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Abstract—Power saving is an important issue when integrating the wireless LAN technology into mobile devices. Besides Quality of

Service (QoS) guarantee, the IEEE 802.11e introduces an architecture called Scheduled Automatic Power-Save Delivery (S-APSD)

aiming at delivering buffered frames to power save stations. In S-APSD, the Access Point (AP) schedules the Service Period (SP) of

stations. To increase power efficiency, SPs should be scheduled to minimize the chance of overlapping. In a recent paper, an algorithm

named Overlapping Aware S-APSD (OAS-APSD) was proposed to find the wake-up time schedule for a new Traffic Stream (TS) to

minimize the chance of SP overlapping. The combination of OAS-APSD and HCF Controlled Channel Access (HCCA) was proved to

outperform 802.11 Power Save Mode (PSM) with Enhanced Distributed Channel Access (EDCA) in power saving efficiency and QoS

support. However, the OAS-APSD algorithm requires high online computational complexity which could make it infeasible for real

systems. Without harming the optimality, this paper presents an efficient algorithm with much less complexity by exploiting the

periodicity of service schedule. Because of largely reduced online computational complexity, the proposed algorithm is much more

feasible than OAS-APSD.

Index Terms—Wireless LAN, scheduling, power saving

Ç

1 INTRODUCTION

THE IEEE 802.11 [1] wireless LAN has been widely spread
due to its low cost and easy installation. One can easily

find wireless LAN hotspots in most places of a modern city
such as office, campus, café, or even on the street. Therefore,
more and more mobile devices include wireless LAN
functionality as a method for accessing the Internet or
sharing files and multimedia data between peer devices. As
the hardware performance of the mobile devices is greatly
improved and many useful features such as location-based
service are introduced, it is more likely for people to access
the Internet anytime and anywhere through their mobile
devices. However, to provide Quality of Service (QoS)
guarantee while prolonging the usage time of mobile
devices, several challenges need to be settled.

To cope with QoS support, IEEE 802.11e standard [2], an
enhancement of 802.11, defines a QoS-aware coordination
function called Hybrid Coordination Function (HCF). This
function consists of two channel access mechanisms. One is
contention-based Enhanced Distributed Channel Access
(EDCA) and the other is contention-free HCF Controlled
Channel Access (HCCA). Because of the contention-free
nature, HCCA can provide much better QoS guarantee than
EDCA. EDCA can be used only during contention period
while HCCA can be used in both contention period and
contention-free period. Interested readers can find an

overview of the 802.11e QoS enhancements in [3]. The IEEE
802.11e and other amendments finished before the year
2005 had been merged with the 1999 version of the 802.11
standard and the currently published specification is the
IEEE 802.11-2007 [16], [17].

Regarding power saving for wireless LAN, most pre-
vious works consider ad hoc scenarios because devices in
an infrastructure system are usually connected to a power
supply or equipped with long-life batteries. The situation is
changed for multimode mobile devices because their small
size severely limits the battery size. The IEEE 802.11
standard provides a power management mechanism at
the MAC layer, known as Power Save Mode (PSM). When
using PSM, a station (STA) sleeps and wakes up regularly to
listen to beacons transmitted by Access Point (AP). It is
assigned an Association ID (AID) during the association
process. If its AID is indicated in the Traffic Indication Map
of the beacon, meaning that there are data buffered at AP,
the STA remains awake and tries to retrieve the data by
sending PS-Poll frames. AP will set the More Data bit in the
data frame it sends to the STA if there are more frames
buffered for the STA. The STA enters the Doze state only
when all its data are retrieved. Thus, the time it spends to
listen to the channel is reduced. Obviously, under the PSM
mechanism, delay of downlink frames depends on the
STA’s listening interval which is multiples of the beacon
interval. This may not be acceptable for real-time applica-
tions. Quantitative evaluation for combinations of PSM and
802.11e can be found in [5].

