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Abstract—System-level diagnosis is a crucial subject for maintaining the reliability of multiprocessor interconnected systems.

Consider a system composed of N independent processors, each of which tests a subset of the others. Under the PMC diagnosis

model, Dahbura and Masson [10] proposed an OðN2:5Þ algorithm to identify the set of faulty processors in a t-diagnosable system, in

which at most t processors are permanently faulty. In this paper, we establish some sufficient conditions so that a t-regular system can

be conditionally ð2t� 1Þ-diagnosable, provided every fault-free processor has at least one fault-free neighbor. Because any t-regular

system is no more than t-diagnosable, the approached diagnostic capability is nearly double the classical one-step diagnosability.

Furthermore, a correct and complete method is given which exploits these conditions and the presented branch-of-tree architecture to

determine the fault status of any single processor. The proposed method has time complexity Oðt2Þ, and thus can diagnose the whole

system in time Oðt2NÞ. In short, not only could the diagnostic capability be proved theoretically, but also it is feasible from an

algorithmic perspective.

Index Terms—Diagnosis, diagnosability, reliability, PMC model, graph, multiprocessor, algorithm
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1 INTRODUCTION

THE past decade has witnessed remarkable advances in
microprocessor technology for the development of

high-speed multiprocessor systems. As networking infra-
structure evolves, the vision of using the Internet as one
large heterogeneous parallel and distributed computing
environment has taken shape. For instance, cloud comput-
ing has become more and more popular recently in the area
of information technology. In essence, cloud computing is a
paradigm that allows one to access a remote data center or
applications that actually reside at a location other than a
local computer. Although not everyone agrees on what
cloud computing is, it brings an Internet user applications
on the go, a convenient way of viewing, manipulating, and
sharing data. Hence, cloud computing can be thought of as
a highly cooperative computing scheme that shares
through the Internet hardware resources, software applica-
tions, and databases.

The multiprocessor system is one typical application of

massive parallel computing. In a multiprocessor system, the

reliability of each computing and/or storage unit is crucial

because even a few malfunctions may make system service

unreliable. Whenever units are found faulty, they should

be replaced with fault-free ones in order to guarantee that

the system continues operating properly. Identifying all the

faulty units in a system is known as system-level diagnosis.
Preparata et al. [31] distinguished two types of self-
diagnosable systems: one-step diagnosable systems and
sequentially diagnosable systems. A system is said to be
one-step t-diagnosable if all its faulty units can be precisely
pointed out by one application of some diagnostic process
provided that the total number of faulty units does not
exceed t; a system is sequentially t-diagnosable if at least one
faulty unit can be identified provided that the total number
of faulty units does not exceed t. In this paper, we focus on
one-step diagnosis only. The maximum number of faulty
units that can be correctly identified is known as the one-step
diagnosability of a system. In other words, the one-step
diagnosability of a system G is just equal to the maximum
integer t such that G is one-step t-diagnosable.

System-level diagnosis has been widely addressed by
many researchers [7], [10], [11], [13], [14], [15], [16], [18],
[19], [23], [26], [31], [33]. One classic approach to this
problem, called the PMC diagnosis model (or PMC model
for short), was first proposed by Preparata et al. [31]. In this
approach, each unit is tested by some other units in the
system. Following the PMC model, Hakimi and Amin [14]
proved that a system is one-step t-diagnosable if it is
t-connected and has at least 2tþ 1 units. They also pointed
out that the problem could be approached with 0-1 integer
programming and gave a sufficient and necessary condition
for verifying whether or not a system is one-step
t-diagnosable under the PMC model. Dahbura and Masson
[10] presented an OðN2:5Þ fault identification algorithm,
where N denotes the total number of units in a system. A
recent paper [24] addressed the problem of determining the
one-step diagnosability of a big family of interconnection
networks called (1,2)-Matching Composition Networks,
each of which is constructed by connecting two graphs
via one or two perfect matchings. Many famous network
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topologies, such as hypercubes, folded hypercubes, crossed
cubes, twisted cubes, locally twisted cubes, augmented
cubes, recursive circulants, hyper-Petersen networks, etc.,
belong to this family.

The one-step diagnosability of a system G is upper
bounded by the minimum degree of G, intuitively because
it is unlikely to determine whether or not a unit is faulty if
all its neighboring units happen to be faulty simultaneously.
For most practical systems that are sparsely connected, only
a small number of faulty units can be recognized under the
PMC model. Therefore, it has long been an intriguing issue
to discover some measure that can better reflect fault
patterns in real systems. For example, Somani and Peleg
[35] proposed the t=k-diagnosability to evaluate an alter-
native approach to system-level diagnosis by allowing a
few upper bounded number of units to be diagnosed
incorrectly; Das et al. [11] studied fault diagnosis under
local constraints; Lai et al. [23] proposed a new measure of
diagnostic capability, called conditional diagnosability, by
restricting that for each unit in a system, all its neighboring
units do not fail at the same time. Under the PMC model,
Zhu [37] discussed the conditional diagnosability of the BC
networks; Xu et al. [36] investigated the conditional
diagnosability with respect to a class of matching composi-
tion networks. More recently, Chang and Hsieh [5]
considered the conditional diagnosability of augmented
cubes. However, those studies were purely theoretical and
did not provide any diagnosis procedure, so it is not clear
how to identify faulty units efficiently in such kind of
situation. In this paper, we somewhat relax that condition
imposed in [5], [23], [20], [36], [37] and assume instead that
every fault-free unit should have at least one fault-free
neighbor. Under this new condition, not only can the
diagnostic capability be proved theoretically, but also it is
feasible from an algorithmic point of view.

A variety of methods have been developed to achieve
system-level diagnosis for various interconnected struc-
tures. For example, Chessa and Maestrini [8] introduced a
correct and almost complete diagnosis method for square
grids. Later, Caruso et al. [2], [3], [4] presented two correct
and almost complete diagnosis algorithms, called EDARS
and NDA, respectively. Recently, Mánik and Gramatová
[27], [28] proposed the Boolean formalization of the PMC
model for the syndrome-decoding process. When this
approach is applied to regular systems, the computation
time of fault diagnosis can be significantly reduced. In
addition, Somani and Agarwal [34] developed a distributed
diagnosis algorithm for regular systems based on the
concept of local diagnosis; Masuyama and Miyoshi [29]
presented a nonadaptive distributed system-level diagnosis
method for computer networks.

Generally speaking, the design of parallel algorithms
depends on complete or incomplete mapping of tasks to
specific architectures such as rings, paths, trees, meshes,
and so on. If all units of the architecture are fault-free,
procedures can operate properly even though there exist
many faulty units in the remaining part of the system. Thus,
such a kernel architecture plays a key role in the
development of parallel computing systems. To this effect,
Hsu and Tan [19] presented a novel measure of diagnostic
capability, known as local diagnosability. This paper aims

to extend that previous study to be capable of diagnosing
conditionally faulty systems, in which every fault-free unit
has at least one fault-free neighboring unit. In order to
achieve this purpose, we design a kernel branch-of-tree
(BOT) architecture and propose a fault identification
method based on it. For a k-regular interconnected systems
composed of N units, the running time for diagnosing any
single unit u can be bounded by Oðk2Þ if there exists a
branch-of-tree architecture rooted at u. So, all the faulty
units can be identified in time Oðk2NÞ, provided a branch-
of-tree rooted at each unit can also be built in time Oðk2Þ.

