A ]v'--vq (7)
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Substituting Eq. (6) into Eq. (5) and using standard finite element approach to add the contributions of
all the elements in the domain, the virtual work equation of the plate becomes

SVIKV+MV-P}=0 (8)

where M, K,V are the generalized mass matrix, stiffness matrix and displacement vector of the plate,
respectively. Since 8V is arbitrary, the equation of motion of the plate can be obtained from Eq. (8) as

KV+MV-P=0 9)

In the finite eiement model, a quadratic (¢ =8) element of the serendipity family with reduced
integration of the 2 x 2 Gauss rule is used. The eigenvalue problem of the plate is expressed in matrix
form as

KV— o’MY=0 (10)

where w is vibration frequency. It is wonthy t2 note that if the complex moduli in the form £ R +in)
are adopted in deriving the above eigenvalue problem, the frequency parameter w will be complex. The
real part, w,, of the complex frequency parameter is the resonant {requency, and the ratio of the
imaginary part to the real part is the associated system loss factor 7, [4]. When the mode shape vector of
the plate has been solved from Eq. (10), the rhodal maximum strain energy U stured in the plate is
computed as

i
U=5VEV (a1

The rates of change of modal strain energy with respect to ply orientations or layer group thicknesses

are
W _ 1TV LAWEIZISY
axX, =2 [(aX) "V”"(ax,-) tv (ax,; "] (12)

where X, may be ply orientations or thicknesses of layer groups.

4. Damping of composite plate

The model used for describing the modal structural damping of a laminated composite plate is based
on an energy concept. It can be shown that the modal loss factor », of a structure is the ratio of energy
dissipated per cycle to the maximum: strain energy durir.g the cycle [8].

AU
"= (13)

where AU is the energy dissipated during a stress cycle.

If m,, n, are the loss factors of beam specimens with fiber angles 0° and 90°, respectively, which are
tested in flexure and 7,5, 7.3, m;; are the loss factors of 0° and 90° specimens in longitudinal or
transverse shear, then by observing the definition of Eq. (12), the total energy dissipated per cycle in
the plate can be evaluated from the following expression,

1 NE hi2 .
AU = 3 > [j J’ "M pMe™ a2 dS] (14)
i=i Sy -hi2 i
where 9™ is a diagonal matrix containing the material loss factors of the mth ply, or
Th
T 0
n= M2a (15)
0 s
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Observing the constitutive relations and the transformation of quantities between the reference
coordinate system and the fiber direction system, Fq. (14) can be written 2z

NE hi2
t L
AU =D, [5 f f} [e'T'nETe|"™ dZ dS] (16)
i=1 LA 1 2 '
where € is a vector of strains referred to the reference coordinate system, and T a coordinate
transformation matrix. Expressions for evaluating the 1erms in matrix T can be found in [16]. Let
R(m) = [TanT](m) (17)
then Eq. (16) becomes
NE 1 hi?
AU=D, [ﬂ (’ [¢'rRE]™ dz dSJ
i=1 A s hi2

(18)

With a similar technique to that used in the iinile element inethod, strains at any point in an element
can be evaluated from the nodal displacements as

=LV, (19)
where L is a matrix of the derivatives of the shape functions. Substitution of Eq. {19) into Eq. (18)
gives

| T
AU= 2.5V KV, (20)

and the clement damped stiffness matrix

hi2
K =I f [L'RL]"™ dZ dS (¥1))

iz

in view of the condition of compatibility, the dissipatec energy of Eq. (20) can be expressed in terms of
the assemblied global damped stiffness matrix, K, and the global nc dal displacements, V, as

1
AU=3V'K,V (22)

The rates of change of the dissipated energy with respect to fiber angle:: or layer group thicknesses can
be obtained in a form similar to that of Eq. (12). In view of Eq. (13), the rates of change of the loss
factor with respect to design variables are writtvn as

2 (390 ()]0

The above expression will be used in the following optimal design of laminated plates for maximum
damping.