To provide QoS support for unicast traffic and achieve
power saving, the 802.11e standard includes an extension of
the PSM mechanism, called Automatic Power Save Deliv-
ery (APSD). Two different APSD modes were defined.
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Unscheduled APSD (U-APSD) is a distributed mechanism
where STAs decide when to awake to retrieve their data
buffered at QoS AP (QAP). Scheduled APSD (S-APSD) is a
centralized mechanism where QAP determines the wake-
up periods and wake-up times for STAs. There exist some
famous scheduling algorithms such as Rate Monotonic [11]
and Earliest Deadline First [15] that were designed for real-
time OS and server/switch which handle delay-sensitive
traffic. Unfortunately, their scheduling results are in
general not periodic and, therefore, not suitable for power
saving purpose. In [4], it was shown that the S-APSD
mechanism combined with HCCA provide excellent QoS
support and power saving. However, the scheduling
algorithm proposed in [4] requires high computational
complexity which can make it infeasible for real systems.

The purpose of this paper is to present a low complexity
scheduling algorithm which achieves QoS support and
power saving simultaneously. The scheduling criterion is
slightly different from that adopted in [4]. To reduce online
computational complexity, we classify Traffic Streams (TS)
based on their wake-up periods and store necessary
information to allow fast scheduling. According to simula-
tion results, our proposed scheduling algorithm obtains
almost the same energy consumption as that obtained by
the scheduling algorithm presented in [4], with much
smaller decision time.

The rest of this paper is organized as follows: in Section 2,
we review the S-APSD mechanism and the scheduling
algorithm proposed in [4]. Section 3 describes the idea of
our proposed scheduling algorithm. The idea is further
extended to a system with multiple classes of TSs in
Section 4. In Section 5, we compare our proposed algo-
rithms with the existing work [4] in terms of computational
complexity and energy consumption. Finally, we draw
conclusion in Section 6.

2 RELATED WORKS

2.1 Scheduled Automatic Power-Save Delivery
(S-APSD)

To support QoS while dealing with power saving issue, U-
APSD and S-APSD architectures are defined in IEEE 802.11e
[2], [4]. They avoid the necessity of PS-Poll frames when
retrieving downlink frames. The U-APSD requires STAs to
contend for the channel to transmit an uplink data frame or
null frame to trigger the delivery of the buffered downlink
frames from QAP. The QAP should use EDCA access
method when selecting the U-APSD scheme. On the other
hand, the S-APSD lays the burden of channel coordination
on the QAP to calculate the schedule and announce it to
STAs. When S-APSD is used, depending on whether the
usage is for an Access Category (AC) or for a TS, EDCA, or
HCCA is chosen as access policy, respectively.

For the S-APSD, the STA first communicates with the
QAP via Add Traffic Stream (ADDTS) request frame setting
both APSD and Schedule subfields in the TS info field
before getting admitted. If the requested service can be
satisfied, the QAP will notify the STA of the schedule
including the Service Start Time (SST) and the negotiated
Service Interval (SI) in the schedule element. As shown in
Fig. 1, both the SST and SI fields are four octets and carry

time values in microseconds. Note that although the
services are delivered periodically in S-APSD, the conveyed
sources of applications are not necessarily to be periodic or
constant-bit-rate. In APSD, the contiguous time that an STA
stays awake to receive the buffered frames from QAP is
defined as Service Period (SP). STAs using S-APSD should
automatically switch to the Awake state at the scheduled
starting time of each SP defined by

SST þm� SI; where m � 0;m 2 N: ð1Þ

Then, they fall back to sleep till receiving the frames with
the End Of Service Period (EOSP) flag being set. The
service schedule can be updated after negotiation between
the QAP and STA finishes. To maintain QoS guarantee,
the new SST should fall into the region between the
minimum SI and maximum SI after the beginning of the
previous SP. Compared with the 802.11 PSM, besides QoS
support, the S-APSD can also reduce signaling loads such
as PS-Poll. Moreover, the number of collisions can be
decreased as well.

