
Computers Math. Applic. Vol. 34, No. 10, pp. 115-131, 1997
P e r g a m o n Copyright©1997 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
PIh S0898-1221(97)00210-1 0898-1221/97 $17.00 + 0.00

A Heuristic Approach to Generating File
Spanning Trees for Reliability Analysis

of Distributed Computing Systems*

D E N G - J Y I CHEN, RUEY-SHUN CHEN** AND T I E N - H S I A N G HUANG
Institute of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

(Received and accepted October 1994)

A b s t r a c t - - T h e reliability of Distributed Computing Systems (DCS) in terms of Distributed Pro-
gram Reliability (DPR) and Distributed System Reliability (DSR) has been studied intensively. Cur-
rent reliability algorithms available for the analysis of DPR and DSR include MFST, FARE, FST,
and FST-SPR. This paper presents a reliability algorithm, called HRFST, that eliminates the need
to search a spanning tree during each subgraph generation. The HRFST algorithm reduces both the
number of subgraphs (or trees) generated and the actual execution time required for analysis of DPR
and DSR. Examination of several sample cases shows that the HRFST algorithm is more efficient
than the FST-SPR algorithm.

geywords- -Dis t r ibuted Computing Systems (DCS), Distributed Program Reliability (DPR),
Distributed System Reliability (DSR), Reliability.

1. I N T R O D U C T I O N

In reliability analysis of Distributed Computing Systems (DCS), V.K.P. Kumar has proposed
a very useful notion called a Minimal File Spanning Tree (MFST) and developed an algorithm
called MFST to find MFSTs within a graph [1,2]. The MFST algorithm takes two passes to
obtain the reliability of PDS. Pass 1 is to obtain the multiterminal connections for every MFST.
Pass 2 is to use an algorithm called SYREL [3] to compute the equivalent reliability expressions
by the multiterminal connections of every MFST. To improve the MFST algorithm, A. Kumar
developed an algorithm called FARE (Fast Algorithm for Reliability Evaluation) [4,5] to compute
the DPR and DSR. The FARE algorithm uses a connection matrix to represent each MFST and
proposes some simplified techniques for speeding up the analysis process. To further improve the
evaluation speed, we also proposed the FST-SPR algorithm for reducing the number of subgraphs
generated during reliability evaluation [6]. In [6], the FST-SPR algorithm was compared with
the MFST and FARE algorithms to show its performance advantage. The basic idea behind the
FST-SPR algorithm is to make subgraphs generated completely disjoint, so that no replicated
subgraphs are generated during the reliability evaluation process. In order to generate disjoint
subgraphs, we have to search a spanning tree from the current graph and then cut each edge in
the spanning tree disjointly to produce the disjoint subgraphs. This process is repeatedly applied
to each subgraph generated until a File Spanning Tree (FST) is found or no edge is reached.

*This research work was supported in part by the National Science Council of the R.O.C. and in part by the
Chung San Institute of Technology, ~iwan, R.O.C.
**Author to whom all correspondence should be addressed.

Typeset by ~4.A48-TEX

115

116 D.-J. CHEN et al.

Therefore, to find a spanning tree from each generated subgraph can be computationally costly
and time consuming.

In this paper, we present a reliability algorithm called HRFST that eliminates the need to
search of a spanning tree during the generation of each subgraph. The HRFST algorithm reduces
both the number of subgraphs (or trees) generated and the actual execution time required for the
analysis of DPR and DSR. Examination of various sample cases clearly shows that the HRFST
is more efficient than the FST-SPR algorithm.

2. P R E V I O U S W O R K

The notation and definitions used in [7] are recalled here for consistency.

2.1. N o t a t i o n

x~: a node representing a processing element i

x i j : a link between processing elements i and j

p~j (q i j) : probability that the link xi,j is working (failure)

t: a subgraph, which can be a tree or forests of the DPS graph (the trees and forests

are represented by sets of nodes and links)

Fi: the data file i

Pi: the distributed program i

FAI: the set of data files available at processing element xi

FAt: the set of data files available by subgraph t

PAi: the set of programs available at processing element x~

PAt: the set of programs available by subgraph t

PN: the set of programs that need to be executed in the DPS

FNi: the set of data files needed for program i to be executed

FN: the set of data files needed for several programs to be executed in the DPS

LSt: a set of links that represents the links' state in the subgraph t; the state of each

link in the set is:

failure if ~ E LSt

working if xi,j E LSt

do not care otherwise

STt: a set of links that can be used to represent a spanning tree of the subgraph t

PRt: a probability expression denoted by p~,j or q i j that represents the probability of

the subgraph t containing a working spanning tree

Rt: the reliability of the subgraph t

R: the reliability of the DPS

2.2. Definit ions

DEFINITION 1. An FST is an File Spanning Tree that connects the root node (the processing
element that runs the program under consideration) to some other nodes such that its vertices
hold all the necessary data files for the programs to be executed.

