
System Demonstration for Generic Game Development
Framework

Hao-Yun Liu, I-Chen Wu, Hao-Hua Kang, Ting-Fu Liao

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
{hyliou,icwu,kangbb,tfliao}@java.csie.nctu.edu.tw

Abstract
In this demonstration, we show a software

framework for generic game development, including
game record editing and job-level (JL) computing. For
the former, the framework supports the display and
editing of game positions and the browsing of the game
position tree. Currently, we have developed game record
editors for Connect6, Go, Chinese Chess, Mahjong, etc.
In this demonstration, we show how easily an editor for
the game Tic-Tac-Toe is built. For the latter, the
framework supports job submission to a volunteer
computing system, named Computer Game Desktop
Grid developed by our team, to help solve or analyze
game positions. Currently, we support JL proof number
search, JL alpha-beta search, and JL Monte-Carlo tree
search. In this demonstration, we show how easily
JL-PNS is designed.

Keyword: Software framework, game record editor,
CGDG, Job-level search, volunteer computing.

1.Introduction
To facilitate research in the computer game area,

this demonstration paper demonstrates our software
framework [7] for generic game development,
including game record editing and job-level
computing. For the former, the framework supports
the display and editing of game positions and the
browsing of the game position tree. For the latter, the
framework supports job submission to a volunteer
computing system, named Computer Game Desktop
Grid [10] (CGDG) developed by our team, to help
solve or analyze game positions.

Figure 1. Connect6 Editor.

For the former, we have currently developed game
record editors for Connect6 [11][12], Go, Chinese
Chess, Mahjong, etc. The editor for Connect6 is
illustrated in Figure 1. For the latter, we have
developed a lot of job-level (JL) search algorithms
such as JL proof number search (JL-PNS)
[1][2][13][14], JL Monte-Carlo Tree Search
(JL-MCTS) [3][6], etc. to solve many game problems,
such as the openings of Connect6, and the openings of
Chinese Chess.

Most importantly, both game record editing and
job-level computing are orthogonal in the aspect of
software development. Game developers can design a
game editor for their game by extending the base
modules which are extracted from the code may
replicate; while JL search algorithm developers can
easily implement their own JL search algorithms in a
similar way. When completing the design of the game
record editor for a new game, say Chinese Chess, all
the designed JL algorithms can be easily applied to the
new game. On the other hand, when a new JL
algorithm is designed, it can be applied to all the
different games.

In this demonstration, we illustrate the framework
by designing an editor for the game Tic-Tac-Toe and
JL-PNS. Section 2 reviews the software framework
[7], Section 3 demonstrates the Tic-Tac-Toe editor and
JL-PNS, and Section 4 lists the links to the
demonstration system.

2.System Description
In this section, the software framework [7] is

reviewed. This software framework includes two
major modules: game record editing module and
job-level module. The game record editing module
support game developers to construct a basic game
record editor for their game, and the job-level module
provides an algorithm template to quickly implement
JL search algorithms. Both are summarily reviewed in
the following two subsections, while the details are
described in [9].

2.1 Game Editing Module
As shown in Figure 2 (below), the game editing

module uses MVC design pattern [8][9] and includes
two components: model and view corresponding to
the same name in MVC. The controller is not
encapsulated into a class because we use MFC to

2012 Conference on Technologies and Applications of Artificial Intelligence

978-0-7695-4919-4/12 $26.00 © 2012 IEEE

DOI 10.1109/TAAI.2012.55

315

2012 Conference on Technologies and Applications of Artificial Intelligence

978-0-7695-4919-4/12 $26.00 © 2012 IEEE

DOI 10.1109/TAAI.2012.55

323

construct our software framework which has its own
mechanism to map UI events to functions.

Figure 2. Game Editing Module.

The model has two main parts, tree structure and
move interpretation, and some minor functionalities;
the view includes three sub-views, named
BoardView, TreeView, and TabWindow, which
present a position in their own ways.

