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Abstract 

The t~.mination arrangements of moderately thick lamit],.Icd composite plates for optimal dynamic characteristics are studied 
via a constrained multi-start global optimization technique. In the optimization process, the dynamical analysis of laminated 
composite plates i~; accomplished by utilizing a she;~r deformable laminated composite finite element, in which the exact 
expressions for determit: ing shear correction factors were adopted, and the modal damping model constructed based on an energy 
concept. The optimal layups of laminated composite plates with maximum fundamental frequency or modal damping are then 
designed by maximizing the frequency or modal damping capacity of the plate via the multi-starl global optimization technique. 
The effects of length-to-thickness ratio, aspect ratio and number of layer groups upon the optimum fiber orientations or layer 
group thicknesses are investigated by means of a number of examples of the design of symmetrically laminated composite plates, 

I. Introduction 

Because of their light weight and many superior properties, laminated composite plates or panels 
have been widely used in the construction of vehicle, aircraft and spacecraft structures, in general, 
these structures are subjected to dynamical Ioadings and, if the structures are not properly designed, 
they may fail due to dynamical instability or fatigue. Therefore, the study of dynamic behavior of 
fiber-reinforced composite plates has attracted close attention in recent years. In particular, since 
damping has the beneficial effects on stabilizing vibration and elongating fatigue life of structures, the 
studies of damping capacities of laminated composite structures have been carried out by many 
investigators [1-8]. For instance, Adams and his associates [1-3] studied the modal damping capacity of 
laminated composite beams and plates based on an energy concept. Alam and Asnani [4] investigated 
the modal damping of laminated composite plates via the complex modulus approach. It is noted that 
the results obtained by the previous researchers were only available for thin laminated composite plates 
(length-to-thickness ratio was about 150). To take advantage of the flexibility of laminated composite 
materials in tailoring, it is worth investigating the optimal iayups that can make laminated composite 
structures possess the best dynamic characteristics. Recently, Kam and his associates [9-12] used an 
unconstrained global optimization technique to investigate the optimal fiber angles for enhancing the 
mechanical performance of laminated composite plates. Since ply group thicknesses have important 
effects on the dynamic behavior of laminated composite structures, in addition to fiber angles it is worth 
including ply group thicknesses in the optimal design of laminated composite structures for better 
dynamic performance. As is well known, the transverse stJear deformation may have significant effects 
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on the behavior of moderately thick laminated composite plates duc to the thickness effect and the low 
:ransverse shear modulus relative to the in-plane Young's moduli. It is, therefore, worth studying how 
the transverse shear deformation as well as the other factors such as aspect ratio, length-to-thickness 
ratio and number of layer groups affect the lamination arrangement for optimal dyn,,mic characteristics 
of moderately thick laminated composite plates. 

This paper uses a previously proposed shear deformable finite element [13] and the modal damping 
model established based on an energy concept to study the dynamic characteristics of moderately thick 
laminated composite plates. The optimal layups for the plates with maximum fundamental frequency or 
modal damping are determioed by maximizing, respective!y, the frequency or modal damping capacity 
of the plates via a constrained multi-start global opthnization technique. The effects of length-to- 
thickness ratio, aspect ratio and number of layer groups upon the optimum lamination arrangements 
and the values of frequency or damping of the plates are investigated by means of a number of 
examples. 

2. Vibration of laminated composite - ' - '^  IlldIl:~ 

Consider a rectangular plate of area a × b and constant thickness h subject to dynamic forces as 
shown in Fig. 1. The plate is composed of a finite number of layer groups in which each layer group 
contains several orthotropic layers of same fiber angle and uniform thickness. The x and y coordinates 
of the plate are taken in the midplane of the plate. The displacement field is assumed to be of the form 

u t ( x ,  y ,  z ,  t) = u(,(x, y ,  t) + z"  tf,x(x, y, t) 

u2(x, y, Z, t) = v,,(x, y, t) + z '~>(x,  y,  t) 

u3(x,  y ,  z ,  t) = w(x,  y ,  t) 

(1) 

where t is time; u , ,  u,_, u~ are displacements in the x, y ,  z directions, respectively, and u:), vo, w the 
associated midplane displacements; and ~, and 4', are shear rotations. 