DEFINITION 2. An M F S T is a minimal FST such that there exists no other FST which is a
subset of it.

DEFINITION 3. A probabi l i ty space is composed by all possible states of the links (working,
failure, or do not care).

DEFINITION 4. A probabi l i ty graph is a graph that has a probability space associated with
it. For the original graph, the probability is assumed to be 1 (all links do not care). Also, the
probability space of a subgraph that will be equal to the sum of the probability space of all
subgraphs generated by this subgraph.

Reliability Analysis of Distributed Computing Systems 117

DEFINITION 5. A subgraph t is satisfied means that the data files and programs available by
subgraph t can execute the distributed program successfully. (FAt D_ FN, and PAt D_ PN, and
the failure links will not affect the program's execution.)

DEFINITION 6. A subgraph t may generate several subgraphs by cutting its links. Then the
subgraph t is called a parent subgraph and the subgraphs generated from subgraph t are called
child subgraphs of subgraph t.

2.3. The F S T - S P R Algor i thm

Consider the distributed processing system in Figure 1, there are four processing elements
(xt, x2, x3, x4) connected by links xl,2, xl,3, x2,3, x2,4, and x3,4. Processing element Xl contains
two data files (F1 and F2) and can run program 1 directly to communicate with other nodes to
access data files required to complete the execution of program 1. Detailed information on each
node is summarized in FAj and PAj (j = 1, 2 , . . . , 4).

x2

~1,3 ~ X3,4

FN2 = [F1,F2,F4]
FNj = [F1,F2,F3,F4]

x3
Figure 1. A simple DPS with four processing elements.

An outline of the FST-SPR algorithm used to compute the DPR and DSR presented here. For
a more detailed treatment, readers are referred to [6].

Step 1. Perform reliability-preserving reduction on the original DPS graph.
Step 2. Find a spanning tree from the reduced DPS graph.
Step 3. Cut each link from the spanning tree (obtained from Step 1) so that the resulting

subgraphs are all completely disjoint.
Step 4. Check whether each the resulting subgraph contains an FST. If so, then repeat Steps 1

to 4 until the resulting subgraph contains no FST or the resulting subgraph contains
no link.

Step 5. For all the subgraphs generated during the cutting process, sum all the probability
subgraphs that contain an FST by adding all the associated probability spaces to
obtain the final reliability.

Subgraphs generated using the FST-SPR reliability algorithm are completely disjoint, and
hence, no replicated subgraphs (or trees) will be generated. In [6], the FST-SPR algorithm was
compared with MFST [1] and FARE [5] to show its performance advantage in the analysis of
DPR and DSR.

118 D.-J. CMEN et al.

3. T H E H R F S T A L G O R I T H M

3.1. Observat ions on the F S T - S P R Algor i thm

When we study the FST-SPR algorithm carefully, we find that a spanning tree must be found
each time for a subgraph is generated (as shown in Step 2 of the FST-SPR algorithm). This
implies that the number of times the spanning tree generation procedure is invoked is equal to
the number of subgraphs generated. In the worst case, the computation cost will be L!, where L
is the number of links in the first spanning tree identified in the original graph. Thus, the cost
to find a spanning tree in the FST-SPR algorithm is high.

The purpose of finding a spanning tree is to see if the current subgraph can run the distributed
program successfully (whether it contains all the data files required for the execution of the
distributed program under consideration). If it can, then a disjoint-cutting process is performed to
generate disjoint subgraphs from the current subgraph. If it cannot, then the subgraph generation
is stopped. This implies that a spanning tree that can run the distributed program successfully
will also be an FST and that it will take more time, in general, to run the distributed program,
since the number of nodes and links of a spanning tree is greater than the number of nodes and
links of an FST. Thus, using the spanning tree to run the distributed program will take more
time and generate more subgraphs than that of the FST during the analysis of DPR and DSR.

Based on the above observations, we suggest that if we can find a way to choose an FST together
with an appropriate cutting approach to generating subgraphs, then both the computation time
and the number of subgraphs can be reduced. This suggestion can be justified easily. Consider the
example in Figure 2, and suppose links i l , L2,..., L5 in graph A are a spanning tree. Then five
disjoint subgraphs will be generated from graph A by applying the FST-SPR algorithm. Suppose
links L1, L2, L3 in the same spanning tree are an FST for a distributed program Pj. Then the
operation of links L1, L2, L3 in graph A will be enough for successful execution of program Pj.
Thus, finding the FST instead of the spanning tree for the disjoint-cutting process will generate
fewer subgraphs. The difference between the use of an FST and a spanning tree for subgraph
generation is shown in Figure 2.

graph A graph A

L ~] b4spanning t r~ : ~ FST :

[fl I[11 I D r I
Figure 2. Difference between the use of spanning tree and FST.