2.2 Overlapping Aware S-APSD (OAS-APSD) [4]

Although IEEE 802.11e defines the architecture of S-APSD,
its specific implementation is left as an open issue. For the
scenario with multiple STAs which wake up periodically to
retrieve their buffered data, the overlapping of SPs is the
major source that wastes their energy because they may be
awake for durations longer than their transmissions. Since
the medium is shared among STAs, an STA may spend
energy on overhearing the transmissions between the QAP
and other STAs before returning to sleep.

To reduce the chance of SP overlapping, as described in
[4], there could be two scheduling approaches to schedule
the starting time of SPs. One is contiguous scheduling,
which means that the scheduled SPs should be placed one
after another. It has the advantage of simplifying the
process to determine the SST for the schedule of a new TS.
However, it often requires the SIs to be altered to satisfy
certain constraint so that contiguous scheduling is possible.
A necessary and sufficient condition for a group of periodic
tasks defined by SIs and Transmission Opportunities
(TXOPs) to be scheduled contiguously by an Equal-
spacing-based Rate Monotonic algorithm was derived in
[6]. Altering SIs may shorten the sleeping time of STAs and,
as a result, cause more energy consumption to retrieve the
same amount of data buffered at QAP. Besides, contiguous
scheduling is only suitable for constant-bit-rate traffic. For
variable-bit-rate traffic, it is often a difficult task to
determine the duration of an SP to achieve high efficiency
in both energy consumption and bandwidth utilization. In
[10], Hsieh et al. formulated the problem as one which
optimizes energy consumption given an upper bound of
bandwidth loss. However, it was assumed that the
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distribution of traffic arrival of each TS is stationary and
known. The assumption may not be realistic and, even if it
is acceptable, the huge computational complexity prohibits
the optimal solution from being adopted.

In [4], a noncontiguous scheduling algorithm called
Overlapping Aware S-APSD was proposed. The OAS-
APSD algorithm aims at finding the SST of a new TS
which achieves the least probability of SP overlapping.
The pseudocode of the OAS-APSD algorithm is shown
below. To be concise, we use scheduled instants to
represent the scheduled starting time of SPs. The
Scheduled Events (SEs) in the OAS-APSD algorithm refer
to the scheduled instants known to the QAP, for example,
Beacons with period BI and already scheduled SPs with
period SIs for TSs. In this algorithm, SInew represents the
SI of the new TS to be scheduled.

The OAS-APSD algorithm [4].

SST to be determined given a specific SInew
N; SST; SSTtemp; distavg; temp distavg;max distmin  0

temp distmin  BI

Create empty list of SEs! ListSE

Compute LCM considering All SIs plus BI ! LCM

for 8SEs 2 ½tcurrent; tcurrent þ LCM] do

Insertion in ListSE of SEs

end for

while SSTtemp < SInew do

while SSTtemp þ SInew �N < LCM do

Find prev SE and next SE in ListSE

distnext SE  next SE � (SSTtemp þ SInew�N)

distprev SE  SSTtemp þ SInew �N � prev SE
Insertion in distances SSTtemp of distnext SE and

distprev SE

N  N + 1

end while

temp distmin  Minimum of distances SSTtemp
temp distavg  Average of distances SSTtemp
if temp distmin > max distmin then

max distmin  temp distmin
distavg  temp distavg
SST  SSTtemp

else if temp distmin ¼ max distmin then

if temp distavg > distavg then

distavg  temp distavg
SST  SSTtemp

else if temp distavg ¼ distavg then

SST  random(SST; SSTtemp)
end if

end if

SSTtemp  SSTtemp þ precision
end while

The basic idea of the OAS-APSD algorithm is to find the
optimal SST of the new TS in an interval [0, SInew -1] which
achieves the maximum among minimum relative distances
between SPs of the new TS and existing scheduled events.
Here, the relative distances between SPs of the new TS and
existing scheduled events are defined as the distances from
the starting time of every SP of the new TS to its closest
previous and next existing scheduled events, as illustrated

in Fig. 2. Note that there are only a finite number of
possibilities for the SST because there is a maximum
precision used by the 802.11 specification. According to
[1], [12], the timing synchronization function of each STA is
based on a 1-MHz clock and thus the time ticks in
microseconds. As a result, the system is actually slotted
with slot size or maximum precision equal to multiple of
one microsecond. Without loss of generality, the duration of
the maximum precision is normalized to 1. As a result, the
SIs and the scheduled events are integers.