The rest of this paper is organized as follows: Section 2
provides a preliminary background for system-level diag-
nosis and graph-theoretic terminology. Section 3 introduces
local diagnosis. The conditional-fault local diagnosis is
studied in Section 4. Some examples and simulation results
are shown in Section 5. Finally, we draw a conclusion in
Section 6.

2 PRELIMINARIES

The underlying topology of a multiprocessor intercon-
nected system is usually modeled as a graph, whose node
set and edge set represent the set of all processors and the
set of all communication links between processors, respec-
tively. Throughout this paper graphs are finite, simple, and
unless specified otherwise, undirected. Some important
graph-theoretic definitions and notations have to be
introduced in advance. For those not defined here, how-
ever, we follow the standard terminology given in [6], [21].

An undirected graph G is an ordered pair ðV ;EÞ, where
V is a nonempty set, and E is a subset of ffu; vg j u 2
V and v 2 V g.1 The set V is called the node set of G, and the
set E is called the edge set of G. For convenience, we denote
the node set and the edge set of G by V ðGÞ and EðGÞ,
respectively. Two nodes, u and v, in graph G are adjacent if
fu; vg 2 EðGÞ; we say u is a neighbor of v, and vice versa.
The degree of a node v in G, denoted by degGðvÞ, is the
number of edges incident to v. The neighborhood of node
v, denoted by NGðvÞ, is the set of nodes adjacent to v. For a
set S � V , the notation G� S represents the graph
obtained by removing every node in S from G and
deleting those edges incident to at least one node in S. A
graph H is a subgraph of G if V ðHÞ � V ðGÞ and
EðHÞ � EðGÞ. The components of a graph G are its maximal
connected subgraphs. A component is trivial if it has no
edge; otherwise, it is nontrivial.

The PMC model [31] allows adjacent units to execute
tests on each other. A testing unit ui specifies some test
sequence for a tested unit uj and receives a response
sequence from uj. The testing unit outputs a test outcome
ai;j ¼ 1 if the response sequence mismatches the expected
one; otherwise, ai;j ¼ 0. Let an undirected graph G ¼ ðV ;EÞ
denote the underlying topology of a multiprocessor system.
For any two adjacent nodes u; v 2 V , the ordered pair ðu; vÞ
represents the test that processor u diagnoses processor v. In
this scenario, u is a tester, and v is a testee. The outcome of a
test ðu; vÞ is 1 (respectively, 0) if u evaluates v to be faulty
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u and v by ðu; vÞ and fu; vg, respectively.



(respectively, fault-free). The notation u!� v means that u
tests v with outcome �. Because faults considered here are
permanent, the outcome of a test is reliable if and only if the
tester is fault-free. Table 1 summarizes the invalidation rule
of the PMC model.

The test assignment for a system G ¼ ðV ;EÞ is modeled as
a directed graph T ¼ ðV ; LÞ, where ðu; vÞ 2 L and ðv; uÞ 2 L
if and only if fu; vg 2 E. The collection of all test outcomes
from the test assignment T is called a syndrome. Formally, a
syndrome of T is a mapping � : L! f0; 1g. A set F of faulty
nodes in G is called a faulty set. It is noticed that F can be
any subset of V . The process of identifying all faulty nodes
is said to be the system-level diagnosis. Furthermore, the
maximum number of faulty nodes that can be correctly
identified is called the one-step diagnosability of G, denoted
by �ðGÞ.

For any given syndrome � collected from a test assign-
ment T ¼ ðV ; LÞ, a subset of nodes F � V is said to be
consistent with � if for any arc ðu; vÞ 2 L with u 2 V � F ,
then �ðu; vÞ ¼ 1 if and only if v 2 F . This corresponds to the
assumption that fault-free testers always give correct test
results, but faulty testers do not. Therefore, a given set F of
faulty nodes may be consistent with different syndromes.
Let �ðF Þ denote the set of all possible syndromes with
which the faulty set F can be consistent. Then, two distinct
faulty sets F1; F2 � V are distinguishable if �ðF1Þ \ �ðF2Þ ¼ ;;
otherwise, F1 and F2 are indistinguishable. Dahbura and
Masson [10] indicated that a system G is one-step t-
diagnosable if and only if for any two distinct faulty sets
F1; F2 � V ðGÞ with jF1j � t and jF2j � t, F1 and F2 are
distinguishable. Lemma 1 is one of the most important
characterization of distinguishable faulty sets.

Lemma 1 ([10]). Let G ¼ ðV ;EÞ be a graph. For any two distinct
faulty sets F1; F2 � V , then F1 and F2 are distinguishable if
and only if there exists a node u 2 V � ðF1 [ F2Þ and a node
v 2 F14F2 such that fu; vg 2 E, where F14F2 ¼ ðF1 �
F2Þ [ ðF2 � F1Þ denotes the symmetric difference between
F1 and F2.

3 LOCAL DIAGNOSIS

Let G be a graph and v denote any one of its nodes. The
main purpose of local diagnosis is to determine whether or
not v is faulty. Obviously, the sets NGðvÞ and fvg [NGðvÞ
are indistinguishable, so the one-step diagnosability of G
must be upper bounded by the minimum degree of G.
Instead of addressing such a traditional measurement of
diagnosability, Hsu and Tan [19] defined the local diagno-
sability �GðvÞ of node v in graph G, which is the maximum

positive integer t such that G is locally t-diagnosable at v. It
was shown that �ðGÞ ¼ minf�GðvÞ j v 2 V ðGÞg. Suppose
that k is an integer greater than or equal to 1. An extending

star of order k rooted at node v is defined to be the subgraph of
G, denoted by TTGðv; kÞ ¼ ðV ðv; kÞ; Eðv; kÞÞ, where V ðv; kÞ ¼
fvg [ fvi;j j 1 � i � k; 1 � j � 2g and Eðv; kÞ ¼ ffv; vi;1g;
fvi;1; vi;2g j 1 � i � kg. An extending star of order k is said
to be of full order if k ¼ degGðuÞ. See Fig. 1 for illustration.

Based on the extending star architecture, we design a
polynomial-time algorithm, named Local-Diagnosis (LD,
abbreviated for short), to determine the fault status of its
root node [22].

Theorem 1. Let TTGðv; tÞ be an extending star of order t rooted at

node v in a graph G. The algorithm LDðTTGðv; tÞÞ correctly

identifies the fault status of node v if the total number of faulty

nodes in G does not exceed t.

Proof. Let ni;j ¼ jf1 � k � t j ð�ðvk;1; vÞ; �ðvk;2; vk;1ÞÞ ¼ ði; jÞgj
for any i 2 f0; 1g and j 2 f0; 1g. We have t ¼ n0;0 þ n1;0 þ
n0;1 þ n1;1 to prove this theorem by contradiction.