3.2. T h e Conceptua l Foundat ion of the H R F S T Algor i thm

Once the motivation is understood, we need to construct a method of finding an FST with
reasonable cost and then to apply the disjoint-cutting process to generate subgraphs. The most
straightforward approach is to use the MFST algorithm to find an FST. This is not a good
solution, however, since we have been trying to avoid generating replicated trees (subgraphs), in
order to reduce the computation time. Thus, a new approach must be developed.

Here we will present a new method of finding an FST. The basic idea of the method is to find
a heuristic cost function to compute the cost of each link x i j in terms of data files and programs
resident in nodes xi and xj. Through the cost function analysis, we will he able to understand,

Reliability Analysis of Distributed Computing Systems 119

which connecting between nodes will offer us a good chance of obtaining an FST. The heuristic

cost function is defined below.

cost(x~j) = # (F N (F A , U F A j)) + # (P N - (PA~ (J P A j)) ,

where "-" is the difference set and "#" is the number of sets.

Therefore, cost(xij) = 0 means that if link x i j is selected then there is a good chance that an
FST is in subgraph x j , x~d, x j . Rules for selecting links are listed below.

Rule 1. Always choose the link that has the minimum cost in the graph.

Rule 2. If there are two or more links with the minimum cost, then choose the one whose
connecting nodes have the least replicated data files and programs among those under

consideration.

Rule 1 indicates that we should use the mos't important link as the factor for the probability
parti t ion process; Rule 2 tells us that connecting two nodes that have the least-replicated data
files and programs will decrease the costs of the adjacent links. This will enable an FST to be
found as soon as possible.

Consider the DPS in Figure 1 for the analysis of DPR1. The costs of links Xl,2, Xl,a, x2,3, x2,a,
and x3,4 are, based on the cost function defined above, 0, 1, 2, 1, and 0, respectively. According
to the link selecting rule, link Xl,2 is selected to be cut for the generation of subgraphs. Since its
cost is zero, there is only one subgraph generated by the original graph. The probability space
after this partition is shown in Figure 3.

x 3 x 3

Figure 3. The probability space of the original graph.

If we continue the analysis process, the costs of links x1,3, x2,z, x2,4, and xa,4 are now 1, 2, 1,
and 0, respectively. Since the link Xa,4 has the minimum cost (zero), the subgraphs of portion B
are the subgraph B without link xa,4 (shown by portion B2). The probability space after this

partit ion is shown in Figure 4.

Xl q (~ ~4 ~ ~ , , ~ xl x4

 1.30x3,4 1,3 (..)
x 3 x 3

Figure 4. The probability space of the portion B.

The portion B2 now has to be split. The costs of links xl,a, x2,z, and x2,4 are 1, 2, and 1,
respectively, so the first link to be cut is xl ,z . Since the cost of link Xl,a is not zero, another link
should be selected to be cut for generating the second subgraph. Because of the disjoint property,
the second subgraph of subgraph B2 should merge the nodes xl and xz, and now the costs of
links xz,3 and x2,4 are 0 and 1. Since the cost of link x2,z is the minimum and is zero, then the

120 D.-J. CHEN et al.

x l Q (~ ;4 ~ ~ x4

x_, ~1 merge x 3

x 3
Figure 5. The probability space of the portion B2.

link to be cut in the second subgraph is x2,3. The probabiliW space after this parti t ion ks shown
in Figure 5.

The PRt of every subgraph can be computed according to the LSt and a set called WORNt ,
which is the set of the links to be cut by the subgraphs (multiply Pi,j if x i j E LSt or x i j E
WORKt , multiply qi,j if ~ E LSt). Finally, we sum all the PRt 's to obtain the reliability of
the DPS.

3.2. T h e C o m p l e t e H R F S T Re l i ab i l i t y A l g o r i t h m

The HRFST algorithm is different from the FST-SPR algorithm; it is described informally

below.

1. Perform as many reductions on the current graph as possible and compute the cost of each
link while carrying out the reductions.

2. If there is any single node that contains all data files and programs required, then remove
current graph from TRY, store the current graph in the list FOUND, and go to Step 5.

3. Remove the current graph from TRY. If it has no links that can be cut, then store the
current graph in the list FOUND and go to Step 7.

4. Use Rule 1 and Rule 2 to select a link xi,j. Cut the selected link xi,j from the current
graph to generate the first subgraph. Connect nodes xi and xj and perform reductions
if necessary. Repeat the same process to get a link xk,t and cut link xk,t to generate
the second subgraph, until a link Xm,n with cost zero is chosen to produce the ~t th child

subgraph.
5. Set the links chosen in Step 4 to in the current graph. This implies that the current graph

contains at least one FST. Add the current graph and the working links to FOUND.
6. Check each subgraph generated in Step 4 and add the candidate FST subgraphs to the

list TRY.
7. For each subgraph in TRY, apply Steps 1 to 6 repeatedly until list TRY is empty.
8. All the FSTs of each size are now stored in the list FOUND.