To determine the optimal SST, relative distances are
calculated for an interval of duration LCM, the least
common multiple of the SIs, including SInew. If there is a
tie, then the one with maximum average relative distance is
selected. In case there is still a tie based, on average, relative
distance, it is broken arbitrarily. Clearly, the computational
complexity of the OAS-APSD algorithm is large for large
values of LCM. This can make the algorithm infeasible for
real systems.

Note that the scheduled instants for a specific TS can be
represented as a sequence, say,

XX ¼ fxmg1m¼�1; such that xm ¼ xm�1 þ p; ð2Þ

where p, called period, is the SI of the TS. The origin can be
chosen arbitrarily. Consequently, the SST of the TS
corresponds to some xi and the STA to which the TS is
attached wakes up periodically at time instants xj for all
j � i.

3 THE PROPOSED LOW-COMPLEXITY SCHEDULING

ALGORITHM

3.1 Basic Idea

In this section, we present the basic idea of determining the
optimal SST for a new TS. Consider the simplest case of
scheduling the SPs for the first TS with period p. Let XX ¼
fxmg1m¼�1 be the scheduled instants for the first TS. It is
clear that any sequence of period p is optimal. For
simplicity, we choose xm ¼ p�m for all m.

Consider now the case where an existing TS with period
p had been scheduled and a new TS is to be scheduled.
Assume that the period of the new TS to be scheduled is q.
Let YY ¼ fymg1m¼�1 be a periodic sequence of period q such
that ym ¼ q �m for all m. Further, let

YY þ k ¼ fym þ kg1m¼�1 ð3Þ

be a shifted version of YY . We call k the offset of YY þ k with
respect to YY . It is clear that YY þ k is periodic in k with
period q.

LEE AND HSIEH: LOW-COMPLEXITY CLASS-BASED SCHEDULING ALGORITHM FOR SCHEDULED AUTOMATIC POWER-SAVE DELIVERY... 573

Fig. 2. Illustration of relative distances between scheduled events.



Define the distance between sequences XX and YY þ k as

dðXX;YY þ kÞ ¼ min
�1�l;m�1

jyl þ k� xmj: ð4Þ

It is not hard to see that

dðXX;YY þ kÞ ¼ dðYY þ k;XXÞ ¼ dðXX � k; YY Þ; ð5Þ

and

dðXX;YY þ 0Þ ¼ dðXX;YY Þ ¼ 0: ð6Þ

Define

DðXX;YY Þ ¼ max
k
fdðXX;YY þ kÞg: ð7Þ

Our goal is to find k�, the optimal value of k which satisfies

k� ¼ arg max
k
dðXX;YY þ kÞ: ð8Þ

Once k� is obtained, the scheduled instants of the new TS is

YY þ k� and the SST can be determined based on current

time. Let G ¼ gcdðp; qÞ and L ¼ lcmfp; qg be, respectively,

the greatest common divisor and the least common

multiple of p and q. We prove in Theorem 1 a property

of dðXX;YY þ kÞ.
Theorem 1. dðXX;YY þ kÞ is periodic in k with period G.