First, we assume that v is faulty and n0;0 � n1;0. Then,
the total number of faulty nodes in G amounts to, at the
least, 2n0;0 þ n0;1 þ n1;1 þ 1 � ðn0;0 þ n1;0Þ þ n0;1 þ n1;1 þ
1 ¼ tþ 1. This contradicts the assumption that the total
number of faulty nodes in G does not exceed t. Thus, v is
fault-free if n0;0 � n1;0.

Second, we consider that v is fault-free and n0;0 < n1;0.
Then, the total number of faulty nodes in G amounts to,
at the least, 2n1;0 þ n0;1 þ n1;1 > ðn0;0 þ n1;0Þ þ n0;1 þ
n1;1 ¼ t. Again, this contradicts the assumption that the
total number of faulty nodes in G does not exceed t.
Hence, v is faulty if n0;0 < n1;0.

Therefore, the proposed algorithm correctly diagnoses
the root node v. tu

Similar to the statement and the proof of Theorem 1, we
have the following result:

Corollary 1. Let TTGðv; tÞ be an extending star of order t rooted

at node v in a graph G. The algorithm LDðTTGðv; tÞÞ correctly

identifies the fault status of node v if the total number of faulty

nodes in TTGðv; tÞ does not exceed t.
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TABLE 1
Invalidation Rule of the PMC Model

Fig. 1. The extending star TTGðv; kÞ consists of 2kþ 1 nodes and 2k
edges.



The extending star is a simple architecture that can be
embedded in many interconnection networks, such as
hypercubes [32], crossed cubes [12], Möbius cubes [9], star
graphs [1], etc. Among various kinds of network topolo-
gies, the hypercube is one of the most popular networks
for parallel and distributed computation. Not only is it
ideally suited to both special-purpose and general-purpose
tasks, but also it can efficiently simulate many other
networks [21], [25]. Hence, we show how to construct
an extending star of full order rooted at any node in the
hypercube.

Let v ¼ bn � � � bi � � � b1 be an n-bit binary string. For

1 � i � n, we use ðvÞi to denote the binary string

bn � � � �bi � � � b1. Moreover, we use ½v�i to denote the ith bit bi
of v. The n-dimensional hypercube (or n-cube for short),

denoted by Qn, consists of 2n nodes and n2n�1 edges. Each

node corresponds to an n-bit binary string. Two nodes, u

and v, are adjacent if and only if v ¼ ðuÞi for some i. We say

that nodes u and ðuÞi are linked by an (i)-edge. An n-cube

can be constructed recursively. Let Qð0Þn and Qð1Þn denote two

disjoint subgraphs of Qn induced by node subsets fv 2
V ðQnÞ j ½v�n ¼ 0g and fv 2 V ðQnÞ j ½v�n ¼ 1g, respectively.

For n � 2, Qð0Þn and Qð1Þn are isomorphic to Qn�1. Then, an

extending star of full order rooted at node v can be formed

by the graph TTQn
ðv;nÞ, whose node set and edge set are

fv; ðvÞn; ððvÞnÞ1g [
[n�1

i¼1

fðvÞi; ððvÞiÞiþ1g
 !

and ffv; ðvÞng;

fðvÞn; ððvÞnÞ1gg [
[n�1

i¼1

ffv; ðvÞig; fðvÞi; ððvÞiÞiþ1gg
 !

;

respectively. See Fig. 2 for illustration.
We now measure the time complexity of the proposed

algorithm. For many practical systems of N nodes, the
degree of each node is in the order of logN , and extending
stars of full order rooted at each node can be embedded
in time OðlogNÞ. For example, both the n-cube and
n-dimensional crossed cube have N ¼ 2n nodes, and the
degree of each node is n ¼ logN . Under the PMC model
we assume that the time for a node to test another one is a
constant c. Then, the running time of the LD procedure is
2c logN ¼ OðlogNÞ. In general, the time complexity is OðkÞ
for a k-regular interconnected system.

4 CONDITIONAL-FAULT LOCAL DIAGNOSIS

A typical approach to the evaluation of one-step diagnosa-
bility usually assumes that probabilities of device failures

are statistically independent. Not only does this assumption
ignore the hidden correlation between device failures, but
also it does not take the system size into account. Therefore,
Najjar and Gaudiot [30] defined the fault resilience as the
maximum number of failures that can be sustained while
the network remains connected with a high probability.
Their simulation showed that the hypercube’s fault resi-
lience increases from 25 to 33 percent as its dimensionality
increases from 4 to 10. In particular, the 10-cube remains
connected with probability 0.99 even when 33 percent of its
nodes are injured.

Suppose that G is a graph whose one-step diagnosability
is equal to t. Then, G is one-step t-diagnosable but not
ðtþ 1Þ-diagnosable. As stated in Section 1, the one-step
diagnosability is upper bounded by the minimum degree.
For many t-diagnosable interconnected systems, the only
case stopping them from being ðtþ 1Þ-diagnosable is
usually that some node happens to have no fault-free
neighbor. For example, members in the cube family are so.
A system is known to be strongly t-diagnosable if it is one-
step t-diagnosable and can achieve ðtþ 1Þ-diagnosability,
except for the case where a node’s neighbors are all faulty.
Recently, Hsieh and Chuang [17] studied the strong
diagnosability of regular networks and product networks
under the PMC model. Such results are raising an
intriguing question: How large is the maximum integer t
such that G remains t-diagnosable when every fault-free
node has at least one fault-free neighbor?

4.1 Conditional Diagnosis

In this paper, a set F of faulty nodes in a graph G is called
conditionally faulty if NGðvÞ 6� F for every node
v 2 V ðGÞ � F . A graph is conditionally faulty if its faulty
nodes form a conditionally faulty set.

Definition 1. A graph G is said to be conditionally t-

diagnosable if, for any two distinct conditionally faulty sets

F1 and F2 of G with jF1j � t and jF2j � t, F1 and F2 are

distinguishable.

The maximum number of faulty nodes that can be
correctly identified with one application of some diagnostic
process in a conditionally faulty system G is said to be the
conditional diagnosability of G, denoted by �cðGÞ. We propose
the following concepts.

Definition 2. A graph G is conditionally t-diagnosable locally at

node v 2 V ðGÞ if F1 and F2 are distinguishable for any two

different conditionally faulty sets F1; F2 � V ðGÞ such that

v 2 F14F2, jF1j � t, and jF2j � t.
Definition 3. Let G be a graph, and let v be any node in G. The

conditionally local diagnosability of node v in graph G,

denoted by �cGðvÞ, is defined to be the maximum integer t such

that G is conditionally t-diagnosable locally at node v.

The next two theorems clarify the relationship between
conditional diagnosability and conditionally local diagno-
sability.

Theorem 2. A graph G is conditionally t-diagnosable if and only

if it is conditionally t-diagnosable locally at each node.
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Fig. 2. An extending star of full order rooted at any node v in Qn.