The formal algorithm is presented below.

H R F S T ALGORITHM.

b e g i n

step 1: initialization
t = original graph ;
TRY = { t} ;
FOUND = f ;
LS, = f;
F N = F N i tJ FNi (where program i • P N) ;

Reliability Analysis of Distributed Computing Systems 121

R = O ;

step 2 : compute_cost(t) ;
step 3 : generate subgraphs

r e p e a t
3.1.1 get a graph t from TRY and remove t from TRY ;
3.1.2 reduction step

repeat
degree-l_reduction(t) ;
degree-2_reduction (t);
series_reduction(t) ;
parallel_reduction(t) ;
unsatisfied_connected_components_deletion(t) ;

un t i l no reduction happen
3.2 checking step

i f there is any single node i where FA~ D_ F N and P A i 2 P N
t h e n set P R t according to LSt add t to FOUND; continue;

find any connected component i in t such that
FA~ 2 F N and PA~ C_ P N ;

i f any connected component i exists
t h e n add t to FOUND ;
else continue ;

3.3 cutting step
add subgraph (t, WORKt) to TRY ;
for all link x~,j E WORKt ;

P R t = P R t * Pi,j ;
od

un t i l (TRY = f)
step 4 : compute reliability

for all t E FOUND
R = R + P R t ;

od

e n d

procedure subgraph (t, WORKt)
beg in

WORKt = y
repeat

child *-- t ;

PRchild = P R t ;
LSchild : LS~ ;
chi ld 4-- nodes_merged(child, W O R K t) ;

for all x~,j e WORKt do
PRchild = PRchild * p~,j ;

od
xi,j *-- min_cost l ink(chi ld) ;
chi ld ~ cut_link(child, xi , j) ;

CUTchild = {xi , j} ;
PRehild = PRehild * qi,j ;
LSehud = LSehad >> {x--~,j}
WORKt = WORKt >> {x~,j } ;

un t i l (cost(x~,i) = O)

122 D.-J. CHEN et a~.

return(child)

end

procedure compute_cost(t)
begin

for each link x~,j in subgraph t do
cost(xi,j) = # (F Y - (FAi t.J FAj)) + # (P g - (P A i t..J PAj))

od

end

procedure modify_cost(t, xi,j)
begin

cost(xi,j) = # (F N - (FAi t_J FAj)) + # (B Y - (P A i U PAj))

end

procedure min_costAink(t) ;
begin

select a link xi,j whose cost is minimum from all the links in subgraph t ;
if there are two or more links with the same minimum cost, then select the one whose
connecting nodes have the least-replicated data files and programs.

end

procedure series_reduction(t)
begin

for all node xi in t
/* similar to tha t in the F S T - S P R algor i thm */

modify_cost (t, xk,j)
od

end

procedure parallel_ reduction(t)
begin

for all node xi in t
/* similar to tha t in the FST-SPR algor i thm */

modify_cost(t, Xk,j)
od

end

procedure degree-l_reduction(t)
begin

/* similar to t ha t in the F S T - S P R algor i thm */
modify_cost (t, xk ,j)

end

procedure degree-2_reduction(t)
begin

for all node xi in t
/* similar to that in the F S T - S P R algorithm */

modify_cost(t, xk,j)
od

Reliability Analysis of Distributed Computing Systems 123

e n d

procedure nodes_merged(t,old)
beg in

for all link x i , j E old
/* the same as that in the HRFST algorithm */
for all nodes xk which is a neighbor node of xi

modify_cost(t, xk,i)
od

od

e n d

procedure unsatisfied_connected_components_deletion (t)
beg in

for all unsatisfied connected components i in graph t
delete all nodes x n in connected component i ;
delete all links x i , j in connected component i ;

od

e n d

4. R E L I A B I L I T Y ANAL YSI S OF D P S U S I N G T H E H F R S T
R E L I A B I L I T Y A L G O R I T H M S

4.1. E x a m p l e

We shall now apply the HRFST algorithm to the DPS in Figure 1 to analyze the DPR1.
Splitting snapshots of the subgraphs generated are illustrated in Figure 6.

DPR1 = Pl,2 T ql,2 P3,4 + ql,2 Pl,3 p2,3 q3,4 -{- ql,2 ql,3 P2,3 P2,4 q3,4-

If we assume all the links have the same reliability, 0.9, then DPR1 is equal to 0.99891. To
evaluate the DSR, F N = (F1, F2, F3, F4) . Applying the same algorithm, we obtain

DSR -- Pl,2 P2,3 -I- Pl,2 Pl,3 q2,3 T Pl,2 ql,3 q2,3 P2,4 P3,4 + ql,2 Pl,3 P2,3

÷ ql,2 q2,3 P2,4 P3,4 -{- ql,2 ql,3 P2,3 q2,4 P3,4 -b ql,2 ql,3 P2,3 P2,4.