Proof. It is clear that dðXX;YY þ kÞ is periodic in k because

dðXX;YY þ q þ kÞ ¼ dðXX;YY þ kÞ. Let n be its period. We

shall prove that njG (i.e., n divides G) and Gjn.
According to the euclidean algorithm [7], there exist

integers a and b such that

G ¼ a� pþ b� q or Gþ ð�bÞ � q ¼ a� p; ð9Þ

which implies one of the scheduled instants of YY þG
coincides with some scheduled instant of XX. Conse-

quently, we have dðXX;YY þGþ kÞ ¼ dðXX;YY þ kÞ, which

implies njG.
Conversely, since n is the period of dðXX;YY þ kÞ, we

have dðXX;YY þ 0Þ ¼ dðXX;YY þ nÞ, which implies there
must exist integers s and t such that

nþ s � q ¼ t � p or n ¼ ð�sÞ � q þ t � p: ð10Þ

As a result, it holds that Gjn because Gjp and Gjq. This

completes the proof of Theorem 1. tu
A consequence of Theorem 1 is that k� can be chosen to

satisfy 0 � k� � G� 1. Note that to compute dðXX;YY þ kÞ,
0 � k � G� 1, we need only consider finite partial se-

quences of XX and YY þ k because the same situation repeats

every L slots. Two cases are analyzed separately below.
Case 1. q � p.

For q � p, we need only consider fxmgL=p�1
m¼0 and

fym þ kgL=q�1
m¼0 . Let

fmðkÞ ¼ ðq �mþ kÞ=pb c; ð11Þ

where xb c represents the largest integer smaller than or

equal to x. Define

amðkÞ ¼ minfq �mþ k� p � fmðkÞ;
p � ½fmðkÞ þ 1� � ðq �mþ kÞg;

ð12Þ

as the shorter distance of ym þ k to the two closest
neighboring x0ms. We have

dðXX;YY þ kÞ ¼ min
0�m�L=q�1

famðkÞg: ð13Þ

Figs. 3a and 3b show an example for p ¼ 4 and q ¼ 6.
For this example, we have G ¼ 2 and, therefore, we need
only compute dðXX;YY þ 0Þ and dðXX;YY þ 1Þ. One can easily
verify that a0ð0Þ ¼ minf0; 4g ¼ 0, a1ð0Þ ¼ minf2; 2g ¼ 2,
dðXX;YY þ 0Þ ¼ minf0; 2g ¼ 0; and a0ð1Þ ¼ minf1; 3g ¼ 1,
a1ð1Þ ¼ minf3; 1g ¼ 1, dðXX;YY þ 1Þ ¼ minf1; 1g ¼ 1. As a
consequence, we have DðXX;YY Þ ¼ maxfdðXX;YY þ 0Þ,
dðXX;YY þ 1Þg ¼ 1 and k� ¼ 1.

Case 2. q < p.
For q < p, one can compute amðkÞ for 0 � m � L=q � 1

and then determine dðXX;YY þ kÞ ¼ min0�m�L=q�1famðkÞg.
Alternatively, one can change the roles of p and q and
apply the procedure performed for Case 1. Note that
dðXX;YY þ kÞ ¼ dðXX � k; YY Þ ¼ dðXX þG� k; YY Þ implies the
desired results can be obtained by interchanging the roles
of p and q. By doing so, the complexity of computing
dðXX;YY þ kÞ is reduced because fewer amðkÞ0s (L=p versus
L=q) are calculated.

To summarize, in order to determine dðXX;YY þ kÞ, we
need to compute L=maxfp; qg amðkÞ0s and then pick the
smallest one. Since there are G different values for variable
k, the complexity of determining dðXX;YY þ kÞ, 0 � k � G� 1,
is OðG � L=maxfp; qgÞ ¼ Oðminfp; qgÞ multiplications and
divisions. The following algorithm eliminates all multi-
plications and divisions. The algorithm requires roughly
4�minfp; qg comparisons.

Algorithm for computing DðXX;YY Þ and k� assuming that q � p.