Proof. To prove the necessity, we assume that G is
conditionally t-diagnosable. Then, we have to show
that G is conditionally t-diagnosable locally at each
node. If not, G is not conditionally t-diagnosable locally
at some node v 2 V ðGÞ. By Definition 2, there exists an
indistinguishable pair F1; F2 of conditionally faulty sets
in G, where jF1j � t, jF2j � t, and v 2 F14F2. By
Definition 1, G is not conditionally t-diagnosable,
contradicting the initial assumption. As a result, the
necessary condition follows.

To prove the sufficiency, we assume that G is
conditionally t-diagnosable locally at each node. Then,
we need to show that G is conditionally t-diagnosable.
Suppose, by contradiction, that G is not conditionally
t-diagnosable. By Definition 1, there exist indistinguish-
able faulty sets F1 and F2 in G with jF1j � t and jF2j � t.
Since F1 6¼ F2, there is some node v in F14F2. By
Definition 2, G is not conditionally t-diagnosable locally
at node v, contradicting the initial assumption. Conse-
quently, the sufficient condition holds. tu

Theorem 3. Let G denote the underlying topology of an
interconnected system. Then, �cðGÞ ¼ minf�cGðvÞ j v 2
V ðGÞg.

Proof. For convenience, let t ¼ minf�cGðvÞ j v 2 V ðGÞg. That
is, G is conditionally t-diagnosable locally at every node.
By Theorem 2, G is conditionally t-diagnosable too. Since
t ¼ minf�cGðvÞ j v 2 V ðGÞg, G is not conditionally ðtþ 1Þ-
diagnosable locally at some node u 2 V ðGÞ. It still
follows from Theorem 2 that G is not conditionally
ðtþ 1Þ-diagnosable. tu

4.2 The Branch-of-Tree Architecture

In this section we present an architecture, named branch-of-
tree, which helps with identifying the fault status of a given
node in a conditionally faulty system.

Definition 4. Let u be any node in a graph G, and let t be any
positive integer with t � 2. We set S1 ¼ fug, S2 ¼ fui j 1 �
i � tg, S3 ¼

St
i¼1 S3;i, where S3;i ¼ fuij;k j 1 � j � t� 1 and

1 � k � 2g for every 1 � i � t, and S4 ¼
St
i¼1

St�1
j¼1fuij;3g.

Let IBGðu; tÞ ¼ ðV ðu; tÞ; Eðu; tÞÞ be a subgraph of G with
V ðu; tÞ ¼ S1 [ S2 [ S3 [ S4 and Eðu; tÞ ¼ ffu; uig j 1 � i �
tg [ ffui; uij;1g j 1 � i � t and 1 � j � t� 1g [ ffuij;k;
uij;kþ1g j 1 � i � t; 1 � j � t� 1, and 1 � k � 2g. Then,
IBGðu; tÞ is called a branch-of-tree of order t rooted at
node u if all of the following conditions hold:

1. Si \ Sj ¼ ; for every i 6¼ j,
2. jS2j ¼ t,
3. jS3;ij ¼ 2t� 2 for every 1 � i � t,
4. jS3;i \ S3;jj � 1 for every two distinct elements i and j

with 1 � i � t and 1 � j � t, and
5. jS4j � 1.

The branch-of-tree is not strictly a tree. Fig. 3 illustrates

the branch-of-tree of order t rooted at node u with jS4j ¼
t2 � t and S3;i \ S3;j ¼ ; for every two distinct elements i

and j, 1 � i � t and 1 � j � t. Fig. 4 illustrates two different

branch-of-trees of order 4.

Theorem 4. Let G be a graph and u 2 V ðGÞ denote a node.

Suppose that the degree t of node u is at least 4; i.e., t � 4. Then,

G is conditionally ð2t� 1Þ-diagnosable locally at node u if it

contains a branch-of-tree of order t rooted at u as a subgraph.

Proof. Suppose that G contains a branch-of-tree of order t

rooted at u, IBGðu; tÞ, as a subgraph. Let F1 and F2 be any

two distinct conditionally faulty sets such that jF1j �
2t� 1, jF2j � 2t� 1, and u 2 F14F2. It suffices to prove

that F1 and F2 are distinguishable.
Without loss of generality, we assume that u 2 F1. For

convenience, let F ¼ F1 \ F2 and p ¼ jF j. Obviously, we
have 0 � p � 2t� 2. Because both F1 and F2 are condi-
tionally faulty, their intersection F is conditionally faulty
too. Since u 62 F , we have jNGðuÞ \ F j �minft� 1; pg.

Case 1: Suppose that p ¼ 2t� 2. Since u 2 F1, we have
jF1j ¼ 2t� 1. Obviously, u is the sole node in F1 � F2. We
claim that u has a neighbor outside F1 [ F2; that is,
NGðuÞ � ðF1 [ F2Þ is not empty. If not, then NGðuÞ � F2.
However, F2 is a conditionally faulty set not containing
node u, so it cannot cover the set of all neighbors of u.
Therefore, we obtain a contradiction, and the claim
holds. By Lemma 1, F1 and F2 are distinguishable.

Case 2: Suppose that p � 2t� 3. Applying Lemma 1, it
suffices to show that the component Cu of IBGðu; tÞ � F ,
which u belongs to, contains at least 2ð2t� 1� pÞ þ 1 ¼
4t� 2p� 1 nodes. We set TTGðui; t� 1Þ to be the subgraph
of IBGðu; tÞ induced by fuig [ fuij;k j 1 � j � t� 1 and
1 � k � 2g. It is noted that TTGðui; t� 1Þ has 2ðt� 1Þ þ 1 ¼
2t� 1 nodes. Let r ¼ jNGðuÞ \ F j. Without loss of general-
ity, we assume that fui j rþ 1 � i � tg \ F ¼ ;.

Subcase 2.1: Assume that r � t� 2. Obviously,
we have F \ V ðIBGðu; tÞÞ �

S
i�rfuig � S3 [ S4. Denote

F \ V ðIBGðu; tÞÞ �
S
i�rfuig by F 0. When ui1j1;k1

¼ ui2j2;k2
2

F 0 for rþ 1 � i1 < i2 � t, 1 � j1; j2 � t� 1, and 1 � k1,
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Fig. 3. The branch-of-tree of order t rooted at node u, in which jS4j ¼ t2 � t and S3;i \ S3;j ¼ ; whenever i 6¼ j.



k2 � 2, maybe none of A ¼ fui1j1;1; u
i1
j1;2
g [ fui2j2;1; u

i2
j2;2
g is in

IBGðu; tÞ � F . Since jS3;i \ S3;jj � 1 for any two distinct
integers i; j 2 f1; 2; . . . ; tg, we have jAj ¼ 3 if ui1j1;k1