In the model, for the tree structure, we use
left-child right-sibling binary tree with two kinds of
node: move node and branch node, each contains
information about a move and a branch respectively.
Both kinds of nodes include links to maintain the tree
structure. To make tree access easier, the links are
hidden from developers, and a tree modification helper,
named NodePointer, is provided. It implements
visitor and iterator design pattern and simplifies tree
traversal from developers.

For move interpretation, game records are saved
into a file and loaded from a file in Smart Game
Format (SGF), and some abstract serialization classes
are supported to interpret files for different games.

In the view, a board view is used to draw the board
which presents the current game position. To facilitate
game developerment, we encapsulate the board view
into an abstract class which provides utilities such as
line drawing, text drawing, and symbol drawing, and
one function, named drawBoard, remains
unimplemented so that game developers can define
how to draw a board.

A tree view is to show what the game position tree
looks like. If game developers have to customize it,
they can override abstract functions of the base classe,
named BaseTreeView. A tab window supports
some functionalities such as displaying comment,
SGF tags of position, and debugging console in tabs,
and provides a convenient interface to allow
developers to add new tab sub-windows on it.

In this module, the following base classes are
supported for game editor developers.

� BaseEditorDoc: The model class of our
framework

� BaseSgfParser: The class for move
interpretation, which implements SGF structure
parsing so that developers can implement a
game parser by writing only few lines of code
about move parsing.

� BaseSgfSerializer: The class, similar to

BaseSgfParser, that implements SGF
structure serializing for developers.

� BaseBoardView: the class that supports most
APIs for drawing a game board.

� BaseTreeView: the class that supports most
APIs for maintaining the tree view window.

� BaseTabWindow: the class that displays a tab
and the client tab page windows.

2.2 Job-Level Module
Job-level module offers a template of JL search

algorithm which uses a design pattern named template
method, and provides the accessibility to CGDG. JL
developers can quickly implement their JL search
algorithm by extending this template. According to [7],
the template includes eight functions grouped into
three event handlers, initialization event handler, idle
worker event handler, and returning job result event
handler.

The initialization event is triggered when a user
demands to start. One function supporting this is
initialize.

Worker idling event is triggered when an idle
worker is available. The functions supporting the
handling are select, preupdate, and
dispatch.

Returning job message event is triggered when a
job result is returned. The functions supporting the
handling are parse, update, checkfinish, and
finalize.

We provide a template class, named
BaseJobLevelAlgorithm, to implement a JL
algorithm. The above eight functions are abstracted in
the class for JL algorithm developers to easily
implement their JL search algorithm.

On the other hand, JL algorithm should be adaptive.
That is, how to decide something according to games
should be able to be customized. We introduce an
interface for game policy to easily apply a JL
algorithm to a game. Once a JL algorithm developer
designed a JL algorithm with the corresponding policy,
a game developer can easily adapt the JL algorithm by
providing an implementation of that policy. It makes
development of game and JL algorithm orthogonal.

3.System Demonstration
We illustrate the framework by designing the

Tic-Tac-Toe editor and JL-PNS.

To design game record editors, game developers
should extend the six base classes, described in
Subsection 2.1: BaseEditorDoc, BaseSgfParser,
BaseSgfSerializer, BaseBoardView, BaseTreeView,
and BaseTabWindow, and override those pure virtual

316324

functions, if any. For the Tic-Tac-Toe editor, we
customize (redefine) five of the six classes, excluding
BaseTabWindow whose customization is not
needed.

Table 1. Functions to be overridden in Tic-Tac-Toe Editor

TicTacToeEditorDoc::addOnePiece(…)
TicTacToeSgfParser::parseMove(…)
TicTacToeSgfSerializer::serializeMove(…)
TicTacToeBoardView::drawBoard(…)
TicTacToeTreeView::getText(…)

In these classes, the methods to be overridden or
redefined are listed in Table 1. The method
addOnePiece is required since each game may have
different way to add a piece, such as Chinese Chess,
Connect6. The methods parseMove and
serializeMove are required for input and output.
The methods drawBoard and getText are required
for displaying the board.