R ¼ q mod p

D, k�  0 /* D stores the value of DðXX;YY Þ.*/

k 1

while k < G

m 0

S  k /* S stores the value of q �mþ k� p � fmðkÞ. */

relative dist minfS; p� Sg
min relative dist relative_dist

while m � L=q � 1

S  S þR
if S > p

S  S � p
end if

relative dist minfS; p� Sg
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min relative dist minfrelative dist,
min relative distg

m mþ 1

end while

if D < min relative dist

D min relative dist

k�  k

else if D ¼ min relative dist
k�  randomðk�; kÞ

end if

k kþ 1

end while

3.2 Generalization to KK Existing TSs

Let us now extend the results to K � 2 existing TSs when a

new TS is to be scheduled. Assume that the period of the

ith existing TS is pi and the period of the TS to be scheduled

is q. Let XXi ¼ fxi;mg1m¼�1, 1 � i � K, be a sequence of

period pi such that xi;m ¼ pi �m for all m. Further, let

XX0i ¼ XXi þOi; ð14Þ

be the scheduled instants of the ith existing TS. We shall use

XX1 as reference and, therefore, assign O1 ¼ 0. Consequently,

we have XX01 ¼ XX1 and

Oi ¼ xi;0 � x1;0; ð15Þ

represents the offset of XX0i with respect to XX01. According

to the results obtained in Section 3.1, it holds that

0 � O2 � p2 � 1. We shall prove that Oi satisfies 0 � Oi �
pi � 1 for all i. Let Gi ¼ gcdðpi; qÞ, 1 � i � K, and

GL ¼ lcmfG1; G2; . . . ;GKg; ð16Þ

the least common multiple of G1; G2; . . . ; and GK . Also, let

Li ¼ lcmfpi; qg, 1 � i � K.
Again, let YY ¼ fymg1m¼�1 be a periodic sequence of

period q with ym ¼ q �m for all m and YY þ k ¼ fym þ
kg1m¼�1 be a shifted version of YY . Let

XX ¼ [
1�i�K

XX0i; ð17Þ

such that x is an element of XX if and only if it is an element

of XX0i for some i, 1 � i � K. Clearly, XX is a periodic

sequence with period lcmfp1; p2; . . . ; pKg. Define

dðXX0i; YY þ kÞ ¼ min
�1�l;m�1

jyl þ k� xi;m �Oij; ð18Þ

and

dðXX;YY þ kÞ ¼ min
1�i�K

fdðXX0i; YY þ kÞg: ð19Þ

The optimal value of k is again given by (8). It can be
easily shown that dðXX;YY þ kÞ is periodic with period GL

because dðXX0i; YY þ kÞ is periodic with period Gi, 1 � i � K.
As a result, k� can be chosen to satisfy 0 � k� � GL� 1. The
fact that Gijq, 1 � i � K, implies GLjq. In other words, GL
is a factor of q and, therefore, is upper bounded by q. If the
new TS is considered as the ðK þ 1Þth TS when the
ðK þ 2Þth TS is to be scheduled, then we have

OKþ1 ¼ k� � q � 1 ¼ pKþ1 � 1: ð20Þ

This proves the property that Oi satisfies 0 � Oi � pi � 1.
To compute dðXX;YY þ kÞ, we need dðXX0i; YY þ kÞ for all i,

1 � i � K. To determine k�, a scheduling matrix of size K �
GL is constructed, as shown in Fig. 4. The ith row of the
scheduling matrix is ½dðXX0i; YY þ 0ÞdðXX0i; YY þ 1Þ . . . dðXX0i; YY þ
Gi � 1Þ� repeated for GL=Gi times. Given the scheduling
matrix, dðXX;YY þ kÞ can be obtained as the minimum
element of the kth column. Finally, the optimal value of k
is given by the index of the column with the maximum
dðXX;YY þ kÞ.

As derived previously, the complexity of computing
dðXX0i; YY þ kÞ, 0 � k � Gi � 1, requires 4�minfpi; qg com-
parisons. The overall complexity to generate the scheduling
matrix for K existing TSs is, therefore,

PK
i¼1 4�minfpi; qg,

which is upper bounded by 4� q �K comparisons. To find
k�, we need K �GL comparisons to obtain dðXX;YY þ kÞ,
0 � k � GL� 1, and GL comparisons to determine k�.