The plate constitutive equations are written as 
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Fig. I. Laminated composite plate. 
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resultants; and material components A u. B,I and Dq are given by 

3gl 

(2) 

f h 2 OOnl (  ,2 2 
( A t , , B , j , D , ~ ) = m 2 . , _  q , I , z ,  )dz  ( i , j : : 1 , 2 , 6 )  (3a) 

I 
h ~ 2 

: t . . . k t  ~ . .4 , , ,  fl,, O',;"'dz ( i , j - 4  5; a = 6  i. # - a - j )  (3b) .¢lq ", ,  J-h;2 

where Q# are material constants; the superscript m denotes layer number and k, are shear correction 
factors which can be evaluated from the exact expressions given by Whitney [14]. The derivation of the 
equation of motion for the plate is based on the virtual work equation. The introduction of virtual 
displacements 8u, to the plate under dynamic equilibrium gives the virtual work equation as [15] 

£ f, 2 8 (a'qeu) dV + pii,gu, d V -  ,. pfiu, dS = 0 (4) 

where V is the volume, p the mass density, ii, the accelerations and p, surface tractions acting over the 
area S. of the plate; It is noted that if plate damping is included in the above equation, the moduli will 
be complex in the form En(1 + it/), where E e is the storage modulus and rt the material loss factor, in 
accordance with the principle of linear viscoelasticity. For simplicity, the damping effect is neglected in 
the derivation of the equation of motion and frequency analysis of the plate. However,  the damping of 
the plate will be considered separately in the following section on damping analysis of composite plate 
using, the modal damping model constructed via an energy concept. 

3. Finite element formulation 

The virtual work equation of the plate discretized into NE elements can be written as 

k=] (~r#e0)dV+ , Piii6ui d V -  js  Pigu' dS (5) 
Jc k 

where V~, S],. is the volume and surface of an element, respectively. The midplane displacements (uo, 
v,,  w, q'x, 4(~.) wiihin an element are given as functions of 5 x q discrete nodal displacements and in 
matrix form they are expressed as 

u = k [HAIr,:, = HgL (6) 
i=l  

where q is the number of nodes of the element; H, are shape functions; I is a 5 × 5 unit matrix; H is 
shape function matrix; ~r = { w  V.. z . . . . .  V~q}'; and the nodal displacements W~ at a node are 

V~, = {u,,,, v,,,, w,, ~bx,, ~,.,}', i =  I . . . . .  q (7) 
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Substituting Eq. (6) into Eq. (5) and using standard finite element approach to add the contributions of 
all the elements in the domain, the virtual work equation of the plate becomes 

~v{xv + Me-  e}  = o (8) 

where M, K, V are the generalized mass matrix, stiffness matrix and displacement vector of the plate, 
respectively. Since ~SV is arbitrary, the equation of motion of the plate can be obtained from Eq. (8) as 

KV + M V - P = O  (9) 

In the finite element model, a quadratic (q = 8) element of the serendipity family with reduced 
integration of the 2 × 2 Gauss rule is used. The eigenvalue problem of the plate is expressed in matrix 
form as 

K V -  a~2MV = 0 (10) 

where to is vibration frequency. It is worthy t,:) note that if the complex moduli in the form EU(l ~- it/) 
are adopted in deriving the above eigenvalue problem, the frequency parameter to will be complex. The 
real part, to,, of the complex frequency para,neter is the resonant frequency, and the ratio of the 
imaginary part to the real part is the associated system loss factor 7/, [4]. When the mode shape vector of 
the plate has been solved from Eq. (10), the Ltodal maximum strain energy U stJred in the plate is 
computed as 

1 
U : ~ V'KV (11) 

The rates of change of modal strain energy with respect to ply orientations or layer group thicknesses 
a r e  

[ ( ) , t_Z _ ! [ ,vy 'v 
aX, - 2  \OX,] KV+VK - ~ ,  +V'  ~ , ,  (12) 

where X i may be ply orientations or thicknesses of layer groups. 

4. Damping of composite plate 

The model used for describing the modal structural damping of a laminated composite plate is based 
on an energy concept. It can be shown that the modal loss factor r/$ of a structure is the ratio of energy 
dissipated per cycle to the maximum strain energy durir.g the cycle [8]. 