5. Optimal layup design

The objective in the present optimal design of a laminated composite plate with given thickness 4 and
number of layer groups NL is the selection of the fiber angles and thicknesses of layer groups which
gives the maximum fundamenta! frequency or modal damping capacity of the plate, In mathematical
form, the optimal design problem is stated as
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e n, wy
Minimize @@ k)=-~q, ——q, —
T wy
Subject to (°< 4 < 180°
NS
Sk (24)

1

h=0 i=', . NL

where gq,. g, are weighting fa-tces: b= (h,, h,, ... 7y ), 0=(8,, 0,,...,0y) the vectors of layer
group thicknesses and fiber angles, respectively; w,, n,, are natural frequency and loss factor (modal
damping) of the fundamental vibratior. mode of the plate; and %, @, are some reference values of n,
and w,, respectively.

Before procecding to the solution of the above problem. first consider the special case in which the
thicknesses of layer groups have been destined to, say, &, = h/NL (i = 1,...,NL) and only fiber angles
6 are treatcd as design variables. In this case, the optimization problem can be easily solved by the
previously proposed unconstrained multi-start global optimization algorithm [9]. The basic idea of the
unconstrained multi-start global optimization method is to solve the problem of unconstrained
migiinization of a differentiable objective function F(x), x€X C R" and £ C C', with several local
minima F, and corresponding local minimizers X;. It is noted that, for example, in the optimal design of
laminated composite plates, x and F(x) become 8 and ®(@), respectively. In the global minimization
process, a series of starting points arc sclected at random from the region of interest and a local
migimization algorithm is used from ecach starting point. The search trajectories used by the local
minimization algorithm are derived from the equation of motion of a particle of unit mass in an
n-dimensional conservative force field, where the potentiai encigy of the particle is represented by
F(x(1)). In such a field the total energy of the particle, consisting of its potential and kinetic energies, is
conserved. The motion of the particle is simulated and by monitoring its kinetic energy an interfering
strategy is adopted which ensures that potential energy is systematically reduced. In this way the
particle is forced to follow a trajectory towards a local minimum in potential energy, £. By
uninterrupting the motion of the particle with conserved total energy, other lower local miiima
including in particular the global minimum are obtained and recorded when the particle is traveling
along its path. The motion of the particle is stopped once a termination criterion is satisfied. The same
procedure is applied to the other starting points. As the process of searching for the global minimum
continues, a Bayesian argument [17] is used to establish the probability of the current overall minimum
value of F being the global minimum, given the number of starts and number of times this value has
been achieved. The multi-start procedure is terminated once a target probability, typicaily 0.998, has
been exceeded. The main advantage of this multi-start global optimization algorithm is that it can
determine the global optimal solution in a very =fficient and effective way.

Now consider the solution of the optimization problem stated in Eq. (24) in which both fiber angles
and thicknesses of layer groups are treated as design variables. Due to the presence of the constraints
on layer group and plate thicknesses, the direct application of the unconstrained multi-start global
optimization algorithm becomes futile. The constrained optimization problem, however. can be
converted to an unconstrained one by creating the general augmented Lagrangian [18]

NL
V(O h A )= PO.0) + 2 [A g +rx]+ Aw o H 1, H) (25)
i=1
with
x —max[g,\h) 3F —‘
r _I
gh)=—-h<0 j=1....NL (26)

ML

H=Xh—-h=0
=1
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where A, r, arc multipliers.
The update formulas for the multipliers A, and r, arc

A=At j=1,....NL

J iy
Aty = AN T 2H" (27)
nel ‘Yr;i if r;i? I < r;:"'"

I/ r;’ldl it r;:- 1 = r;\..x

where the superscript # denotes iteraiion number, 7y is a constant; ri" is the maximum value of r . The
. L. N y n ”
initial values of the multiplicrs and the values of the parameters (y, r"") are chosen as

P p Y- r,

A=10 j=1.....NL+1

ry=04 2
v=125 (28)
=100

The previously proposed unconstrained multi-start global optimization technique can then be used to
solve the problem of Eq. (25). It is noted that in case of optimal design of laminated composite plates
for maximum frequency the search direction tends to be controlled by the rates of change of ¥ with
respect to layer group thicknesses which may icad to the repeated viclation of the constraints and thus
the difficulty in convergence of the solution. To circumvent this difficulty, the search direction is
determined using the modified gradient of the general augmented Lagrangian in which the components
arc obtained as

.
%zﬁﬁ (29)
(5]
and
o
o a6,

a,=_ﬁ-_m5'}/_?_‘_'g i=1,...,NL
126G

Hence, when using the above modified gradient of the general augmented Lagrangian in the optimal
design for the maximum frequency, the convergence of the solution can be ensured as will be
demonstrated in the following section.