¼
ui2j2;k2

, and then

jV ðIBGðu; tÞ � fvgÞj � jfug [
[t
i¼rþ1

V ðTTGðui; t� 1ÞÞj � 3

for every v 2 F 0. Hence, Cu has at least

jfug [
[t
i¼rþ1

V ðTTGðui; t� 1ÞÞj � 3jF 0j � jfugj

þ
Xt
i¼rþ1

jV ðTTGðui; t� 1ÞÞj � t� r
2

� �
� 3jF 0j � 1

þ ðt� rÞð2t� 1Þ � t� r
2

� �
� 3ðp� rÞ

nodes. Comparing this with 4t� 2p� 1, we can compute

their difference as follows:

� ¼ 1þ ðt� rÞð2t� 1Þ � t� r
2

� �
� 3ðp� rÞ

� �
� ð4t� 2p� 1Þ

� 1

2
ð3t2 � 13tþ 10� r2 � 2rtþ 7rÞ ð� �: p � 2t� 3Þ

¼ 1

2
½3t2 � 13tþ 10� rðrþ 2t� 7Þ�

� 1

2
½3t2 � 13tþ 10� ðt� 2Þðt� 2þ 2t� 7Þ� ð� �: r � t� 2Þ

¼ t� 4:

Therefore, we have � � 0 if t � 4.
Subcase 2.2: Assume that r ¼ t� 1. That is, ut is the

sole neighbor of u in IBGðu; tÞ � F . Let Lj ¼ futj;1; utj;2g for

1 � j � t� 1. If fut1;3; ut2;3; . . . ; utt�1;3g \ F ¼ ;, there exist
at least ðt� 1Þ � ðp� rÞ ¼ t� pþ r� 1 distinct integers,
1 � j1 < � � � < jt�pþr�1 � t� 1, such that

F \
[t�pþr�1

h¼1

Ljh ¼ ;:

So, Cu contains

fug [ futg [
[t�pþr�1

h¼1

Ljh [
[t�pþr�1

h¼1

�
utjh;3

�
:

Accordingly, Cu has at least 1þ 1þ 2ðt� pþ r� 1Þ þ
1 ¼ 2t� 2pþ 2rþ 1 nodes. Otherwise, we have fut1;3;
ut2;3; . . . ; utt�1;3g \ F 6¼ ;, so there exist at least t� pþ r
integers, 1 � j1 < � � � < jt�pþr � t� 1, such that

F \
[t�pþr
h¼1

Ljh ¼ ;:

Thus, Cu contains fug [ futg [
St�pþr
h¼1 Ljh . Accordingly,

Cu has at least 1þ 1þ 2ðt� pþ rÞ ¼ 2t� 2pþ 2rþ 2

nodes. Comparing them with 4t� 2p� 1, we can derive

the inequality as follows:

� ¼ minf2t� 2pþ 2rþ 1; 2t� 2pþ 2rþ 2g � ð4t� 2p� 1Þ
¼ ð2t� 2pþ 2rþ 1Þ � ð4t� 2p� 1Þ
¼ ð4t� 2p� 1Þ � ð4t� 2p� 1Þ
¼ 0:

In either subcase, component Cu contains at least 4t�
2p� 1 nodes. This implies that some node x 2 V ðGÞ �
ðF1 [ F2Þ is adjacent to a node y 2 F14F2. By Lemma 1,
F1 and F2 are distinguishable. tu
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Fig. 4. (a) A branch-of-tree of order 4 rooted at node u consists 41 nodes and 40 edges. (b) A branch-of-tree of order 4 rooted at node u consists
36 nodes and 39 edges.



4.3 The Fault Identification Algorithm

By means of collecting syndromes from branch-of-tree

IBGðu; tÞ, we design an efficient algorithm, namely Local-

Diagnosis-Under-Conditional-Faults (LDUCF), which can

identify the fault status of node u in a conditionally faulty

system G. It is noticed that the following notations ui and

uij;k are the same as those in Definition 4.

Some notation used in the analysis of LDUCF algorithm

is introduced below. For any positive integer t � 4, let G be

a conditionally faulty t-regular graph, and let IBGðu; tÞ be a

branch-of-tree of order t rooted at node u in graph G.

Suppose that IBGðu; tÞ contains at most 2t� 1 faulty nodes.

We set TTGðui; t� 1Þ to be the subgraph of IBGðu; tÞ induced

by fuig [ fuij;k j 1 � j � t� 1 and 1 � k � 2g, define D to be

the set [1�i�tfui j LDðTTGðui; t� 1ÞÞ ¼ 0g, and set S3;l ¼
fulj;k j 1 � j � t� 1 and 1 � k � 2g for every 1 � l � t. It is

noticed that jS3;i \ S3;jj � 1 for any two distinct i and j,

1 � i; j � t. Moreover, let ni�;� ¼ jf1 � j � t� 1 j ð�ðuij;1; uiÞ;
�ðuij;2; uij;1ÞÞ ¼ ð�; �Þgj, where ð�; �Þ 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þ;
ð1; 1Þg. For 1 � i � t, let fi be 0 or 1 if node ui is fault-free

or faulty, respectively, and let f̂i ¼ LDðTTGðui; t� 1ÞÞ.
Finally, we use F ðHÞ to denote the set of all faulty nodes

in graph H.

Lemma 2. Suppose that t � 4. Then,
Pt

i¼1 jf̂i � fij � 2.

Proof. Suppose, by contradiction, that
Pt

i¼1 jf̂i � fij � 3.
That is, there exist at least three distinct integers 1 �
p1; p2; p3 � t such that f̂pk 6¼ fpk for k ¼ 1; 2; 3. By Cor-
ollary 1, we have jF ðTTGðupk ; t� 1ÞÞj � t for k ¼ 1; 2; 3.
Since jS3;i \ S3;jj � 1 for any two distinct i and j,
1 � i; j � t, we obtain jF ðIBGðu; tÞÞj �

P3
k¼1 jF ðTTGðupk ;

t� 1ÞÞj � ðjS3;p1
\ S3;p2

j þ jS3;p1
\ S3;p3

j þ jS3;p2
\ S3;p3

jÞ �
3t� 3 > 2t� 1 for t � 4. This contradicts the condition
that IBGðu; tÞ has at most 2t� 1 faulty nodes. Thus, the
proof is completed. tu

Lemma 3. Suppose that 2 � jDj � t� 1 for any t � 4. Then, the

set D contains at most one faulty node in it.

Proof. It follows from Lemma 2 that
Pt

i¼1 jf̂i � fij � 2.
Suppose, by contradiction, that there are two faulty nodes,
say ui and uj, in D. Hence, every of NGðuÞ � D is really
faulty nodes. By Corollary 1, we have jF ðTTGðui; t� 1ÞÞj �
t and jF ðTTGðuj; t� 1ÞÞj � t. Since jS3;i \ S3;jj � 1, we
obtain

jF ðIBGðu; tÞÞj � jF ðTTGðui; t� 1ÞÞj þ jF ðTTGðuj; t� 1ÞÞj
� jS3;i \ S3;jj þ jNGðuÞ � Dj � 2t� 1þ ðt� jDjÞ

� 2t� 1þ ½t� ðt� 1Þ� ¼ 2t > 2t� 1;

contradicting the condition that IBGðu; tÞ has at most
2t� 1 faulty nodes. Therefore, the lemma holds. tu

Lemma 4. Suppose that jDj � 1 and t � 4. Then,
Pt

i¼1 jf̂i �
fij � 1.