AU 
n, =-L~ (13) 

where AU is the energy dissipated during a stress cycle. 
If "Or, vh are the loss factors of beam specimens with fiber angles 0 ° and 90 °, respectively, which are 

tested in flexure and rh_,, ~.,3, rh3 are the loss factors of 0 ° and 90 ° specimens in longitudinal or 
transverse shear, then by observing the definition of Eq. (l?,), the total energy dissipated per cycle in 
the plate can be evaluated from the following expression, 

] AU = 2",=1 • e(')'r/("')o "('') dZ dS (14) 
J-h~2 i 

where ~/~"') is a diagonal matrix containing the material loss fa,:tors of the ruth ply, or 

[,, 1 r/, 0 
'r/= v/2~ 

0 rhs 
"r/t :, 

(15) 
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Observing the constitutive relations and the transformation of quantities between the reference 
coordinate system and the fiber direction system, l'q. (14) can be ~ritten a:: 

a v  = Z dS (16  
. ¢ ,~ - t 1 ! 2  t 

where ~ is a vector of strains referred to the refe,ence coordinate .~ystem, and T a coordinate 
transformation matrix. Expressions for evaluating thc ~erm,; in matrix T can be found in [16]. Let 

g,m, = Jr'nOT]'" (17) 

then Eq. (16) becomes 

; = 1 t. ~ - - h i 2  t 

With a similar technique to that used in the finite element trlethod, strains '.at any point in an element 
can be evaluated from the nodal displacements as 

g = L ~ r  (19) 

where L is a matrix of the derivatives of the shape functions Substitt,tion or Eq. (!9) into Eq, (18) 
gives 

NE l ~ t  - -  
a u  = ~ -~ ve,x,v~, (20) 

and the element damped stiffness matrix 

= f5 ~h12 [LtRL] '''' dZ (IS (21) 
e. J - * h J 2  

In view of the condition of compatibility, the dissipated energy of Eq. (20) can be expressed in terms of 
the assembled global damped stiffness matrix, Ka, and the global n¢ dal displacements, V, as 

1 
AU=-~ VtKd'~ (22) 

The rates of change of the dissipated energy with respect to fiber angle:, or layer group thicknesses can 
be obtained in a form similar to that of Eq. (12). In view of Eq. (13), the rates of change of the loss 
factor witfi respect to design variables are written as 

The above expression wilL be used in the following optimal design of laminated plates for maximum 
damping. 

5. Optimal layup design 

The objective in the present optimal design of a laminated composite plate with given thickness h and 
number of hayer groups NL is the selection of the fiber angles and thicknesses of layer groups which 
gives the maximum fundamental frequency or modal damping capacity of the plate. In mathematical 
form, the optimal design problem is stated as 
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1'~ ~ (1 )  I 
Minimize ch(O. h )  = - q  , - -  - q2 - - -  

~ j 09. 

Subject t~, 0 ° <~ O, <~ 180 ° 

"? " h , (24) 

' , .  . , h, ~ 0 i = 1 NL 

where qt, q_. are weighting ia.'tc,'s; h = (h  I, h z . . . . .  hNt.)', 0 = (0], 0, . . . . .  0s~.)' the vectors of layer 
group thicknesses and fiber angles, respectively; ~0~, rh, are natural frequency and loss factor (modal 
damping) of the fundamental vibratior~ mode of the plate; and rh~, wo are some reference values of r h 
and ~t, respectively. 

Before proceeding to the solution of the above problem, first consider the special case in which the 
thicknesses of layer groups have been destined to, say, h, = h / N L  (i = 1 . . . . .  NL) and only fiber angles 
0 are treated as design variables. In this case, the optimization problem can be easily solved by the 
previously proposed unconstrained multi-start global optimization algorithm [9]. The basic idea of the 
unconstrained multi-start global optimization method is to solve the problem of unconstrained 
minimization of a differentiable objective function F ( x ) ,  x ~ X C  R "  and F C C ~, with several local 
minima ,~ and corresponding local mhfimizers .fj. It is noted that, for example, in the optimal design of 
laminated composite plates, x and F ( x )  become 0 and q~(0), respectively. In the global minimization 
p~ocess, a series of starting points arc sclcctcd at random from the regio;a of interest and a local 
minimization algorithm is used from each starting point. The search trajectories used by the local 
minimization algorithm are derived from the equation of motion of a particle of unit mass in an 
n-dimensional conservative force field, where the potential energy of the particle i'~ represented by 
F ( x ( t ) ) .  In such a field '.he total energy of the particle, consisting of its potential and kinetic energies, is 
conserved. The motion of the particle is simulated and by monitoring its kinetic energy an interfering 
strategy is adopted which ensures that potential energy is systematically reduced. In this way the 
particle is forced to follow a trajectory towards a local minimum in potential energy, k. By 
uninterrupting the motion of the particle with conserved total energy, other lower local mivima 
including in particular the global minimum are obtained and recorded when the particle is traveling 
along its path. The motion of the particle is stopped once a termination criterion is satisfied. The same 
procedure is applied to the other starting points. As the process of searching for the global minimum 
continues, a Bayesian argument [17] is used to establish the probability of the current overall minimum 
value of F being the global minimum, given the number of starts and number of times this value has 
been achieved. The multi-start procedure is terminated once a target probability, typically 0.998, has 
been exceeded. The main advantage of th;,s multi-start global optimization algorithm is that it can 
determine the global optimal solution in a very ,efficient and effective way. 