Note that our algorithm is unable to break a tie based on
average distance. In case there are multiple choices for k�,
we select the one with the maximum column sum. As a
result, it requires 2ðK � 1Þ additions and one comparison
for each tie-breaking. If there is still a tie, it is broken
arbitrarily.

Example 1. Consider an example forK ¼ 2, p1 ¼ 12, p2 ¼ 15,
and q ¼ 18. Assume that the TS with period p1 was
scheduled earlier than the TS with period p2. Since XX1 is
used as reference, we assign XX01 ¼ XX1 ¼ f12 �mg1m¼�1.
O2, the offset ofXX02 with respect toXX01 has to be determined
based on the scheduling algorithm. Since gcdð12; 15Þ ¼ 3,
there are only three possible values for O2, as shown in
Fig. 5. After some calculations, we getO2 ¼ 1 or 2. Assume
that we choose O2 ¼ 2. To schedule the third TS with
period q ¼ 18, we need to compute dðXX01; YY þ kÞ,
0 � k � 5, and dðXX02; YY þ kÞ, 0 � k � 2, because G1 ¼
gcdð12; 18Þ ¼ 6 and G2 ¼ gcdð15; 18Þ ¼ 3. The results are
½dðXX01; YY þ 0Þ dðXX01; YY þ 1Þ . . . dðXX01; YY þ 5Þ� ¼ ½0 1 2 3 2 1�
and ½dðXX02; YY þ 0Þ dðXX02; YY þ 1Þ dðXX02; YY þ 2Þ� ¼ ½1 1 0�.

LEE AND HSIEH: LOW-COMPLEXITY CLASS-BASED SCHEDULING ALGORITHM FOR SCHEDULED AUTOMATIC POWER-SAVE DELIVERY... 575

Fig. 4. The scheduling matrix.



Since GL ¼ lcmf6; 3g ¼ 6, we have six choices for O3.
Fig. 6 illustrates the relative positions ofXX01,XX02, andYY þ k,
0 � k � 5. For each choice, we need to compare and select
the minimum between dðXX01; YY þ kÞ and dðXX02; YY þ kÞ.
Based on our algorithm, the scheduling matrix is of size
2� 6 and is given by

0 1 2 3 2 1
1 1 0 1 1 0

� �
:

Note that the second row is ½1 1 0� repeated for two
times. Given the scheduling matrix, we have
½dðXX;YY þ 0Þ dðXX;YY þ 1Þ . . . dðXX;YY þ 5Þ� ¼ ½0 1 0 1 1 0�. As
a result, the value of k� can be selected as 1, 3, or 4. The
column sums are 2, 4, and 3 for columns 1, 3, and 4,
respectively. Therefore, k� is selected as 3.

4 HANDLING OF MULTIPLE TRAFFIC CLASSES

4.1 Class-Based Scheduling

In real applications, it is likely that there are only a few
possible periods to schedule TSs. Therefore, one can
partition TSs into classes such that two TSs are in the same
class if and only if they have identical periods of schedule.
Assume that there are C classes, called Class 1, Class 2, ...,
and Class C. Let pi represent the period of Class i and ni the
number of TSs in Class i. If ni ¼ 0, then Class i is considered
not exist. For ease of description, we assume that ni > 0 for
all i, 1 � i � C.

Consider Class i and let e1; e2; . . . ; and eni be the TSs in
the class. A TS, say, e1, is selected as the representative of
Class i. Let XXi ¼ fxi;mg1m¼�1 be a sequence of period pi
such that xi;m ¼ pi �m for all m. We shall use the
representative TS as reference within the class and, there-
fore, assign XXi as the scheduled instants of TS e1. Let oi;s be
the intraclass offset of TS es with respect to TS e1. As a
result, the scheduled instants for TS es is XXi þ oi;s. Let

XXi;s ¼ XXi þ oi;s; ð21Þ

and

�XXi ¼ [
1�s�ni

XXi;s: ð22Þ

Assume that a new TS of Class j is to be scheduled. The
impact of �XXi to the new TS can be analyzed as follows.