Proof. By Lemma 2, we know that
Pt

i¼1 jf̂i � fij � 2.
Suppose that

Pt
i¼1 jf̂i � fij ¼ 2. That is, there exist two

distinct integers 1 � p; q � t such that f̂p 6¼ fp and
f̂q 6¼ fq. By Corollary 1, we have jF ðTTGðup; t� 1ÞÞj � t
and jF ðTTGðuq; t� 1ÞÞj � t. Since jS3;p \ S3;qj � 1, we
derive jF ðIBGðu; tÞÞj � 2t� 1þ ðt� jDj � 2Þ ¼ 2t� 3 þ
ðt� jDjÞ � 3t� 4 > 2t� 1 for t � 4. By contradiction,
this lemma follows. tu

We analyze the LDUCF procedure step by step.

4.3.1 jDj � 3

The following theorem is drawn from Lemmas 2 and 3.

Theorem 5. Suppose that jDj � 3 and t � 4. Let n0 ¼ jfv 2 D j
�ðv; uÞ ¼ 0gj and n1 ¼ jfv 2 D j �ðv; uÞ ¼ 1gj. Then, u is

fault-free if and only if n0 � n1.

Proof. Let m0 and m1 denote the numbers of fault-free
nodes and faulty nodes in D, respectively. It follows from
Lemmas 2 and 3 that m0 � m1.

Case 1: m0 > m1. Because fault-free testers always
make reliable diagnosis, we have either n0 > n1 or
n0 < n1. If u is fault-free, then we have n0 � m0 >
m1 � n1; otherwise, we have n1 � m0 > m1 � n0. By
contraposition, u is fault-free or faulty if n0 > n1 or
n0 < n1, respectively.

Case 2: m0 ¼ m1. In this case, D has exactly two faulty
nodes, say u1 and u2. Then, we have 2t� 1 � jF ðTTGðu1;
t� 1ÞÞj þ jF ðTTGðu2; t� 1ÞÞj � jS3;1 \ S3;2j � 2t� 1. That
is, all faulty nodes are in TTGðu1; t� 1Þ and TTGðu2; t� 1Þ.
Hence, u must be fault-free and n0 � m0 ¼ m1 � n1. tu
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4.3.2 jDj ¼ 2

We have the following theorem.

Theorem 6. Suppose that D ¼ fup; uqg with np0;0 � n
p
1;0 �

nq0;0 � n
q
1;0. Then, node up is fault-free if t � 4.

Proof. Without loss of generality, we assume that p ¼ 1 and
q ¼ 2. Suppose, by contradiction, that node u1 is faulty.
By Lemma 3, node u2 is fault-free. Therefore, it follows
from Lemma 2 that

P
3�i�t jf̂i � fij � 1.

Case 1: Suppose that
Pt

i¼3 jf̂i � fij ¼ 0. Thus, nodes
u3; u4; . . . ; ut are faulty. Accordingly, we have

jF ðIBGðu; tÞÞj � jF ðTTGðu1; t� 1ÞÞj þ jF ðTTGðu2; t� 1ÞÞj
� jS3;1 \ S3;2j þ jfu3; u4; . . . ; utgj
�
�
1þ 2n1

0;0 þ n1
0;1 þ n1

1;1

	
þ
�
2n2

1;0 þ n2
0;1 þ n2

1;1

	
� 1þ ðt� 2Þ �

�
n1

0;0 þ n1
0;1 þ n1

1;0 þ n1
1;1

	
þ
�
n2

0;0 þ n2
0;1 þ n2

1;0 þ n2
1;1

	
þ ðt� 2Þ

¼ ðt� 1Þ þ ðt� 1Þ þ ðt� 2Þ ¼ 3t� 4

> 2t� 1 for t � 4:

Case 2: Suppose that
Pt

i¼3 jf̂i � fij ¼ 1. Let r be the integer
in f3; 4; . . . ; tg such that f̂r 6¼ fr. Thus, we have

jF ðIBGðu; tÞÞj � jF ðTTGðu1; t� 1ÞÞj þ jF ðTTGður; t� 1ÞÞj
� jS3;1 \ S3;rj þ jfu3; u4; . . . ; utg � furgj
� tþ t� 1þ ðt� 3Þ ¼ 3t� 4> 2t� 1 for t � 4:

In either case, the number of faulty nodes exceeds
2t� 1. Hence, the theorem holds. tu

4.3.3 jDj ¼ 1

Suppose that D ¼ fupg. We claim that node up is fault-free.
If not, then jf̂p � fpj ¼ 1. Because Lemma 4 ensures thatPt

i¼1 jf̂i � fij � 1, nodes u1; u2; . . . ; ut are all faulty. That is,
node u has no fault-free neighbors. According to the
definition of conditional faults, the node u must be faulty
too. Then, we have that jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ
jfug [NGðuÞ � fupgj � tþ t ¼ 2t, violating the condition
that jF ðIBGðu; tÞÞj � 2t� 1. By contradiction, up has to be
fault-free.

4.3.4 jDj ¼ 0

Suppose that np1;0 � n
p
0;0 � 2 for any 1 � p � t. We claim that

node up is faulty. Without loss of generality, we assume that
p ¼ 1. If u1 is fault-free, then it follows from Lemma 4
that nodes u2; u3; . . . ; ut are faulty. Accordingly, we have
that jF ðIBGðu; tÞÞj � jF ðTTGðu1; t� 1ÞÞj þ jfu2; u3; . . . ; utgj �
2n1

1;0 þ n1
0;1 þ n1

1;1 þ ðt� 1Þ � n1
0;0 þ n1

0;1 þ n1
1;0 þ n1

1;1 þ 2 þ
ðt� 1Þ ¼ ðt� 1Þ þ 2þ ðt� 1Þ ¼ 2t > 2t� 1. By contradic-
tion, the claim holds.

Lemma 5. Suppose that jDj ¼ 0 and there exists an index p in
f1; 2; . . . ; tg such that np1;0 � n

p
0;0 ¼ 1. Then, ni1;0 � ni0;0 � 2

for every i 2 f1; 2; . . . ; tg � fpg if t � 4.

