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Fluorinated-silicate-glass (FSG) was combined with Ni-metal-
induced lateral crystallization (NILC) polycrystalline silicon thin-
film transistors (poly-Si TFTs). It was found that the electrical 
performances were improved because the trap-state density was 
decreased by fluorine-ion passivation. Moreover, FSG-NILC-TFTs 
possess high immunity against the hot-carrier stress and, thereby, 
exhibit better reliability. 
 

Introduction 
 

Polycrystalline silicon thin-film transistors (poly-Si TFTs) have been widely used in 
active matrix organic liquid crystal displays (AMOLCDs) because their higher carrier 
mobility and lower threshold voltage than conventional amorphous thin-film transistors 
(a-Si TFTs) (1). Ni-metal-induced lateral crystallization (NILC) is one of these effective 
methods that can reduce the crystallization temperature to fabricate poly-Si TFTs on 
inexpensive glass substrates (2-3). However, in NILC, the poly-Si grain boundaries 
would trap Ni and NiSi2 precipitates which induce trap-state density increased, resulting 
in threshold voltage shifting and lower field-effect mobility (4-5). In this letter, fluorine-
ion was introduced to buffer oxide layer, subsequently deposited a-Si film and 
transformed the buffer layer to fluorinated-silicate-glass (FSG) layer at 550oC. Then the 
fluorine-ion would diffuse to the active layer and passivate the trap-state defect when 
NILC was carried out. The above phenomenon cause electrical characteristic 
enhancement (6-7). Moreover, the presence of Si-F bonds strengthens electrical 
endurance against hot-carrier impact. 
 

Experiment 
 

First, a 500-nm-thick SiO2 buffer layer was fabricated by thermal furnace. Then, the 
fluorine-ion was implanted into the buffer oxide layer to form FSG layer. The projection 
range of fluorine-ion was set at the middle of the FSG layer and the accelerating energy 
was 30 keV. The dosage of fluorine ions was 2×1014 cm-2. Next, a 100-nm-thick undoped 
amorphous silicon layer was deposited by low pressure chemical vapor deposition 
(LPCVD) system on the FSG layers. The photoresist was patterned to form desired Ni 
lines, and a 5-nm-thick Ni film was deposited on the a-Si, subsequently annealed at 
530oC for 48 h to form the NILC poly-Si film. To reduce Ni contamination, the unreacted 
Ni metal was removed by chemical etching. After the crystallization of the a-Si, the 
active regions were defined by RIE. The 100-nm-thcik TEOS oxide was deposited by 
plasma-enhanced CVD (PECVD) for gate oxide and 100-nm-thick poly-Si film was 
deposited by LPCVD for gate electrodes. P+-ion was implanted at a dose of 5×1015 cm−2 
to form the source/drain and gate after defining the gate pattern by RIE etching. The 
activation of the source/drain regions was realized by the thermal furnace under N2 
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ambient at 600oC for 24 h. For comparing the effect of fluorine-ion passivation, a typical 
NILC-TFT with SiO2 buffer layer was also fabricated. 
 

Results and Discussions 
 

Fig. 1 show the ID–VG transfer characteristics of FSG-NILC-TFTs and typical NILC-
TFTs. The measured and extracted key device parameters are summarized in Table I. The 
performance of FSG-NILC-TFTs was far superior to that of typical NILC-TFTs. This 
implied when NILC was carried out; the fluorine-ion would diffuse to the active layer 
from FSG buffer layer, terminate dangling bonds, and replace the weak Si-H bonds in the 
grain boundaries and SiO2/poly-Si interface by forming stronger Si-F bonds (8-9). Fig. 2 
show the secondary-ion mass spectroscopy (SIMS) analysis of FSG-NILC-TFTs of the 
fluorine, silicon, and oxygen atoms. It was found that the F-ion was piled up at the 
interface of FSG layer/poly-Si channel and poly-Si channel/gate oxide. The phenomenon 
indicated fluorine-ion effectively passivated the dangling bonds in the channel of FSG-
NILC-TFTs, resulting in the trap-state density (NT) was reduced and improved electrical 
properties (10). The trap state density, which could be extracted using Levinson and 
Proano’s method (11-12), was reduced from 4.6×1012 cm-2 to 3.1×1012 cm-2, as show in 
Table I, leading to high field-effect mobility (μFE), low threshold voltage (VTH), low 
subthreshold slope (S.S.) and high ON/OFF-current ratio (ION/IOFF) in FSG-NILC-TFTs. 

 
 

Conclusions 
 

An investigation of the effects of fluorine-ion passivation using the FSG buffer layer 
on the improvement of the electrical characteristics and reliability of NILC poly-Si TFTs 
has led to the development of a simple, effective process for improving the TFT electrical 
properties. The FSG-NILC-TFTs can be improved not only the transfer characteristics 
but also the electrical reliabilities. This result can be attributed to the fluorine-ion 
passivation effects and the weaker Si-H bonds and Si-Si bonds were replaced by stronger 
Si-F bonds. 
 

 
Fig. 1 Transfer characteristics of FSG-NILC-TFTs and typical NILC-TFTs 
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Fig. 2 The SIMS depth profile of FSG-NILC-TFTs of the fluorine, silicon, and oxygen 
atoms 

 
 
Table  I.  Device characteristics of FSG-NILC-TFTs and Typical NILC-TFTs 
Device characteristics FSG-NILC-TFTs Typical NILC-TFTs 
NT (1012 cm-2) 3.1 4.6 
μFE (cm2/ Vs) 77.8 55.1 
VTH (V) 3.1 6.1 
S.S. (V/dec) 1.3 2.1 
ION/IOFF (106) 2.2 0.5 
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