6. Numerical examples

The forementioned global optimization technique will be applied to the design of simply supported
rectangular symmetrically laminated composite plates. Before performing the optimal design, it is worth
studying the accuracy of the present finite element modct in predicting frequency and damping of
laminated composite plates. The material properties and dimensions of the square laminated plates
used in the verification are listed in Table 1. The plates were analyzed by using a uniform mesh of 4 X 4
quadratic elements. The results obtained by the prescint method are given in Table 2 in comparisons
with the experimental data and finite clement results reported in [3]. [t is noted that the present finite
elemen! model can yield very good results

Now consider the optimal design of simply supported symmetrically laminated composite plates in
which either fiber angles (layer group thicknesses are set to be /1, = #/NL} or both fiber angles and
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Table 3

Material properties and plate dimensions used for model verification

Material E, E, GG Gy m i) T Vo
(Gpa) (Gpa) (Gpa) (Gpa) (%) (%) (%)

CFRP 1727 7.2 3.76 1.88 0.45 4.2 7.058 0.3

GFRP 37.78 10.9 4.91 2.45 (.87 5.05 6.91 0.3

Plate Material No. of Density Thickness Length Ply

No. layers (kg/m’) {mm) (mm) orientation

762 CFRP 8 1566 1.58 178 All @

764 CFRf 8 1446 212 234 [0°/90°10°/90°]s

761 GFRP 8 1971 [.64 183 Al 0°

734 GFRP 8 1814 2.05 227 [0°/90°/0°/90°1s

Table 2

Comparison of values of natural frequency and damping obtained by different methods

Plate Material Mode Adams et al. [3] Present

No. Experiment Finite Element w, (Hz) n, (%)

w, (Hz) n, (%) o, (Hz) n, (%)

762 CHRP i 8i.3 7.0 83.6 6.76 82.2 6.89

762 CFRP n 107.4 4.9 118.4 4.28 115.2 4.25

764 CFRP 1 68.9 6.7 58.1 7.80 67.8 6.94

761 GFRP i 78.1 6.0 88.1 599 82.2 6.03

734 GFRP [ 62.2 6.7 66.4 7.16 69.7 A.68

thicknesses of layer groups are treated as design variables. The plates are made of glass fiber reinforced
plastic (GFRP) with material properties given in Table 1 and the assumption that n,; =7,; =7,;. The
plates are designed for either maximum fundamental frequency or maximum loss factor of the first
mode. In case of maximum frequency design, the weighting factors in Eq. (24) are set as g, =1 and
q,=0. The global optimal solutions for the laminated plates with various aspect ratios, length-to-
thickness ratios and numbers of layer groups using either fiber angles or both fiber angles and layer
group thicknesses as design variables are given in Tables 3-8 for comparisons. It is noted that higher
frequency for plates with @/b = 1.0 and 1.5 can be obtained when both layer group thicknesses and fiber
angles are treated as design variables. On the other hand, the number of layer groups has some effects
on magnitude of frequency for the cases where only fiber angles are treated as design variables and

Table 3

Optimal layups for symmetrically laminated GFRP plates with maximum normalized frequency @, = @,b°Vp/ E;h—il(aib =1.0.
alh = 10)

No. of layer Unconstrained opsimization Constrained optimization
groups [h,=#INL]
Fiber angles & Fiber angles Normalized layer &,
(degree v degree thicknesses (&, = k,/h) —
gree) () (degree) ieknesses (h, = hJh) @)
7.82 8.11
4 45/ — as)s e — 45]s L0968/0. Yo
{ Sls 10.0273) (457 —45]s [0.0968/0.4032]s (0.0243)
6 45/ — 45745 T8 45/ - 45145 0.0001/0.0967/0.4032 L
b5 Is (0o 145/ —45/45]s [o. : 4032 (0.0243)
8 45/ - 45/45/ 45} - 8.00 45/ ‘ B
(451 - as/asi 35l oTnay 145/-45iad/—dsls  [0.02149/0.05745/0.00002/0.42104)  (5aaes