Now consider the solution of the optimization problem stated in Eq. (24) in which both fiber angles 
and thicknesses of layer groups are treated as de~fign variables. Due to the presence of the constraints 
on layer group and plate thicknesses, the direc~ application of the unconstrained multi-start global 
optimization algorithm becomes futile. The c~3nstrained optimization problem, however, can be 
converted to an unconstrained one by creating the general augmented Lagrangian [18] 

N L  

~ ( O , h , A , r , , ) =  q)(0. h ) +  Z [A,x, + r,,x~] + last +,H + r~,H'-] (25) 
/ = l  

with 

[ x, = max g , ( h l ) ,  2rp j 

g j ( h j ) = - h j ~ O  j = l  . . . . .  NL 
b~ 1_ 

H = , ~  h, - h = 0 
t = I 

(26) 
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where a .  rl, are multipliers. 
The update formulas for the multipliers A; anJ rp arc 

a ' , " '  = ,~ ;  + , .G .~ ' , '  i : l . . . . .  N L  

.... ' " "~ . . . . . .  (27) A~,t.+l = a ~ t . . t  + - r t ,  rl  

,1 t ,  * I ~ . .  m at x 
,,, I vrp if rt, rt, 

rp =: L ma~ n + 1 ma~ rt, if r,, >-rp 

II1 L t X where the superscript n denotes iteration number, Y is a constant; rp is the maximum value of r e. The 
initial values of the multipliers and the values of the parameters (y,  rj', .... ) arc chosen as 

A', '= 1.0 j = l  . . . . .  N L + I  

r v = 0.4 
7 = 1.25 (28) 

m~= 100 rp 

The previously proposed unconstrained multi-start global optimization technique can then be used to 
solve the problem of Eq. (25). It is noted that in case of optimal design of laminated composite plates 
for maximum frequency the search direction tends to be controlled by the rates of change of g' with 
respect to layer group thicknesses which may icad to the repeated violation of the constraints and thus 
the difficulty in convergence of the solution. To circumvent this difticulty, the search direction is 
determined using the modified gradient of the general augmented Lagrangian in which the components 
are obtained as 

and 

aq, 

a 5 'r Oh--- 7 
" ag" 2 "-" 

aq' 

/ Z ( ~  ) J  Li=I 

(29) 

Hence, when using the above modified gradient of the general augmented Lagrangian in the optimal 
design for the maximum frequency, the convergence of the solution can be ensured as will be 
demonstrated in the following section. 

6. Numerical examples 

The forementioned global optimization technique will be applied to the design of simply supported 
rectangular symmetrically laminated composite plates. Before performing the optimal design, it is worth 
studying the accuracy of the present finite element modct in predicting frequency and damping of 
laminated composite plates. The material properties and dimensions of the square laminated plates 
used in the verification are listed in Table I. The plates were analyzed by using a uniform mesh of 4 x 4 
quadratic elements. The results obtained b,; the presel~t method are given in Table 2 in comparisons 
with the experimental data and finite clement results reported in [31. It is noted that the present finite 
element model can yield very good results 

Now consider the optimal design of simply supported symmetrically laminated composite plates in 
which either fiber angles (layer group thicknesses are set to be h, = h/NL) or both fiber angles and 
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Table t 
Material properties and plate dimensions used for model verification 

Material E~ E: Gt., G~ G.~ n~ rl: n,: v,. u, 
(Gpa) (Gpa) (Gpa) (Gpa) ( ~ )  (¢4) ( ~ )  

CFRP 172 7 7.2 3.76 1.88 0.45 4.22 7.05 0.3 
GFRP 37,78 I0.9 4.91 2.45 0.87 5.05 6.91 (i.3 

Plate Material No. of Density Thickness Length Ply 
No. layers (kg / m 3 ) (mm) (mm) orientation 

