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Abstract — Slitherlink is one of challenging puzzle games to
human and computer players. In this paper, we propose an
efficient method to solve Slitherlink puzzles. After using this
method, we can solve each of 10,000 25x30 puzzles given in [9]
within 0.05 seconds. Without using the method, it takes at least
10 minutes to solve some of these puzzles.
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L INTRODUCTION

Slitherlink, first appearing in Puzzle Communication
Nikoli [6] in 1989, is one of most popular puzzle games,
listed in [9]. A Slitherlink puzzle is played on a given
rectangular grid with m X n squares and given hints on some
squares. Initially, for all squares, only vertices and hints are
shown, while border edges of squares (simply called edges in
this paper) are not. For example, a 5 X 5 Slitherlink puzzle is
shown in Figure 1 (a).
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Figure 1: (a) A Slitherlink puzzle and (b) its solution.

The goal of solving a Slitherlink puzzle is to draw some
of these edges such that these drawn edges form one and
only one simple cycle with no intersections and with the
following constraint. For each hint of a square, the hint value
is the same as the number of drawn edges around the square.
For example, a solution of the puzzle in Figure 1 (a) is given
in Figure 1 (b). In all figures of this paper, red “X”’s on edges,
called cross-out edges or XT edges, indicate not to draw,
while solid lines indicate to draw and blank are undecided
yet.

Solving a Slitherlink puzzle efficiently is challenging,
especially for those with large sizes. The general problem of
determining whether a Slitherlink puzzle has a solution is
NP-complete like many other puzzle problems, proved by
Yato [11]. He also proved that Another Solution Problem
(ASP) of Slitherlink is also NP-complete [12]. ASP of a NP-
complete problem is to determine whether there exists
another solution (the second) after the first is found.
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When compared with other puzzles such as Nonograms
[4][10], Sudoku [5], Slitherlink is more challenging in the
following sense. For example, for a Nonogram puzzle with
m X n squares, the space complexity is 2™". However, for a

Slitherlink puzzle with m X n squares, the space complexity
is 22mn+m+n.

Some basic and simple rules of solving Slitherlink are
given in [8], and also quickly reviewed in Section II.
Furthermore, Herting explored most cases in 2 X 2 squares
and put them into a table to solve puzzles quickly.

In this paper, we propose an efficient method to identify
the number of edges at a corner. Using the method, we can
efficiently solve many large puzzles, such as all the 25 x 30
puzzles, published in [9], within 0.05 seconds.

In the rest of this paper, Section II describes some
traditional methods and Herting’s method for solving
Slitherlink puzzles, and Section III proposes our new
methods. Experiments are done in Section IV and concluding
remarks are given in Section V.

II.  TRADITIONAL METHODS

In this section, we first review some basic methods in
Subsection II.LA, and then describe Herting’s method in
Subsection I1.B.

A. Basic Methods

Starting from an empty grid, we draw and cross out
edges following some deduction rules. A grid is called a
partially solved grid, until all edges are drawn or crossed out.
In this Subsection, we review some basic deduction rules in
[8] to solve Slitherlink puzzles. Following are two basic
deduction rules related to the maintenance of one simple
cycle.

First, for each vertex, the number of drawn edges
incident to it is either 0 or 2. Since a solution must contain
one and only simple cycle, the cycle either goes through the
vertex or does not. The number of drawn edges incident to it
is 2 for the former, and O for the latter.
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Figure 2: An example of partially solved puzzle.
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Second, the edge is XT, if drawing it forms one simple
cycle but there still exists some other drawn edges. For
example, for a partially solved grid in Figure 2, the edge
marked with blue rectangle must be XT; otherwise, a simple
cycle is formed and there is still another drawn edge in the
lower left.

The rest of deduction rules in this subsection are related
to the hint values. First, it is trivial and omitted for the cases
for the hint zero and four’.
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Figure 3: (a) A partially solved grid and (b) its deduced grid.

Second, consider the squares with hint three. One of the
deduction rules in [8] is illustrated by the case in Figure 3 (a),
where the left edge’ of v; is drawn. If the down edge of v, is
drawn, then both edges upward and rightward must be XT
from the above deduction rules, contradictory to the hint
three. Therefore, the down edge of v; must be XT and either
up and right edge is drawn. This implies that the up and right
edges of the square with hint three must be drawn. Again, the
rest of two edges incident to v, are XT. The deduced grid is
shown in Figure 3 (b).
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Figure 4: (a) A partially solved grid and (b) its deduced grid.

Third, consider the squares with hint two. One of the
deduction rules in [8] is illustrated by the case in Figure 4 (a),
where the left edge of v is drawn and the up edge of the
square with hint two is XT. Using a similar method, we can
deduce that the down edge of v is XT and the right edge of
the square is drawn.