Proof. We assume, by contradiction, that nq1;0 � n
q
0;0 ¼ 1 for

some q 2 f1; 2; . . . ; tg � fpg. By Lemma 4, we havePt
i¼1 jf̂i � fij � 1. Hence, at most one of up and uq is

fault-free.
Case 1: Either up or uq is fault-free. Without loss of

generality, we assume that up is fault-free. Then,

jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ jF ðTTGðuq; t� 1ÞÞj
� jS3;p \ S3;qj þ jNGðuÞ � fup; uqgj
�
�
np0;1 þ 2np1;0 þ n

p
1;1

	
þ
�
2nq0;0 þ n

q
0;1 þ n

q
1;1 þ 1

	
� 1þ ðt� 2Þ ¼

�
np0;0 þ n

p
0;1 þ n

p
1;0 þ n

p
1;1 þ 1

	
þ
�
nq0;0 þ n

q
0;1 þ n

q
1;0 þ n

q
1;1

	
� 1þ ðt� 2Þ

¼ 3t� 4 > 2t� 1 for t � 4:

Case 2: Both up and uq are faulty.
Subcase 2.1: Suppose that

Pt
i¼1 jf̂i � fij ¼ 0. That is,

u has no fault-free neighbors. According to the definition
of conditional faults, u is faulty too. Hence,

jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ jF ðTTGðuq; t� 1ÞÞj
� jS3;p \ S3;qj þ jfug [NGðuÞ � fup; uqgj
�
�
1þ 2np0;0 þ n

p
0;1 þ n

p
1;1

	
þ
�
1þ 2nq0;0 þ n

q
0;1

þ nq1;1
	
� 1þ ðt� 1Þ ¼

�
np0;0 þ n

p
0;1 þ n

p
1;0

þ np1;1
	
þ
�
nq0;0 þ n

q
0;1 þ n

q
1;0 þ n

q
1;1

	
� 1

þ ðt� 1Þ ¼ 3t� 4 > 2t� 1 for t � 4:

Subcase 2.2: Suppose that
Pt

i¼1 jf̂i � fij ¼ 1. Let r 2
f1; 2; . . . ; tg � fp; qg such that f̂r 6¼ fr. That is, ur is fault-
free. Then, we can estimate the number of faulty nodes
as follows:

jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ jF ðTTGðuq; t� 1ÞÞj
þ jF ðTTGður; t� 1ÞÞj � jS3;p \ S3;qj
� jS3;p \ S3;rj � jS3;r \ S3;qj þ jNGðuÞ
� fup; uq; urgj �

�
1þ 2np0;0 þ n

p
0;1 þ n

p
1;1

	
þ
�
1þ 2nq0;0 þ n

q
0;1 þ n

q
1;1

	
þ t� 3þ ðt� 3Þ

¼
�
np0;0 þ n

p
0;1 þ n

p
1;0 þ n

p
1;1

	
þ
�
nq0;0 þ n

q
0;1

þ nq1;0 þ n
q
1;1

	
þ 2t� 6 ¼ ðt� 1Þ þ ðt� 1Þ

þ ð2t� 6Þ ¼ 4t� 8 > 2t� 1 for t � 4:

By contradiction, this lemma holds. tu
Theorem 7. Suppose that jDj ¼ 0 and there exists an index p in

f1; 2; . . . ; tg such that np1;0 � n
p
0;0 ¼ 1. Let r be an index in

f1; 2; . . . ; t� 1g such that ð�ðupr;1; upÞ; �ðu
p
r;2; u

p
r;1ÞÞ ¼ ð1; 0Þ.

Then, up is faulty if and only if �ðupr;3; u
p
r;2Þ ¼ 0.

Proof. It follows from Lemma 5 that ni1;0 � ni0;0 � 2 for every

i 2 f1; 2; . . . ; tg � fpg. Thus, node ui is faulty for

i 2 f1; 2; . . . ; tg � fpg. It suffices to consider the following

two cases:
Case 1: Suppose that �ðupr;3; u

p
r;2Þ ¼ 0. We claim that

node up is faulty. If not, then upr;1, upr;2, and upr;3 are faulty.
Thus, we have

jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ j
�
upr;3
�
j þ jNGðuÞ

� fupgj � ð2np1;0 þ n
p
0;1 þ n

p
1;1Þ þ 1þ ðt� 1Þ

¼ ðnp0;0 þ n
p
1;0 þ n

p
0;1 þ n

p
1;1Þ þ 2þ ðt� 1Þ

¼ ðt� 1Þ þ 2þ ðt� 1Þ ¼ 2t > 2t� 1:

By contradiction, up is faulty if �ðupr;3; u
p
r;2Þ ¼ 0.

Case 2: Suppose that �ðupr;3; u
p
r;2Þ ¼ 1. We claim that up

is fault-free. If not, u has no fault-free neighbors. By the
definition of conditional faults, u is faulty too. Since
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�ðupr;3; u
p
r;2Þ ¼ 1, upr;3 and/or upr;2 must be faulty. If upr;3 is

faulty, we have

jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ j
�
upr;3
�
j þ jfug

[NGðuÞ � fupgj �
�
1þ 2np0;0 þ n

p
0;1 þ n

p
1;1

	
þ 1þ t ¼ 2t:

If upr;2 is faulty, then

jF ðIBGðu; tÞÞj � jF ðTTGðup; t� 1ÞÞj þ jfug [NGðuÞ � fupgj
�
�
1þ 2np0;0 þ n

p
0;1 þ n

p
1;1 þ



�upr;2�

	þ t
¼
�
np0;0 þ n

p
0;1 þ n

p
1;0 þ n

p
1;1 þ 1

	
þ t ¼ 2t:

By contradiction, up is fault-free if �ðupr;3; u
p
r;2Þ ¼ 1. tu

In short, the LDUCF procedure makes a correct diag-

nosis if IBGðu; tÞ has at most 2t� 1 faulty nodes for t � 4.

5 EXAMPLES AND SIMULATION RESULTS

In this section, we show how to construct branch-of-tree

architectures in some well-known interconnected systems

and give examples to explain the LDUCF procedure.

5.1 Construction of Branch-of-Trees

The proposed algorithm can be applied to diagnose many

interconnection networks such as the hypercube, the star

graph, the torus/mesh, etc. Hypercube’s popularity stems

from its topological properties, so it is ideally suited to a

variety of parallel and distributed computation tasks. For

this reason, we first show how to construct a branch-of-tree

architecture in the hypercube.
First of all, we use the Initial-Branch-of-Tree (INIBOT)

procedure (Algorithm 4) to construct a branch-of-tree in Q8.

It is noticed the symbol 	 denotes the bitwise XOR

operation. Next, we propose the Branch-of-Tree recursive

algorithm (Algorithm 5), which is able to construct a branch-

of-tree rooted at any node in Qn for n � 8. See Fig. 5 for

illustration. Because Qn is n-regular, the time complexity of

BOT algorithm is Oðn2Þ.

Theorem 8. Let u be any node of Qn for n � 8. The BOT

algorithm (Algorithm 5) builds a branch-of-tree of order n

rooted at u.

Proof. The proof proceeds by induction on n. Because Qn is
node-transitive [32], we assume that u ¼ 0n. For n ¼ 8,
nodes u, ðuÞi with 1 � i � 8, and those listed in Table 2
form a branch-of-tree of order 8. For n � 9, the inductive
hypothesis is that the BOT algorithm builds a branch-of-
tree IB

Q
ð0Þ
n
ðu;n� 1Þ in Qð0Þn . Then, IB

Q
ð0Þ
n
ðu;n� 1Þ is

augmented to complete the construction. Fig. 5 illustrates
the whole branch-of-tree of order n rooted at u. tu

The star graph [1] is an attractive alternative to the
hypercube. Table 3 shows a branch-of-tree in the 5-
dimensional star graph, rooted at node u ¼ 12;345. We
adopt it as an induction base to construct branch-of-trees
recursively in the star graph.