Again, if we assume all the links have the same reliability, 0.9, then the DSR is equal to 0.9963.
The results obtained by the HRFST algorithm are equivalent to those obtained with the FST-SPR
algorithm.

4.2. T h e C o r r e c t n e s s a n d T i m e C o m p l e x i t y o f t h e A l g o r i t h m

THEOREM 1. The F S T - S P R a l g o r i t h m is correct .

PROOF. See [7].

THEOREM 2. The H R F S T a l g o r i t h m is correct.

PROOF. The cutting method of the HRFST algorithm is also based on the factoring theorem
and is equivalent to the form of the equation

R R (G) = p~,j , pk,l . . . p~ , zpu ,vR(Gn) + PidPk,l . . . Py,zq~,~ (Gn)

+ P i , j P k , l . . . q ~ , z R (G ~ - I) - t - " " "t- q~, jR(G~) .

Further, the topology meaning of the factors is an FST instead of a spanning tree. Thus, the
disjoint property still holds in the HRFST algorithm. All the reduction techniques are also

124 I).-.I. (*,III.;N ¢.'t tg/.

X2

cost(xl,2) ---- 0 ~ A : nodes_merged
XI ~ X4

cost(xl.3) -- I (~ : parallel reduction

cost(x2,3) -- 2 x3 ® : series reduction
LS =. { } + : degree-2 reduction

cost(x2,4) = I WORK = (x~,2}

cost(x3.4) = 0 PR = Pl,2

I
COSt(X1,3) = 1 f3 ~ 3
cost(x2,3) ---- 2

COSt(X2,4)---- 1 L S = {xt--T~.2
CUT = {xl,2} cost(x3,4) = 0
W O R K ----- {X3.4}
P R - q l ~ p 3 , 4

I
c o s t (x 1 , 3) = 1 _ ~ _

COSt(X2,3) ~- 2

COSt(X2,4)---- 1
L s = ~ { ~ . 2 , ~ }

C U T = {x3.4}
W O R K = {XI.3,X2,3}
P R = q l ~2Pl,3P2.3q3,4

X2

~ % t ' ~ X4 ------X2.3~-X2,4 O % % cost(x2 4) =l
O ~ X 3 . 4

X 3 ~ c - ~ s t (x 3 . 4 ') ---- 0 x I A X 3 0 X4

L S = { x l a , xl,3,~---~,4 L S --- {x--l,~xl,3,x-'~,3,x3-"~},4

C U T ~- {x l . 3} C U T - - - {x2.3}
X * W O R K ~- { 3,4 } Fail

PR = ql,2ql,3P2,3P2,4q3,4

O
O

L S - - fff'{,2.xl,3,×3.4,x3.4' }
C U T -- { x 3 / }

F a i l

Figure 6. The splitting snapshots of the DPRI in Figure I.

reliability-preserving, like those incorporated in the FST-SPR algorithm. Therefore, the HRFST

algorithm is also correct. II

The K-terminal reliability problem has been shown to be as hard as an NP problem [8]. Unlike

the time complexity analysis in the K-terminal reliability problem [0,10], which is statically

dependent on the given k-terminal connection, the time complexity of the distributed program

Reliability Analysis of Distributed Computing Systems 125

T~ble 1. The file distribution of the DPS. Table 2. The program distribution of the DPS.

Node Files Node Programs

xl F1 xl P1

x2 F2 x2 P4

x3 F3 x3 P2,P3

x4 F4 x4 P2,P3

xs F5 x5 P4

x6 F6 x6 P1

Table 3. The data files required for execution of each program.

Program Files Required

P1 F1,F3,F4,F5

P2 F2,F4,F5,F6

P3 F1,F3,F4,F5,F6

P4 F1,F2,F3,F4,F5,F6

x2 x4 x 2 x4

:~3 x 5):3 x 5
(a) (b)

x 2 x 4 x 2 x 4

x 3 x 5 x 3 x 5 (e) (d)

x 2 x4 x 2 x4

x 3 x 5 x 3 x 5

(e) (f)

Figure 7. The six kinds of topologies for the six nodes.

reliability problem is dynamically bound to the data flies required for each distributed program.
The time complexity of the MFST and FARE algorithms presented in [1,2,4,5] is 0(2") in the
worst case, where m denotes the number of links in the graph. However, in practical situation,
such cases seldom occur, since once an MFST is found the tree expansion is stopped. The
proposed HRFST algorithm uses the graph heuristic cutting technique and incorporates reduction
techniques to speed up subgraph generation. The time complexity is quite difficult to quantify
since the number of links and nodes may be reduced or merged during the evaluation process.
However, by common reasoning, the complexity should be less than that of the MFST and

126 D.-J. CHEN et al.

Table 4. The number of subgraph vs. different topology.
P1 execute at xl.