* Modal loss factor associated with maximum frequency.
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Optimal tayups for symmetrically laminated GFRP plates with maximum normalized frequency w, "—’uu!)"\/;u/EJl: (alb= 1.5,

aid = i}

No. of layer

Unconstrained optimization

Consirgined 1+ @ mization

groups [h, = hINL]
Fiber angles 5 Fiber angles Normalized fayer a,
degree —' degree thicknesses (A, = h lh S
(gree) Gy e ) W

+ 90/ _5_()8_ 67.5/69.7 0.192170.4079]s ﬂ—'
[90/90]s 003 |-67.5/69.7]s 92170, Is (0.0269)

6 79/ -65/88 57 GR/66.8/ ~T70 (1L002170.G939/0.4040 >.71

- ; - sy ~Tls —

! 88}s (0.028) [~ 6B766. Is ((:002170.6139/0.4040}s (0.0269)

8 7 5/ ~70/83 27 076577027 ~ 838 1.04/0.046/1.037/0.377 37T
|70/ -65/~ 3)s 008 1707 ~65/ 7027 ~83s [11.64/0.046/1.037/0.377]s (0.0269)

* Modal loss factor associateu with maximura frequency

Table 5

Optimal layups for symmetrically laminated GFRP plates with maximum normatized frequency o, = wm b*Vpl/E,h* (alb =2.0,

alh =10y

No. cf layer

Unconstrained optimization

Constrained optimization

groups (A, = h/NL]
Ciber angles & Fiber angles Normalized layer @,
degrec v degree} thicknesses (A, = h,/k -—
(degree) (n) (e ¢ ! (n,)
5.10 5.10
4 [90/90]s ?[—){)_‘) {01901 [0.25/0.25]s (0_037
5.10 5.10
6 [90/90/90]s .03 [90/90/901s (5.1 m67/0. 6667/0.16667]s ©0)
8 30/90/90/90 210 [90/90/90/40 '0.125/0.125/0.125/0.125]s 219
| Is 0.03) [ )]s 1.125/0.125/0. .125]s 0.03)

* Modal loss factor associated with maximum frequency.

Table 6

Optimal layups tor symmetrically laminated GFRY plates with maximum normalized frequency @, =wib"\/;1/f';'zhz (a/b=1.0,

alh = 30)

No. of layer

Unconstrained optimization

Constrained optimization

groups [k, = hiNL}
Fiber angles & Fiber angles Normalized layer a.
{degree) (—q"), (degree) thicknesses (b, = 4, /H) (n“)"
4 [45',_45|‘ .8'.33‘. (KT T4 fl) 10780, 30871 __SMSAS,A
S (UUZZ) IR 1y [ 23 d 0L SN 0e (00188)
2.49 , . 8.58
6 [45/—45/45]s (T(H_) {45/ —45/45]s [0.0472/0.1538/... 299s m
_ 3.56 . 8.58
8 [45/ ~45/45/ ~45)s @ 019_) [45/-45/457 - 45]s 10.0275/0.0643/0.0607/0.1G 7 .]s m)*

* Modal loss factor associated with maximum frequency.
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Table 7 _
Optimal layups for symmetrically laminated GFRP plates with maximum normalized frequency ¢, = w,b*Vp/E0' (alh = 1.5,
alh =3)

No. of layer  Unconstrained ptimization Constrained optimization
groups th,=hINL]
Fiber angles & Fiber angles Normalized layer ’ @,
(degree) - (degree) thicknesses (h, = h /h) —
¢ () & ()
4 1 620 5.3/64.7)s £0.4]s il
(83/-66]s (hanz) 76536471 (0104 0.0202)
6 6.23 \ ol . S /0,183 21911 6.27
[—74/65/71]s 0.020) [65.1/—64.2/-74.2]s 10.0975/0.1834/0.2191]s (0.0202)
8 68/ 1—67/-06 6.25 J / /—65.8]s ).04528/0.9041/0.36430/0.060011s 6—27—
68/ =64/ —67/ -G8y o [687-63.1/-67/-65.8]s  [0.04528/00. 3643010, s 00509

" Maodal loss factor associated with maximum frequency.

a/b=1.0 and 1.5. But for the cases where both fiber angles and thicknesses of layer groups are treated
as design variables, the number of layer groups has no effect on frequency and the choice of only four
layer groups can yield the maximum frequency. The optimal fiber angles change from +45° to 90° when
a/b changes frcm 1.0 to 2.0 for ali the cases considered. Furthermore, the transverse shear deformation
also has effects to some extent on the optimal lamination arrangement of the plates. For examples,
although fiber angles arc the same, the normalized layer group thicknesses of the plates of a/b =1.0
with various number of layer groups are different for different length-to-thickness ratios as shown in
Tables 3 and 6; and also for plates of a/b = 1.5, both fiber angles and layer group thicknesses are
different for different length-to-thickness ratios as shown in Tables 4 and 7.