762 CFRP 8 1566 1.58 1Z"~ All 0 ° 
764 C F R f  8 1446 2.12 234 [0 ° / 90 °/0 ° / 90°Is 
761 GFRP 8 1971 1.64 183 All 0 ° 
734 GFRP 8 1814 2.05 227 [0°190 ° / 0°/90°Is 

Table 2 
Comparison of values of natural frequency and damping obtained by different methods 

Plate Material Mode Adams et al. [3] Present 

No. Experiment Finite Element to l (Hz) r h (%) 

~o~ (Hz) r/, (%)  oJ~ (Hz]  r/, (%)  

762 t..l- R| J i 81.5 7.0 83.6 6.76 82.2 6.g9 
762 CFRP I! 107.4 4.9 118.4 4.28 115.2 4.25 
764 CFRP i 68.9 6.7 58.1 7.80 67.8 6.94 
761 G FRP ! 78.1 6.0 88.1 5.99 82.2 6.03 
734 GFRP I 62.2 6.7 66.4 7.16 69.7 6.68 

thicknesses of layer groups are treated as design variables. The plates are made of glass fiber reinforced 
plastic (GFRP) with material properties given in Table 1 and the assumption that rtt~ = rh3 = r/23. The 
plates are designed for either maximum fundamental frequency or maximum loss factor of the first 
mode. In case of maximum frequency design, the weighting factors in Eq. (24) are set as qt = 1 and 
q2 = 0. The global optimal solutions for the laminated plates with various aspect ratios, length-to- 
thickness ratios and numbers of layer groups using either fiber angles or both fiber angles and layer 
group thicknesses as design variables are given in Tables 3-8 for comparisons. It is noted that higher 
frequency for plates with a/b = 1.0 and 1.5 can be obtained when both layer group thicknesses and fiber 
angles are treated as design variables. On the other hand, the number of layer groups has some effects 
on magnitude of frequency for the cases where only fiber angles are treated as design variables and 

Table 3 
Optimal layups for symmetrically laminated GFRP plates with maximum normalized frequency o3~ = to~b'-o~-E:h"/(alb = 1.0, 
a/h = 10) 

No. of layer Unconstrained oprmization Constrained optimization 
groups [ h  = h /NL 1 

Fiber angles 03, Fiber angles Normalized layer o5, 
(degree) (degree) thicknesses ( fL = h,/h) 

(n,)  ~ (n , )  ° 

7.82 8.11 
4 [45,' - 45]s (0.0273) [ 4 5 / -  45]s [0,6968/0.4032]s (0.0243) 

7.98 8. i 1 
6 [ 4 5 / -  45/451s (0.02511 1 4 5 / -  45/45]s [0.0001/0.0967/0.4032]s (0.0243) 

8.0(I 8.11 
8 [45i - 45/45/ 45]s (0.0247) [ 4 5 / -  4 5 t 4 3 / -  45]s [0.0214910 05745/0 00002/0.421041s (0.0243) 

Modal loss factor associated with maximum frequency. 
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Table 4 
Optimal layups for symmetrically laminated GFRP plau:~ with maximum i~t~rm:tlizcd frequency u3, ~ t~,,b:~i/'pfE,tz "- (alb ~- 1.5, 
a;;~ = iii) 

No. of layer Unconstrained optimization 
groups [h, = h i n t ]  

(lln-Araincd ! l'~lizatitm 

Fiber angle~ ~+ Fiber angles Normalized layer o3, 
(degree} (17, y (degree) ttlicknessc.~ ( ti, = h, /h)  (rt,)+ 

5.68 5.77 
4 190/9018 (0 .<13)  1-67'5/69'71" :0.'t921/<L4(17918 (0.0269) 

5.7 5.77 
6 [ 79 ! - 65 / 8818 (0.{)28 } I - 6g i 66.8/-- 71)Is [<LO()21 ] 0.0')39/0.404018 (0.0269) 

5.72 5.77 
8 170~ - 6 5 / -  70/8318 (o.o28 } 17<)/-- 65171,,+2 / -N3]s lt}.l)4/0,046,'t1.037/0.377]s (0,0269} 

Modal loss factor associatet, with maximum frequency. 