Let n be a positive integer. The n-dimensional star graph,
denoted by Sn, is a graph whose node set consists of all
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Fig. 5. The branch-of-tree rooted at any node u in QðpÞn , p 2 f0; 1g. The
label ðiÞ, 1 � i � n, denotes an ðiÞ-edge.



permutations of f1; 2; . . . ; ng. Each node is uniquely as-
signed a permutation x1x2 . . .xn and is adjacent to ðn� 1Þ
nodes xix2 . . .xi�1x1xiþ1 . . .xn for 2 � i � n, which are
obtained by a transposition of the first digit with the ith
one. Consequently, there are n! nodes in an n-dimensional
star graph, and each node has degree n� 1.

For any node u 2 V ðSnÞ, its i-neighbor, denoted by ðuÞi, is
just the node obtained by a transposition of the first digit
with the ith one. For convenience of description, we say that
nodes u and ðuÞi are adjacent to each other with an (i)-edge.
For any 1 � i � n, let Vi denote a subset of permutations of

f1; 2; . . . ; ng, whose elements have symbol i in the nth digit.
Clearly, we have V ðSnÞ ¼

Sn
i¼1 Vi. Moreover, it was shown

in [1] that the subgraph of Sn induced by Vi is isomorphic to
an ðn� 1Þ-dimensional star graph Sn�1. We denote this
subgraph by Sfign . By this recursive structure of star graphs,
it is easy to derive the following theorem.

Theorem 9. Let u ¼ x1x2 � � �xn be any node of Sn for n � 5.
Then, there exists a branch-of-tree of order n� 1 rooted at u in
Sn. See Fig. 6a for illustration.

Mesh is another popular network, whose topology is
much more closely knitted in the sense that neighbors of a
unit tend to share more neighbors. A branch-of-tree can be
easily embedded in a 2D mesh. See Fig. 6b for illustration.

5.2 Examples of LDUCF

We take mesh as example to explain the LDUCF algorithm.
Fig. 7 illustrates a branch-of-tree, with two test assignments
and resulting syndromes, in the 2D mesh. In Fig. 7a, we
assume that

F1 ¼
�
u1; u2; u

1
1;1 ¼ u2

3;1; u
1
2;1; u

1
3;2; u

2
1;2; u

2
2;1

�
;

is a set of seven faulty nodes. The goal is to identify the fault
status of node u. After the beginning for-loop of LDUCF, the
set D turns out to be fu1; u2; u3; u4g. Since jDj � 3, the
procedure runs to enter the subroutine VOTEðu;DÞ, in
which n0 ¼ n1 ¼ 2 is computed. Finally, the output 0 is
returned. That is, nodeu is fault-free. In Fig. 7b, we assign that

F2 ¼
�
u2; u3; u4; u

1
1;1; u

1
1;2; u

1
2;1; u

1
3;1 ¼ u4

1;1

�
;
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TABLE 2
The Nodes x; xi; x

i
j;k in Q8 for 1 � i � 8, 1 � j � 7, and 1 � k � 3

TABLE 3
The Nodes u, ui, and uij;k in the 5-Dimensional

Star Graph for 1 � i � 4, 1 � j � 3, and 1 � k � 3



is a set of seven faulty nodes. In the beginning for-loop of

LDUCF,D ¼ ; is determined. Therefore, the procedure runs

to enter the else-block and haven1
1;0 � n1

0;0 ¼ 1,n2
1;0 � n2

0;0 ¼ 2,

n3
1;0 � n3

0;0 ¼ 3, and n4
1;0 � n4

0;0 ¼ 2. Furthermore, since p ¼ 1,

r ¼ 1 and �ðu1
1;3; u

1
1;2Þ ¼ 1, the test outcome �ðu1; uÞ ¼ 0 is

returned. That is, node u is fault-free.
As shown above, a branch-of-tree rooted at x ¼ 00000000

in Q8 is listed in Table 2. In the second example, we assign

F3 ¼
�
x; x2; x3; x4; x5; x6; x7; x8; x

2
1;1; x

2
2;1;

x2
3;1; x

2
4;1; x

2
5;1; x

2
6;1; x

2
7;1

�
;

to be the set of 15 faulty nodes. For the sake of simplicity,

we assume that faulty testers always report incorrect test

outputs. Then, LDUCF procedure can determine that D ¼
fx1; x2g with n1

0;0 � n1
1;0 ¼ 7 and n2

0;0 � n2
1;0 ¼ 0 after its

beginning for-loop. Because of n1
0;0 � n1

1;0 > n2
0;0 � n2

1;0, the

final output �ðx1; xÞ ¼ 1 is returned; that is, node x is faulty.

5.3 Simulation

The numerical simulation is provided to confirm the
practical time consuming of LDUCF algorithm. With
respect to the hypercube and the star graph of various
sizes, we carry out a round of simulation by randomly
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Fig. 6. (a) The branch-of-tree rooted at any node u ¼ x1x2 � � �xn in Sn, in which r ¼ 2 if n ¼ 6, and r ¼ 6 if n � 7. (b) A branch-of-tree in the 2D mesh.

Fig. 7. Two test assignments and resulting syndromes of a branch-of-tree in the 2D mesh.



assigning a conditionally faulty set of 2t� 1 nodes in the
branch-of-tree of order t rooted at any node v for 10,000
times and compute the average time for identifying the fault
status of v. Then, such a round of simulation has to be
repeated 30 times to obtain the overall average. The
hardware and software configuration include:

1. Intel Core 2 Quad CPU Q8300 2.5GHz,
2. 4 GB DRAM,
3. 64-bit Windows 7 OS, and
4. C++ Programming Language in Microsoft Visual

Studio 2005.

The simulation results are shown in Fig. 8. One can see the
elapsing time is proportional to the square of node degree,
and the star graph is much more sparsely connected than
the hypercube.

6 CONCLUSIONS

The multiprocessor system is a typical representative of
massive parallel and distributed computing and has a
variety of applications. To better reflect the impact of fault
patterns on system-level diagnosis, many researchers have
taken conditional diagnosability into account. However,
those previous works are only of a theoretical nature.
Instead, we relax the addressed fault condition to require
that every fault-free unit has at least one fault-free neighbor.
Under this new condition, not only can the diagnostic
capability be proved theoretically, but also it is achieved in
an algorithmic point of view. We establish some sufficient
conditions so that a k-regular interconnected system is
conditionally ð2k� 1Þ-diagnosable. Moreover, we design an
Oðk2Þ fault identification method, provided that there exists
a branch-of-tree architecture rooted at each unit and the
time for any unit to test another one is a constant. Our
future research is devoted to connecting the practice and
theoretical foundations of conditional-fault diagnosis for
various diagnostic models.
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