Finally, consider the squares with hint one. One of the
deduction rules in [8] is illustrated by the case in Figure 5 (a)
(below), where the left edge of v is drawn and the down edge

! Note that for the hint value four it will form a simple cycle itself.
According to Slitherlink, there is one and only one simple cycle, so
no other edges are allowed to be drawn. Such a puzzle is not
interesting, and therefore a hint four is usually not allowed.

% The left edge of v, is the edge incident to v; from left. Similarly,
for the right, up and down edges of v;.

285

is XT. Using a similar method, we can deduce that both up
and right edges of the square are XT.
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Figure 5: (a) A partially solved grid and (b) its deduced grid.
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Figure 6: Partially solved grids and their deduced grids.

Several deduction rules with multiple hints were
introduced in [8]. Most of these rules work for squares in the
same diagonal (of different sizes) as illustrated in Figure 6,
where two hint-three squares are in the same diagonal, and
all the other squares are hint-two and between the two
squares. In [8], they also gave some more deduction rules
with different hints in the same diagonal.

B. Herting’s Method

In [2], Herting developed two rule-based methods to
solve Slitherlink puzzles for his program. First, he used three
sets of rules to help:

® All the uwseful rules for all 1x 1 squares. The
combination of all 1 x 1 squares is 3* x 5 = 405,
where 3 indicates three kinds of edges, drawn, XT, and
unknown, 4 indicates the four edges around the square,
and 5 indicates five kinds of hints, 0, 1, 2, 3, and no
hint. However, only 115 of them are useful in the sense
that some deductions can be applied.

All the 15632 useful rules for all 2 X 2 squares with
four different square hints and four edges in the middle.
The combination is 3* x 5% = 50625.

All the 47601 useful rules for all 2 X 2 squares with 12
different edges. The combination is 312 = 531441.

He refined the three sets to get about 200 rules out of
over 60000 by removing some redundancies.

Second, he also used a method, called Trial and
generalization. The method is to follow the following steps:

1. Find an unknown edge from a partially solved grid.



2. Draw this edge and run the result with the (three) rule
sets. If a conflict is found, the edge must be XT.

3. Cross out this edge and run the result with the rule sets.
If a conflict is found, the edge must be drawn.

4. If no conflicts are found from the above two, compare
the two results to draw and cross out some edges.

5. If the partially solved grid has been updated, repeat the
above again.

III. OUR NEW METHOD

In addition to the traditional methods, we proposed two
new methods to solve Slitherlink puzzle efficiently. The first
method is to build a table of all 2 X 2 squares exhaustively
(and part of 3 X 3 squares). The second method is to check
corners efficiently. Due to the limit of paper size, the first
method is ignored in this paper. This section focuses on the
second method. We first give our notation in Subsection
IIT.A. All the deduction rules used in the method is described
in Subsection III.B. Finally, we show some cases that the
traditional methods cannot solve but the method can in
Subsection I1I.C.

A. Definitions and Notation

In our method, we check each corner of two adjacent
edges. For a square S, let Cpr(S), Cpr(S), Cyr(S), Cyr(S)
be the down-right, down-left, up-right, up-left corners of S.
For a corner C, say Cpr(S), Cy(S) is its diagonal corner
and both Cp; (S) and Cyy(S) are its adjacent corners with
respect to S. These corners are illustrated in Figure 7 (a).
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Figure 7: (a) Corners of S (b) and corners of V.

For a vertex V, let Cpr(V), Cpr(V), Cyr (V), Cyr (V) be
the down-right, down-left, up-right, up-left corners of V. For
a corner C, say Cpr(V), Cy, (V) is its diagonal corner and
both Cp, (V) and Cyzr(V) are its adjacent corners with
respect to V. These corners are shown in Figure 7 (b).
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Figure 8: Six 1 X 1 squares.

For a corner C, the edge count set E(C) is the set of
possible numbers of drawn edges at C. Since the number of
drawn edges at a corner is at most two, the set E(C) must be
a subset of {0, 1, 2}. As illustrated in Figures 8 (a) to (f), the
set E(Cpr(S)) for square S is {0, 1, 2}, {1, 2}, {0, 1}, {1},
{0}, and {2}, respectively.

B. Deduction Rules
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Figure 9: Some simple deduction rules.

In this subsection, we discuss all deduction rules based
on corners. A set of very simple deduction rules from E(C)
are shown in Figure 9.

Furthermore, we investigate the deduction rules updating
E(C) from square hints or from one corner to others. Five
situations are considered as follows.

First, assume that S is a square with no hint. Then, all the
four edge count sets, E(Cpr(S)), E(Cp.(S)), E(Cyr(S)),
and E (Cy(S)), are {0, 1, 2} initially.