Next, consider the optimal design of laminated GFRP plates for maximum damping. The weighting
factors in Eq. (24) are then set as ¢, =0 and g, = 1. The global optimal soluticns for the plates with
various aspect ratios, length-to-thickness ratios, and numbers of layer groups using either fiber angles or
both fiber angles and layer group thicknesses as design variables are given in Tables 9-14. It is noted
that higher loss factor can be obtained, especially for the plates of a/b = 1.0, when both fiber angles and
layer group thicknesses are treated as design variables. Other interesting points worth pointing out are:
The number of layer groups has no effect on the optimal modal loss factors of the plates under

Table &

Optimal layups for symmetrically laminated GFRP plates with maximum normalized frequency o, = w,b:\/pfflhz (alb=2.10,
ath=30)

No. of layer Unconstrained optimization Constrained optimization
groups [#, = h/NL])
Fiber angles &, Fiber angles Normalized layer @
(degree — (degree thicknesses (4, = h, /h —
eree) (@) epree) ) ; (.)
4 90/90]s 273 90/ (.2570.25 575
19079015 (0.019) (90750} (0.25/0.25]s (0.019)
6 190790/90] 573 [90/90/%0] {0.16667/0. 16667/ 575
S e Y0ls L3 (). 16667 YT
16.019) 0.16667)s (0.019)
8 90/90/90/90]s _3I5_ 90750/ 90/90s 0.125/0.125/0.125/0.125 3D
190/90/901901s 0.019) 190756196790} (0-125/0.125/0.125/0.125}s {©.019)

" Moda! loss factor assoclated with maximum frequency.
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Table 9

399

Optimal layups for symmetrically laminated GFRP plates with maximum loss factor of the first mode (a/b = 1.0, alth = 10)

No. of layer

Unconstrained optimization

Constrained optimization

groups [, = hiNL]
Fiber angles - Fiber angles Normalized tiyer n
degree —_— PP thickniesses (1 = h 7 __‘_
(degree) (o) (degree) hickriesses (nr, = b, ih) @)
(.036% 04.0378
J e 9lls t 10,121
4 [0790s F053) [0/90]s 10.38/0.12] G0
6 0707908 L0570 0:0/90]s 0.002/0.37810.12 0.0378
fo70ses (7.057) 0790k 0.402/0.378/0.12] G0
3 01070790} D037 0/GHYY0 0.0033£60.00070.3760/0.120 0037
[ s (7.057) o/ Is {0.003370). . 120)s 7.02)

" Assaciated normalized frequency & = w, b*Vp/E .

Table 10

Optimal layups for symmetrically laminated GFRP plates with maximum loss factor of the first inode (a/b = 1.5, alh = 10)

No. of layer Unconstrained optimization

Constrained optimization

groups [/, =h/NL]
Fiber angles _Tl Fiber angies Normalized layer n
(degree) (u‘a.‘F (degree) thicknesses (A, = i, /h) a)—_
00463 ) 0.4360/0.0640]s 9043
4 [0/0)s (419) {or9nfs [0. . 0640]s 74.39)
0.0463 0.0475
6 [0/0/0}s (4.413) {070/90]s {0.006/6.430/0.064]s 12.39)
00463 0/ 5 0.0021/0.0041/0.4302/0.064]s 9_0_4_72
8 [0/0/0/0]s aan (00707905 [0. , : 064}s @.39)

* Associated normalized frequency @ = w,b°Vp/E.h'.