To develop a JL algorithm, JL algorithm developers
should inherit BaseJobLevelAlgorithm, and
override those eight abstract functions (described in
Subsection 2.2) to define the algorithm, i.e. JL-PNS
here. The eight functions should be overridden are
listed in Table 2 (below).

Table 2. Functions to be overridden in Job-Level PNS

JobLevelProofNumberSearch::initialize(…)
JobLevelProofNumberSearch::select(…)
JobLevelProofNumberSearch::preupdate(…)
JobLevelProofNumberSearch::dispatch(…)
JobLevelProofNumberSearch::parse(…)
JobLevelProofNumberSearch::update(…)
JobLevelProofNumberSearch::checkFinish(…)
JobLevelProofNumberSearch::finalize(…)

To apply job-level PNS to Tic-Tac-Toe, game
developers should implement a game policy
TicTacToePnsPolicy extending PnsPolicy. Similarly,
to apply job-level PNS to Connect6, game developers
should implement a game policy Connect6PnsPolicy
extending PnsPolicy.

After the above development, we list the
functionalities supported by this framework as
follows:

(a)

(b)

(c)
Figure 3. Some displays of the demonstration.

1. Game editing related functionalities:
a. Display and edit game positions, including

rotation, comments and tags of positions.
(Figure 1 and Figure 3(a))

b. Browse and edit the position tree.
c. Access files.

2. Job-level related functionalities:
a. Access CGDG, our volunteer computing

system.
b. Display the status of workers. (Figure 3 (b))
c. Set the worker filtering. For example, if we

only implement a job, a game-playing program,
on Windows, the workers running on Unix
should be filtered out.

d. Submit jobs to CGDG.
e. Support operations for JL-PNS.
f. Support operations for JL program competition.
g. Display current jobs in CGDG, as shown in

Figure 3 (c).
3. Other functionalities:

a. Support database accesses for openings.
b. Support console display for debugging.

The current status of this framework is listed in
Table 3 (below). Circle denotes finished projects and
triangle denotes ongoing projects. The line counts of
each game and the base module are listed in Table 4
(below). The table shows that this framework saves a
lot of efforts in developing games and JL algorithms.
This framework have helped us to win many
tournaments [5][15][16][17][18] and helped the
researches in [13][14].

317325

Table 3. Current Status.

Status

Pure
A

lgorithm

C
onnect6

G
o

C
hinese

C
hess

M
ahjong

Tic-Tac-Toe

Pure Editor O O O O O

JL-PNS O O

JL-MCTS O � O

JL-SSS* � �

AI
Competition O O O

Table 4. Line Counts.

The original
C

onnect6Lib
and JL-PN

S

G
am

e record
editing m

odule

Job-level
m

odule

C
onnect6

G
o

C
hinese Chess

M
ahjong

Tic-Tac-Toe
86688 27854 6658 8215 8843 3535 2192 836

4.Download Link
A demonstration version is available at

http://connect6.csie.nctu.edu.tw/Editor.zip. It includes
a game record editor for Tic-Tac-Toe that is a
Windows executable binary, source files of classes for
Tic-Tac-Toe developers, and source files of JL-PNS
algorithm for JL developers.

Acknowledgement
The authors would like to thank the National

Science Council of the Republic of China (Taiwan) for
financial support of this research under contract
numbers NSC 95-2221-E-009-122-MY2 and NSC
97-2221-E-009-126-MY3.

Reference
[1] Allis, L.V., Searching for solutions in games and

artificial intelligence, Ph.D. Thesis, University of
Limburg, Maastricht, The Netherlands, 1994.