Second, assume that square S is a square with hint 0.
Then, E(Cpr(S)), E(Cp(5)), E(Cyr(S)), and E(Cy,(5))
all are {0} initially.

Third, assume that square S is a square with hint 1. Then,
E(Cpr(S)), E(CpL(5)), E(Cyr(S)), and E(Cy,(S)) all are
{0, 1} initially because we cannot draw more than 2 edges
around a square with hint 1.

E(C) E(CP) E(CY
{0} Remove {0} No change
{1} Remove {1} No change

Table 1: Deduction rules for squares S with hint 1. C?
denotes a diagonal corner of C and C* denotes an adjacent
corner in S.
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Figure 10: Example of deduction rules of square with
hint 1.

In addition to the initial settings, more deduction rules for
square with hint 1 are shown in Table 1. In this table, if a
corner C has E(C) = {0}, we can remove {0} from E(CP)
and does not change E(C#), and similarly for {1}. As



illustrated in Figure 10, if E(Cpg(S)) is changed to {1},
remove {1} from its diagonal corner set, E(Cy.(S)), and
therefore set both upper and left edges to XT.

E(C) E(CP) E(CY
{0} Remove {0, 1} Remove {0, 2}
{1} Remove {0, 2} No change
{2} Remove {1, 2} Remove {0, 2}

Table 2: Rules of square with hint 2

Fourth, assume that square S is a square with hint 2.
Then, E(Cpr(S)), E(Cp(S)), E(Cyr(S)), and E(Cy,(S))
all are {0, 1, 2} initially. In addition to the initial settings,
more deduction rules for square with hint 2 are shown in

Table 2.
.012 01’
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Figure 11: Example of deduction rules of square with hint 2.

.02 1.

An example is illustrated in Figure 11, where E(Cpg(S))
is set to {0, 2}. Assume that the number of edges at Cp(S)
is 0. From the rule in the first row of the table (for {0}), we
remove {0, 1} from its diagonal set E(Cy;,(S)), and {0, 2}
from its adjacent set E(Cp.(S)) and E(Cyg(S)). Then,

E(Cy(S)) is {2} and both E(Cp,(S)) and (Cyg(S)) are {1}.

Now, assume that the number of edges at Cpg(S) is 2. From
the rule in the table, we obtain E(Cy,(S)) is {0} and both
E(Cp.(S)) and E(Cyg(S)) are {1}. Hence, after merging the
two cases by union, we obtain E (Cy,(S)) is {0, 2} and both
E(Cp.(S)) and E(Cyr(S)) are still {1}. In general, in the
case that E(C) has multiple elements, E(C?) is the union of
the results for each element, and similarly for E(C4).

E(0) E(CP) E(CH
{1} Remove {1} No change
{2} Remove {2} No change

Table 3: Rules of square with hint 3

Fifth, assume that square S is a square with hint 3. Then,
E(Cpr(5)), E(CpL(5)), E(Cyr(S)), and E(Cy,(S)) all are
{1, 2} initially. More deduction rules for square with hint 1
are shown in Table 3, similar to Table 1.

E(C) E(CP) E(C*
{0} Remove {1} Remove {2}
{1} Remove {0, 2} No change
{2} Remove {1, 2} Remove {0, 2}

Table 4: Deduction rules of corners C at all vertices V. CP
denotes a diagonal corner of C and C# denotes an adjacent
corner for V.

Finally, we investigate the deduction rules for corners of
all vertices shown in Table 4. If E(C) is {2}, E(CP) must be
{0}; if E(C) is {1}, E(CP) must be {1}; and if E(C) is {0},
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E(CP)is {0, 2}, since it is possible to have no drawn edges
through the vertex. Thus, E(C4) can be deduced accordingly.

C. Illustration

In this section, we illustrate 6 cases for our new method.
Among them, the last two cases cannot be solved by the
traditional methods in [8], described in Section II.A. For
simplicity of discussion, let Vpr(S), Vp.(S), Vur(S), Vyi(S)
denote the down-right, down-left, up-right, up-left vertices of
S, and Spr (V), Sp.(V), Syr(V), Sy (V) be the down-right,
down-left, up-right, up-left squares of .

The first four cases are those shown in Figures 3, 4, 5 and
6. The fifth case is simple, but not listed in [8]. The sixth
case demonstrates that our method can also support
deduction rules on the squares not in the same diagonal. The
last two demonstrates our method is general and effective.
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Figure 12: The first case for illustration.