Table 5 
Optimal layups for symmetrically laminated GFRP plates with maximum normalized frequency ~j = m,b2p~i~, .h  '- (a/b = 2.0, 
a/h  = 10) 

No. cf  layer Unconstrained optimization Constrained optimization 
groups [h, -- h / N L ]  

Fiber angles a3~ Fiber angles Normalized layer o3~ 
(degree) (r/,)~ (degree} thicknesses ( h, = h , /h)  (rt+)~ 

5.10 5.10 
4 [90/9018 (0.03) [~,'0/9018 1tl.25/0.251s (0.03) 

5.1t) 5.10 
6 [90,'90/901s (0.03) [00/9[I/901s [f~.l ,t~67/0. 6t~b7/O.t66671s (0.03) 

5.10 5. I0 
8 170/90/90/90]s (0.03) [90/90/90/90]s '0.125/0.125 i0.125/0.125]s (0,03) 

Modal loss factor associated with maximum frequency. 

i able 6 
Optimal layups for symmetrically laminated GFRt' plates with maximum normaliz,zd frequency o3~ = to+b~'~pp-fi,~li 2 (a/b = 1.0, 
a/h = 30) 

No. of layer Unconstrained optimization Constrained optimization 
groups [h, - h/NL} 

Fiber angles ,.~: Fiber angles Normalized layer 031 
(degree) ( r/+ }+ (degree) thickne~ses (/~, = h, /h)  (,7+)+ 

8.33 8.58 
. f l -~  l , t ] , ~ , ~ / 1 | " i  " l , [ ] t ~ l J c  . . . . . . . . . . . . .  4 [45/-4518 (i~.6Z2) [45;. 451~ L . . . . . . . . . . . . . . . . . . . .  (o.o188) 

8.49 8.58 .,) 

6 [45/-45/45]s (0.02) [45/-45/45]s [0.047~/0.1538; ,:. 299],~ (0.0188) 

8.56 8.58 
8 [45 / -45 /45 / -45]s  (0.019) [45/-45/45/  45]s [0.0275i0.0643/0+0007/0.10,L.is ((i.0188) 

" Modal loss factor associated with maximum frequency. 
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Table 7 
Optimal layups for symmetrically laminated GFRP plates with maximum normalized fret~uency t:'~ = oadft~J/Eih r (a/b =-- 1.5, 
alh = 3(I) 

No. o[ layer I_Incon~trainod optimization Constrained optimization 
groups [h, = h/NL] 

Fiber angles ~ Fiber angles Normalized layer ~3 t 
(degree) (degree) thicknesses (t~, = h /h)  

(n.)" (,7,Y 
6.20 6.27 

4 [81/-66]s (11.tl221 [ - 65 3/64"71s [(I. t/0.4Is (0.02021 

6.23 6.27 
6 [-74/65/711s (0,1121) [65'1/-64"2/-74"21s 10"0975/11183a/O'21911s (11.1121121 

6.25 6.27 
8 ~68t - 64 / -  67/-66]s (11.1121) [681-64.1/-67/-65.8]s 10.(14528/0.9tl41/II.36430/0.l~X)01 Is (I).0202) 

"Modal loss factor associated with maximum frequency. 

a / b  = 1.0 and 1.5. But  for  the  cases where  bo th  fiber angles  and th icknesses  o f  layer  g roups  are t r ea t ed  
as des ign  var iables ,  the  n u m b e r  o f  layer g roups  has no effect  on  f requency  and  the  choice  of  only  four  
layer  g roups  can yield the m a x i m u m  f requency .  T h e  op t imal  fiber angics  change  f rom +--45 ° to  90 ° w h e n  
a / b  changes  f r cm i .0 to  2.0 for  all the  cases cons ide red .  F u r t h e r m o r e ,  the  t ransverse  snea r  d e f o r m a t i o n  
also has effects  to  some  ex ten t  on  the  op t imal  l amina t ion  a r r a n g e m e n t  of  the plates .  For  e x a m p l e s ,  
a l t h o u g h  fiber angles are the  s ame ,  the  no rma l i zed  layer g roup  th icknesses  of  the  pla tes  of  a / b  = 1.0 
with var ious  n u m b e r  o f  layer g roups  are d i f ferent  for d i f fe rent  l eng th- to - th ickness  rat ios as shown  in 
Tab les  3 and 6; and  also for  pla tes  of  a / b  = 1.5, bo th  fiber angles and  layer  g roup  th icknesses  are 
d i f fe ren t  for  d i f fe rent  l ength- to- th ickness  rat ios as shown  in Tab les  4 and 7. 