Topology
a b c d e f

Algorithm

FST-SPR 7 13 21 30 104 314

HRFST 6 11 17 23 66 179

P2 execute at x4.

Topology
a b c d e f

Algorithm

FST-SPR 7 11 11 30 104 311

HRFST 6 9 9 19 65 175

P3 execute at x3.

Topology
a b c d e f

Algorithm

FST-SPR 9 29 49 74 139 402

HRFST 8 26 39 53 92 223

P4 execute at x2.

Topology
a b c d e f

Algorithm

FST-SPR 11 37 56 88 180 471

HRFST 10 31 40 58 105 266

Table 5. Eight sets of data file distributions.

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8
Node Files Files Files Files Files Files Files Files

Xl none F4 F4,F5 F1,F3 F1,F5 F3,F6 F2,F5 F3,F6

x2 F1 F1 F2 F1,F5 F2,F4 F4 F1,F2 F1,F4

x3 F4 F2,F3 F2,F4 F1,F6 F3 F1,F2 F4 F2,F5

x4 F2,F5 F3,F5 F1,F3 F2,F4 F1,F3 F4,F5 none none

x5 F2,F3 F2,F6 F3 F2 F4,F6 none F3,F6 F2

x6 F5,F6 F1 F1,F6 F3 F1 F2 F5 F1,F4

FARE algori thms. One good way to compare the proposed H R F S T algori thm with the FST-

S P R algor i thm is based on the in termediate trees (or subgraphs) generated dur ing the ent i re

rel iabil i ty evaluat ion process. In this way, we can tell how much memory space and t ime is

required for the different algori thms to run the d is t r ibuted programs.

4 .3. T h e E f f e c t s o f R e l i a b i l i t y F a c t o r s o n t h e P e r f o r m a n c e o f D i f f e r e n t A l g o r i t h m s

The file d is t r ibut ion, program dis t r ibut ion and topology of a graph all play an i mpor t a n t role

in the process of analyzing the reliabili ty of the DPS. Those are the factors t ha t de te rmine the

performance of reliabil i ty algorithms. In this section, these factors are used to compare two

algori thms: F S T - S P R and HRFST.

4 .3 .1 . T h e e f fec t s o f d i f f e r e n t t o p o l o g i e s

Suppose a DPS contains six processing elements and the file d is t r ibut ion, program dis t r ibu-

t ion, and the necessary files for each program to be executed are as listed in Tables 1-3. In

Figure 7, there are six different kinds of topologies to run the DPPA (i = 1, 2, 3, 4) according to

the d is t r ibut ions in Tables 1-3.

Reliability Analysis of Distributed Computing Systems 127

Each program is run from some specified sites to communicate with its required data files. The
number of subgraphs generated in each of the six topologies for each program on different sites is
shown in Table 4. The comparisons in Table 4, show clearly that the HRFST algorithm is better

in different topologies.

4.3.2. T h e e f fec t s o f d i f f e ren t file d i s t r i b u t i o n s

To evaluate the influence of the file distribution on the performance of different algorithms,
eight sets of file distributions were selected at random. They are listed in Table 5. A six-node
topology is shown in Figure 8 for the eight sets of file distributions to reside in. The program
distribution and files required for each program to be executed are presented in Tables 2 and 3

above, respectively. The comparison results are depicted in Figure 9.

~¢2 "x4

x3 x 5

Figure 8. The topology for file distributions in Table 5.

P2 execute at x3
PI execute at x 6

[--- FST-SPR ,~-RFST]

I -~" FST-SPR "~-RFST
35 . /-.. 30T •

25.L / ~_._. 25 "
Numberof 2 0 ~ / \ / --gtk ~ Numberof 2 1 ~
subgraphs 1 !

O~ ; ; I I I I I O I . I I I I I ! I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Set of file distribution Set of file distribution

(a) (b)

P3 execute at x4 P4 ex.ect~ at x5

I .-.FST-SPR 6RFST I ["" FST-SPR ~'RFST I
40 ~
35 •

. \
t 7 .I \ I - - " Numberof 25 Numberof ~ "

I 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Set of file distribution Set of file distribution

(c) (d)

Figure 9. Number of subgraphs vs. different file distributions.

4.3.3. T h e e f fec t s o f d i f f e ren t p r o g r a m d i s t r i b u t i o n s

The effects of programs running on different nodes of the DPS in Figure 8 are shown in
Figure 10. The file distribution and data files required for each program to be executed are
presented in Tables 1 and 3 above, respectively.

128 D.-J. CHEN et el.

] "'" FST-SPR ~'RFST [["e" FST'SPR '6"RI~T I

30 40]-

25 30,
20 25

Number of Number of
subgraphs • subgraphs 20,

~l
~ . . 15 ,

to, : i.
5.