[2] Allis, L.V., Meulen, M. van der, and Herik, H. J. van
den, Proof-number search, Artificial Intelligence, Vol.
66(1), pp. 91-124, 1994.

[3] Browne, C., Powley, E., Whitehouse, D., Lucas, S.,
Cowling, P., Rohlfshagen, P.,Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S., A Survey of Monte
Carlo Tree Search Methods, the IEEE Transactions on
Computational Intelligence and AI in Games, Vol. 4(1),

Forthcoming, 2012.

[4] Chen, C.-P., Wu, I.-C., and Chan, Y.-C., Connect6Lib
– A Connect6 Editor, available at
http://www.connect6.org/Connect6Lib_Manual.htm,
2009.

[5] Chou, C.-W., Yen, S.-J., and Wu, I.-C., "TAAI 2011
Computer Go Tournaments," ICGA Journal, vol. 34,
no.4, 2011, pp. 251-252.

[6] Coulom, R., Efficient Selectivity and Backup
Operators in Monte-Carlo Tree Search. Proceedings of
the 5th International Conference on Computer and
Games (eds. H. J. van den Herik, P. Ciancarini, and H.
J. Donkers), Vol. 4630/2007 of Lecture Notes in
Computer Science, pp. 72–83, Springer, Turin, Italy,
2006.

[7] Liu, H.-Y., Wu, I.-C., Kang, H.-H., and Liao, T.-F.,
“Software Framework for Generic Game Development
in CGDG”, International Computer Symposium
(ICS2012), Hualien, Taiwan, December 2012.

[8] Trygve Reenskaug, Models-Views-Controllers, 1979.

[9] Trygve Reenskaug, THING-MODEL-VIEW-EDITOR
an Example from a planningsystem, 1979.

[10] Wu, I.-C., Chen, C.-P., Lin, P.-H., Huang, K.-C., Chen,
L.-P., Sun, D.-J., Chan, Y.-C., and Tsou, H.-Y., A
Volunteer-computing-based grid environment for
Connect6 applications, in IEEE Int. Conf. Comput. Sci.
Eng., Vancouver, BC, Canada, Aug. 29–31, 2009, pp.
110–117.

[11] Wu, I.-C., Huang, D.-Y., and Chang, H.-C., Connect6.
ICGA Journal, Vol. 28(4), pp. 234-242, 2006.

[12] Wu, I.-C. and Huang, D.-Y., A New Family of
k-in-a-row Games. The 11th Advances in Computer
Games Conference (ACG'11), pp. 180-194, Taipei,
Taiwan, 2005.

[13] Wu, I.-C., Lin, H.-H., Lin, P.-H., Sun, D.-J., Chan,
Y.-C., and Chen, B.-T., "Job-Level Proof-Number
Search for Connect6", The International Conference
on Computers and Games (CG 2010), Kanazawa,
Japan, September 2010.

[14] Wu, I.-C., Lin, H.-H., Sun, D.-J., Kao, K.-Y., Lin,
P.-H., Chan, Y.-C., and Chen, B.-T., "Job-Level
Proof-Number Search for Connect6", submitted to
IEEE Transactions on Computational Intelligence and
AI in Games (IEEE TCIAIG).

[15] Wu, I.-C., and Lin, P.-H., NCTU6-Lite Wins Connect6
Tournament, ICGA Journal, Vol. 31(4), 2008.

[16] Wu, I.-C., Lin, Y.-S., Tsai, H.-T., and Lin, P.-H., "The
Man-Machine Connect6 Championship 2011", ICGA
Journal (SCI), vol. 34, no. 2, June 2011.

[17] Yang, J.-K., Su, T.C., and Wu, I.-C., “TCGA 2012
Computer Game Tournament Report,” submitted to
ICGA Journal, 2012.

[18] Yen, S.-J., Su, T.-C., and Wu, I.-C., "The TCGA 2011
Computer-Games Tournament", ICGA Journal (SCI),
vol. 34, no. 2, June 2011.

318326