Next ,  cons ider  the ep t ima l  des ign of  l amina ted  G F R P  plates  for  m a x i m u m  d a m p i n g .  T h e  we igh t ing  
factors  in Eq.  (24) are then  set as qt = 0 and q,  = 1. The  global op t imal  so lu t ions  for  the  p la tes  with 
var ious  aspect  ratios,  l eng th- to - th ickness  ratios,  and n u m b e r s  o f  layer  g roups  us ing e i the r  f iber angles  o r  
bo th  fiber angles  and  layer g roup  th icknesses  as des ign variables  arc given in Tab les  9 -14 .  It is n o t e d  
tha t  h igher  loss factor  can be ob ta ined ,  especially for  the  plates  of  a / b  = 1.0, w h e n  bo th  fiber angles  and  
layer  g r o u p  th icknesses  are t rea ted  as design variables.  O t h e r  in teres t ing  poin ts  wor th  po in t ing  ou t  are:  
T h e  n u m b e r  of  layer g roups  has no  effect  on the  op t ima l  moda l  loss factors  o f  the  pla tes  u n d e r  

Table 8 
Optimal layups for symmetrically laminated GFRP plates with maximum normalized frequency o5, = ~o,b"~/p/E,.h +- (a/b = 2.11, 
alh = 30) 

No. of layer Unconstrained optimization Constrained optimization 
groups lh, = h / NL I 

Fiber angles ~3~ Fiber angles Normalized layer o5, 
(degree) (r h ), (degree) thicknesses (fz, = h,/h) (n,)" 

5.75 5.75 
4 190190ls (o.ol9) 190/9°1s [0.25/0.251s (0.019) 

5.75 5.75 
6 [90190/911]s (1i.019) [9(1190/')0]s [('. 16667/(I. 1(1667/ (11.0f9) 

i1.16667 ]s 

5.75 5.75 
8 [90t911/90/90]s (0.019) [90/90/90/90]s IlL 125/0.125111.125/0.125]s (0.11191 

' Modal toss factor associated with maximum frequency. 
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Table t) 
Optimal layups f,w symmelrically laminated GFRP plates ~tTh maximum loss faclor of H'le tirst mode (a/b = 1.0, ath = 10) 

No. ol  layer Unconstraintd optimization Constrained optimization 
groups [h, = h; NL] 

Fiber angles r), Fd~cr ang l e~ ;  Normali;'cd !:v,'cr .rh 
(dt.~gree) (degree) :hicktiesscs (,t, :-= h ih) 

(if,,)" ( 6 , F  

0.0369 0.0378 
4 10/90]s (7.054) [()/g()]s [0.38/0.12)s (7.02) 

0.(1370 0.0378 
6 lOiOlgO]s (7.[157) [():t)/9Ols 10.()021().378/0.12Is (7.02) 

0.037~) 0.03'78 
8 Jill 010190]s (7 .1157)  IO/lJ/i)/gl)}s I().(X)33/i).I)O()70.3760/0.12(}]s (7.02) 

" Associated normalized frequency o5 = ~o~b2Vt-p/E,h "- 

Table I0 
Optimal layups for symmetrically laminated GFRP pla~e.', with maximum loss factor of the first mode (alb = 1.5, alh  = I0) 

Nu. uf layer . . . .  o ..... a,ned optimization Constrained optimization 
groups lit, = h / NL] 

Fiber angles r/, Fiber angtes Normalized layer ~ 
(degree) ( 05, )" (degree) thicknesses (/~, = h, th)  "(th I ), 

0.0463 0.0475 
4 [O/Ols (4.414) [o/gI) ls [0.4360/O.(J640]s (4.39) 

0.0463 0.0475 
6 [O/0/01s 14.414) [O/O/901s [O.006/0.430/0.0641s ~4.39) 

0.tt463 0.0475 
8 [Ol0/0/0]s 14.414) 10/0/0/90]s [0.0021/0.0041/0.4302/0.0641s (4.39) 

Associated normalized frequency o5 -- oa,b'~3fp/E,.h'L 

Table 11 
Optimal [ayups for symmetrically laminated GFRP plates with ma:Smum loss factor of the first mode (a/b = 2.0, alh  = I0) 

No. of layer Unconstrained optimization Constrained optimization 
groups [h = h /N L] 

Fiber angles )7, Fiber angles Normalized layer r/, 
(degree) ( thj )4 (degree) thickne~;ses (/1, = h, lh)  (dj I )~ 

0.0516 0.052 
4 [0/0Is (3.468) [O/90]s IoA55/o.0451s (3.49) 

0.0516 0.052 
6 [o/o/0[s (3.468) [o/0190]s [0.004.'. I/0,4549/0.0451s (3.49) 