Table 11

Optimal layups for symmetrically laminated GFRP plates with maximum loss factot of the first mode (a/b =2.0, a/h = 10}

No. of layer Unconstrained optimization Constrained optimization
groups [A, = h/NL}
Fiter angles n Fiber angles Normalized layer 3
(degree) (T;)“ (degree) thicknesses (A = h, /h) W’)a_
4 0/0)s 0516 0/90 0.455/G.045]s 2052
(07015 (3.468) i0790ls 10.455/6.045s (.49
6 0/0/0 0.0516 0/0/90 0.0001/0.4549/0.045) 0.052
(07070 (3.468) L070750ls [ (3.29)
8 0/0/0/0 0.0516 0/0/0/90 0.4005/4.00010.0544/0.045]s/ 002
[0/0/0/0]s (3.468) [ 90]s [0.4005/¢. .05 .045]s G45)

" Associated normalized frequency @ = w,bVp/E,h°.
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Table 12

Optimal layups for symmetrically laminated GFRP plates with maximuir loss factor of the fisst mode (arb = 1.0, a/h =)

No. of layer Unconstrained optimization Constrained optimization

groups {#, = hiNL]
Fiber angles n Fiber angles Normalized layer n
degree — degree) thicknesses (ft = h,ih) —=
(degree) (@) (degree) (h,=h, (o)

. » 0.0328 0/ N 0.0329
[6/90]s T4 j0/90]s [0, 408/005192]s F18)

[ 1/0/90 0.0328 0/0/90]s (3.399/0.009/0.92 1”)32()
{00790 (7 388) ! Is 16.399/0. 92 (7.38)

8 0790 0.0528 00790 ).367/0.0020.039/0.092]s/ D329
(070/0/9D]s T [0/070/90]s {0.367/0.0020. 092 )

* Assoviated normalized frequency @ = w, b Vpl ENC.

Table 13
Optimal layups for symmetricalty lTaminated GFRP plates with maximum loss factor of the first mode (a/h = 1.5, a/h = 30)
No. of layer Unconstrained optimization Constrained optimization
groups [h, = HINL]
Fiter angles n Fiber angles Normalized layer n
(dcgrcc)m “ ‘W ' (degree) thicknesses {(f, = 1) '{';_,?
4 ‘ L37 V/90]s 0.463/0.0370}s 9.04%9
[0/0}s 3738 [1/90])s [0.463/0.0370]s (4.73)
0.0437 0.0439
; . = ; 2 .2434/010370]s
6 for0/0}s @.738) [070/90]s [0.219670.2434/0.0370]s @.73)
8 /07 (1 G]s 0437 070/0/90 0.2135/0.0049/0.2446/0.037 00439
) { Is (4.738) [ Is (0-213570. - W3Tls (4.73)

* Associated normatized frequency & = w,b°Vp! E .

Table 14
Optimal layups for symmetrically laminated GFRP plates with maximum loss factor of the first mode (a/b = 2.0, a/ft = 3()

No. of layer Unconstrained optimization Constrained optimization

groups |#, = hINL]
Fiber angles 7 Fiber angles Normalized layer n
degrec) — degree thicknesses (A, = h /h) —
(deg (@,) (degrec) (@)

4 0/0]s 00487, 0/90 0.4788/0.0212]s ‘ 00488
070l (3.828) (0750l [0.478870.02121s (3.83)

6 MHO]s _().(}437 0/(0/90]s (1,2449/0.2319/0.0212) 0'%
(bro7ols (3.828) torarons 10-2449/0.231970.02121% (383)

8 0070/0]s _&()487 0/G/0/90]s 0.2538/0.0002/0.2250/0.0212]s 0.0488
( 0)s T {0/6G/0/90]s [0.2538/0.0002/0.2250/0.0212]s EED)

" Associated normalized frequency @ = w,h*Vp/E, I,
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consideration; and the optimai fiber angles of the plates are 0°, 90° or a combination ot the abcve two
angles.

7. Conclusion

Optimal lamination arrangements of moderately thick faminated composite plates designed for either
maximum frequency or maximum loss factor of the fundamental mode have been investigated using a
shear deformable finite clement and a constrained multi-start global optimization technique. The
proposed optimal design algorithm appcars to yield global optimal fiber angles and layer group
thicknesses in a cfficient and effective way. Results for simply supported symmetrically faminated
GFRP plates of various aspect ratios, length-to-thickness ratios, and numbers of layer groups were
obtained and their physical implications discussed. ft has been shewn that in the present approach the
use of fiber angles and layer group thicknesses as design variables can greatly reduce the number of
layer groujs for achieving optirial dynamic characteristics of laminated plates and thus simplify the
design and manutacturing proce s us.
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