For the first case shown in Figure 3, Figure 12 shows
how our method can easily deduce the result in Figure 3(b).
Let S denote the square with hint 3. Let v; denotes Vj, (S),
and v, denotes Vyz(S). For this rule, we know that for all
comers ¢ of S, E(c) are {1, 2} and E(Cyr(v,)) and
E(Cp(v1)) are {1, 2} initially in Figure 12(a), with Table 4.
Then, E (Cp,(S)) will be changed to {1} by removing {2}
and E (Cyg(S)) will become {2} by Table 3. So we draw the
up and right edge of s; in Figure 12(b). With Table 4,
E(Cpy(v;1)) becomes {1} in Figure 12(c) and E(Cygr(v,))
become {0}. After some deductions, we obtain the one in
Figure 12(d).
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Figure 13: The second case for illustration.

For the second case shown in Figure 4, Figure 13 shows
how our method can easily deduce the result in Figure 4(b).
Let S denote the square with hint 2. Let v denotes Vp; (S).
We obtain that E(Cyg(S)) is {0, 1} and E(Cp,, (v)) are {1, 2}
initially. With v and Table 4, we change E(Cp.(S)) to
become {0, 1} in Figure 13(a). With Table 2, change
E(Cyr(S)) to {1} due to E(CDL(S)) and then go back to
change E(Cp,(S)) to {1}. Then, from Table 4, E(Cp,(v))
become {1}. So, we draw the right edge of S and cross out
the down edge of v as in Figure 13(b).
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Figure 14: The third case for illustration.
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Figure 15: The fourth case for illustration.
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For the third case shown in Figure 5, Figure 14 shows
that our method can easily deduce the result in Figure 5(b).
This is similar to the above case, and therefore omitted.
Similarly, for the fourth case shown in Figure 6, Figure 15
shows that our method can easily deduce the results in
Figure 6.
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Figure 16: The fifth case for illustration.

The fifth case is shown in Figure 16. Let S denote the
square with hint 2. Let v; denote Vy;(S) and v, denote
Vyr(S). With Table 4, E(Cy,(S)) is changed to {0, 2} based
on v;. Then, from Table 2, E(CUR(S)) is changed to {1}
based on E(CUL (S)); from Table 4, E(CUR(UZ)) is setto {1}
based on E(CUR (S)). So the right edge of v, is drawn as in
Figure 16 (b).
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Figure 17: The sixth case for illustration.

Finally, the sixth case is shown in Figure 17, which can
demonstrate how general and effective our method is. Let S3
denote the square with hint 3 and S; denote the square with
hint 1. Let S,,, Sy5 and S, denote three squares with hint 2.
Initially, for all corners c5 of S5, E(c3) are {1, 2}, and for all
corners ¢; of Sy, E(cy) are {0, 1} in Figure 17(a). Let v,
denote the vertex in blue rectangle in Figure 17(b). From
Table 4, since E(CUR (vl)) is {0}, E(CDL (vl)) becomes {0,
2}. From Table 2, E(CDL(SZa)) also becomes {0, 2}. From



Table 2, since E(Cyp (52,,)) is {0, 2}, both E(Cy,(S,,)) and
E(CDR(SZb)) are {1} as in Figure 17(b). Then, the two sets
are propagated to S; and S;, respectively, and subsequently
cross out two edges of S; and draw two edges of S;,
respectively, as in Figure 17(d).

IV. EXPERIMENTS

In our experiments, we used the personal computer
equipped with the CPU, Intel(R) Core(TM)2 Duo E7200 @
2.53GHz, to solve 10000 25%30 puzzles ranked hard in [9].
We compare the program, denoted by P, , using the
method in Subsection III with another program, denoted by
P,4. The program P,;; uses the deduction rules in [8], not
including those in Subsection III.

In the program P,;;, at least 2% of the 10000 puzzles
cannot be solved within 2000 seconds. After using P,,,,, all
can be solved within 0.05 second.

We also compare our program with Herting’s in solving
40 x 35 puzzle given in [1]. For Herting’s method, it took
about 2 and half minutes to solve it. Our program P,,,, can
solve the puzzle in 1.7 seconds.

V. CONCLUSION

In this paper, we have proposed a new method to solve
Slitherlink puzzles. Unlike traditional methods and Herting’s
rule-based method, our new method use sets of corners to
solve Slitherlink puzzle efficiently. With square hints, the
new method supports many efficient and simple deduction
rules. In our experiments, the new method performs
extremely better than the old version. In addition, we can
also solve a 40 x 35 puzzle in [1], which requires 2 and half
minutes using Herting’s method.
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In addition, since our method can solve all the current
Slitherlink puzzles very quickly, we are building a puzzle
generator to create much harder problems, and will publish
over the Internet soon. The concepts in this paper may be
applied to solving some other games, e.g., those in [3][7].
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