0.0516 q.052 
8 [0/1)/0 !0]s (3.468) [010/0/90]s [0.4005/O.t~')010.054410.O45]s/ (3.49,~ 

" Associated normalized frequency ~ = (o:b29~-~:h :. 
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Table !2 
Optimal [ayups for symmetrically laminated GFRP phLtes with maximum loss factor of the first mt~de (a/b = 1.tl. a/h = 311) 

No. of layer Unconstrained optimization Constrai'ted optimization 
groups [t:, = h / NL] 

Fiber angles rl ' Fiber angles Normalized layer rt, 
(degree) ( ~ ) .  (degree) thicknesses (/), :/9,/It) ( d,, )" 

0.0328 0.0329 
4 l();90]s (7,488) 11)/91)1s lO.a08/O.~ )921s 17.4----~-) 

0.0328 11.1)329 
6 [OlO/90]s (7488) [0/0/90Is I{k399/l).f109/0.92]s (7.48) 

11,1)328 0.0329 
8 [9/(}/0/901s (7,488) [O/Ol(}/90]s ]0.367/O,tX)20,O39(O.O92]s/ (7.,18) 

" Associated normalized frequency o5 = to, hz~/p /E,h  z, 

Table 13 
Optimal layups for symmetricalFy laminated GFRP patcs with maximum loss factor of the first mode (aib = 1.5, a lh  = 31)) 

No. of layer Unconstrained optimization Constrained optimization 
groups [h, = h/NL] 

Fiber angles r/, Fiber ang le . , ,  Normalized layer .)7, 
(degree) ( tb~ )" (degree) thicknesses (/~, = tt, lh)  (dh),, 

0.0437 0.04"~9 
4 lIHO[s (4.738) [olgo]s [0.463/0.I)370]s (4.73) 

I}.0437 111)439 
6 [Oli)/O]s (4.738) [O/O/90]s [0.2196/0.2434/[}.0370]s 14,73) 

0.0437 0.0439 
8 [0101010 Is (4.738) [0 It)/()l 9Ols It). 213510.(X)49 I0.244610.037 Is (4.73) 

" Associated normalized frequency dJ = oJ~b:Vrp/E,h "-. 

Table 14 
Optimal layups for symmetrical[y laminated GFRP plates with maximum loss factor of the lirst moa, (a/b ~ 2.0, a/h  = 31}) 

No. of layer Unconstrained optimization Constrained optimization 
groups [h, = h/NL] 

Fiber angles rl ' Fiber angles Normalized layer rk 
(degree) (degree) thicknesses ( h, = h / h )  (,z,,)" (,~,)" 

I).t)487 0.0488 
4 [()/0]s (3.828) [0/90ls 111.4788/0.1}2121s (3.83) 

0.0487 0.0488 
6 [i)/0i01s (3.828) [0i0/90[s [0.2449/0.2319/0.1)212Is "13.83) 

0.0497 0.0488 
8 [1111110 / 11l s (3.828) I0/1)/I)I 90Is [0.253810.11002/(). 2251) / 0.11212Is (3.g3) 

" Associated normalized frequency (o =-co~b:~p/Ezh'-. 
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cons idera t ion ;  and the opt imal  libcr angles of  the plates are 0 °, 90 ° or  a combina t ion  ot the a b e v e  two 
angles.  

7. Conclusion 

Opt imal  laminat ion a r rangements  of  modera tc ly  thick laminated compos i t e  plates des igned for  e i ther  
m a x i m u m  f requency  or  max imum loss factor of  the fundamenta l  mode  have been  invest igated using a 
shear  de fo rmab le  finite e lement  and a const ra ined multi-start  global opt imizat ion technique .  The  
p r o p o s e d  opt imal  design algori thm appcars  to yield global optimal fiber angles and layer  g roup  
th icknesses  in a efficient and effect ive way. Rc,;ults for simply suppor ted  symmetr ica l ly  l amina ted  
G F R P  plates of  var ious  aspect  ratios,  length- to- thickness  ratios,  and numbers  of  layer g roups  were  
c, b ta ined  and their physical implications discussed.  ,It has bccn ,~hc, wn that in the present  app roach  the  
use o f  fiber angles and layer group thickncsscs  as design variables  can greatly reduce  the  n u m b e r  of  
layer grouf,  s for achieving optirJal  dynamic  characterist ics of  laminated plates and thus simplify the  
design and manufac tur ing  proc( ,,;: cs. 
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