0 I I I I 0 I I I I I
1 2 3 4 5 6 2 3 4 5 6

The node where Pl start its ~tecutioa The node where P2 start its execution

(a) (b)

[-.- FST.SPR .RFST I I "" FST-SPR ~'RFST]

40 40
35

30 30 ~ ~ -.

25 ~ Numbe# of
Nmnberof 20 $ubsraphs 20
subgraphs 15 15

I0 I0,
5.

I I I I I 0 I ' I I I I
I 2 3 4 5 6 2 3 4 5 6

The node where P3 start its execution "me node where P4 start its execution

(c) (d)

Figure 10. The number of subgraphs vs. different program distributions.

4.4. Comparison of Algorithms

4.4.1. The performance of different algorithms on complex DPS

The comparison of the performance of different algorithms on complex DPS can be viewed
as an objective result, and the more complex the DPS is, the more significant the comparison
result is. An eight node DPS for computing the DPR1, DPR2, DPR3, and DPR4, where the
probability of each link is 0.9, is shown in Figure 11. The number of subgraphs generated by
different algorithms is depicted in Table 6.

x2 x5

m ~ = {m.ps, F~,/,W
X4 X7 FN'j = [FI,F2,F4,Fd, FS}

FN 4 = {F2,F3.F4,FS, t~7,FS]

Figure 11. A complex DPS with eight processing elements.

A more complex DPS that is a well-known computer ne twork- -ARPA N E T - - i s shown in
Figure 12. There are 21 nodes and 26 links in ARPA NET. Suppose the number of da ta files

Reliability Analysis of Distributed Computing Systems 129

Table 6. The number of subgraphs vs. different programs to be executed.

Program
P1 P2 P3 P4

Algorithm

FST-SPR 445 334 309 389

HRFST 113 124 118 140

DPR 0.9961182 0.9963265 0.9984532 0.9923256

is 16 a n d t h e n u m b e r of p r o g r a m s is four. T h e n t h e file d i s t r i b u t i o n , p r o g r a m d i s t r i b u t i o n , a n d

files r e q u i r e d for e a c h p r o g r a m to be e x e c u t e d a re as l i s ted in Tab le s 7, 8, a n d 9, r e spec t ive ly . Al l

t h e s u b g r a p h s g e n e r a t e d for c o m p u t i n g t h e re l i ab i l i ty of each p r o g r a m are d e p i c t e d in T a b l e 10.

SPJ LYT~JE-I NC .~A~. AWS CASE '

A f f O R D

\ I \ i . _ _ o = / -
A c

U C L A ~ ~ BBN HARVARD B L ~ O U C H S

Figure 12. ARPA NET.

Table 7. The file distribution of AHPA NET.

Node Files Node Files Node Files

Xl F2 x8 F12 x15 F4

x2 F3 ,F l l z9 F4 XlS none

x3 F7 xl0 F8 x17 F14

x4 F10 x l l F7 xi8 F15

zs F6 x12 F16 x19 F1,F9

xs F13 x13 F10 x20 F5

x7 F12 xla F l l x21 F1,F2

Table 8. The program distribution of ARPA NET.

Node Programs Node Programs Node Programs

Xl P3 xs none Xl5 none

x2 P1 x9 none x16 none

X3 none XlO none X17 none

x4 none Xll none xls P2

x5 none x12 P4 x19 none

xo none x13 none x20 none

x7 none x14 none x21 none

Table 9. The files for each program to be executed.

Program Files Required

P1 F1,F3,F5,FT,Fg,Fll,F13,F15

P2 F2,F4,F6,F8,F10,F12,F14,F16

P3 F2,F3,F4,F5,F12,F13,F14,F15

P4 FI,F6,F7,F8,F9,F10,F11,F16

To c o m p a r e t h e a c t u a l e x e c u t i o n t i m e , we p re sen t a D P R i (i = 1, 2, 3, 4) ana lys i s u s ing an I B M

R I S C S y s t e m / 6 0 0 0 t o co l lec t e x e c u t i o n t ime . All five a l g o r i t h m s a re s t r u c t u r e d t o h a v e t h e s a m e

I / O a c t i v i t i e s t o e n s u r e t h e fa i rness o f t h e c o m p a r i s o n . T h e s e five p r o g r a m s a re l i s ted in t h e

130 D.-J. CHEN et al.

Table 10. The number of subgraphs generated for each program reliability of ARPA
NET.

Program
P1 P2 P3 P4

Algorithm

FST-SPR 807 11598 2922 2846

HRFST 356 1274 891 691

appendix. It is clear that the HRFST algorithm outperforms the MFST algorithm. This result
justifies our hypothesis that the tedious and time-consuming procedures of checking replicated
trees and removing them from the TRY-LIST dominate the overall computation time. The
computation times (in seconds) of the DPRi are listed in Table 11.

Table 11. The computation time (computing in seconds) of each DPR, i (i --- 1, 2, 3, 4).

Program
P1 P2 P3 P4

Algorithm

FST-SPR 2.4 37.15 8.67 7.8

HRFST 1.38 6.46 3.86 3.1

4.4.2. Rel iabi l i ty analysis of two or more programs executed s imultaneously .

To evaluate the results of reliability problem statement 2, based on the DPS in Figure 11,
suppose the reliability of each link is 0.9 and several combinations of two or more programs
running at the same time are chosen. The number of subgraphs generated by different algorithms
is shown in Table 12.

Table 12. The number of subgraphs generated when executing two or more programs
together.

Program
P I & P 2 P I & P3 P1 & P 4 P 2 & P 3 P 2 & P 4

Algorithm

FST-SPR 503 446 563 329 389

HRFST 137 172 192 118 132

DPR 0.9961181 0.9960074 0.9961172 0.9962148 0.9963256

Program
P 3 & P 4 P I & P 2 & P 3 P I & P 2 & P4 P 2 & P 3 & P 4 P I & P 2 & P 3 & P 4

Algorithm

FST-SPR 329 446 563 329 446

HRFST 118 160 156 133 171

DPR 0.9962148 0.9960074 0.9961172 0.9962148 0.9960074

x2, 4 ~ x 4 ,

\ ~,7~2 "~-] ~ - :¢~.F~.r3j

F N s " { ' ~ , I . F $. F 4 . F . . ~ }

I ~ N - - ~'FI,F3oF4,F6J
Figure 13. An example of a distributed program running from more than one site.

Reliability Analysis of Distributed Computing Systems 131

4.4.3. Rel iabi l i ty analysis of a dis t r ibu ted program running from more th a n o n e site

To evaluate the results of reliability problem statement 3, the Figure 13 shows an example in
which there are four distributed programs and six data files in the DPS, and all four distributed
programs can be executed from two different sites: P1 resides at nodes xl and x6, P2 and P3
reside at nodes x3 and x4, and P4 resides at nodes x2 and Xs. The results of different algorithms
are compared in Table 13.

Table 13. The number of subgraphs generated for the example in Figure 13.

Program
P1 P2 P3 P4

Algorithm

FST-SPR 35 11 42 46

HRFST 21 7 23 24

DPR 0.9861766 0.9854047 0.9863232 0.9853018

5. C O N C L U S I O N

In this paper, we have presented a new reliability algorithm, called HRFST, which uses an
heuristic cost evaluation function to generate an FST for analyzing the reliability of a distributed
computing system. The reliability algorithm eliminates the need to search a spanning tree during
the generation of each subgraph. The HRFST algorithm reduces both the number of subgraphs
(or trees) generated and the actual execution time required for the reliability analysis of DPR and
DSR. Our study of various sample cases and comparisons with the FST-SPR show that HRFST
is more efficient than the FST-SPR algorithm.

R E F E R E N C E S

1. V.K.P. Kumar, S. Hariri and C.S. Raghavendra, Distributed program reliability analysis, IEEE Trans.
Software Eng., 42-50 (1986).

2. C.S. Raghavendar, V.K.P. Kumar and S. Hariri, Reliability analysis in distributed systems, IEEE Trans.
on Computer 37 (3), 352-358 (1988).

3. S. Hariri and C.S. Raghavendra, SYREL: A Symbolic Reliability Algorithm Based on Path and Cutset
Methods, USC Tech. Rep., (1984).

4. A. Kumar, S. Rai and D.P. Agarwal, Reliability evaluation algorithms for distributed systems, Proc. IEEE
INFOCOM 88, 851-860 (1988).

5. A. Kumar, S. Rai and D.P. Agarwal, On computer communication network reliability under program
execution constraints, IEEE Journal of Selected Areas in Communications, 1393-1400 (1988).

6. D.J. Chen and T.H. Huang, Reliability analysis of distributed systems based on a fast reliability algorithm,
IEEE Trans. on Parallel and Distributed Systems 3 (2), 139-154 (1992).

7. M.S. Lin and D.J. Chen, General graph reduction methods for the reliability analysis of distributed systems,
The Computer Journal 36 (7), 631-644 (1993).

8. M.O. Ball, Computational complexity of network reliability analysis: an overview, IEEE Trans. on Reliability
R.35 (3), 230-239 (1986).

9. A. Satyanarayana and K.R. Wood, A linear-time algorithm for computing K-terminal reliability in se-
ries-parallel networks, S I A M Journal of Computing 14 (4), 818-832 (1985).

10. K.R. Wood, Factoring algorithms for computing K-terminal network reliability, IEEE Trans. on Reliability
P~5, 269-278 (1986).