Let YY ¼ fymg1m¼�1 be a periodic sequence of period pj
with ym ¼ pj �m for all m. According to the results
presented in the previous section, we need to construct a
scheduling matrix of size ni �Gi;j, where Gi;j ¼ gcdðpi; pjÞ.

The sth row of the scheduling matrix is ½dðXXi; YY þ 0Þ dðXXi;
YY þ 1Þ . . . dðXXi; YY þGi;j � 1Þ� circularly shifted to the right
by oi;s positions. By taking the minimum element in each
column, we obtain

Rð �XXi; YY Þ ¼ ½dð �XXi; YY þ 0Þ dð �XXi; YY þ 1Þ . . . dð �XXi; YY þGi;j � 1Þ�:
ð23Þ

Note that the optimal SST of the new TS cannot be
determined solely by Rð �XXi; YY Þ because there are still TSs
in other classes.

Assume that Rð �XXi; YY Þ, 1 � i � C, are obtained. We shall
use the representative TS of Class 1 as reference of the
overall system. Let

�XX ¼ [
1�i�C

�XXi: ð24Þ

Further, let Oi, 1 � i � C, be the interclass offset of the
Class i representative TS with respect to the Class 1
representative TS. To determine the optimal SST of the
new TS, we construct a global scheduling matrix M of size
C �GLj, where

GLj ¼ lcmfG1;j; G2;j; . . . ; GC;jg: ð25Þ

The ith row of M is Rð �XXi; YY Þ repeated for GLj=Gi;j times
and then circularly shifted to the right by Oi positions. By
taking the minimum element of each column, we obtain

Rð �XX;YY Þ ¼ ½dð �XX;YY þ 0Þ dð �XX;YY þ 1Þ . . . dð �XX;YY þGLj � 1Þ�:
ð26Þ

Finally, the optimal scheduled instants of the new TS is
given by YY þ k�, where k� satisfies

k� ¼ arg max
0�k�GLj�1

fdð �XX;YY þ kÞg: ð27Þ

If the new TS is considered as the ðnj þ 1Þth TS of Class j,
then we update the intraclass offset

oj;njþ1 ¼ k� �Oj: ð28Þ

4.2 Suggested Implementation Method

To reduce online scheduling complexity, we allocate C
pairs of arrays for each class. Again, consider Class i.
Denote the kth element of the jth pair of arrays by Ai;j½k�
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Fig. 6. The six choices for O3 in Example 1.

Fig. 5. The three choices for O2 in Example 1.



and Bi;j½k�, 0� k�Gi;j�1. The array Ai;j stores ½dðXXi; YYþ 0Þ
dðXXi; YY þ1Þ . . . dðXXi; YY þGi;j � 1Þ� for YY ¼ fymg1m¼�1 with
ym ¼ pj �m for all m. Note that Ai;j represents the impact

of the representative TS e1 to a new TS of Class j. The
array Bi;j stores Rð �XXi; YY Þ and represents the impact of all

TSs in Class i to a new TS of Class j. When a new TS of
Class j is to be scheduled, the arrays Bi;j, 1 � i � C, are

used to construct the global scheduling matrix M as
illustrated in Fig. 7. All we need to do is taking the

minimum of each column and then find the maximum
among the minima. The complexity is only C �GLj
comparisons. After the new TS is scheduled, we need to
update Bj;l½k�, 1 � l � C, and 0 � k � Gj;l � 1, as

Bj;l½k� ¼ minfBj;l½k�; Aj;l½k� oj;njþ1�g; ð29Þ

because the impact of TSs in Class j to a new TS of every
class is changed. Here, the index k� oj;njþ1 is performed

modulo Gj;l. The complexity of the update process isPC
l¼1 Gj;l comparisons, which is upper bounded by C � pj

comparisons.
When a TS in Class i finishes, we need to update Bi;j½k�,

1 � j � C and 0 � k � Gi;j � 1, as follows: remove the

finished TS so that the updated ni, denoted by n0i, becomes
ni � 1. Construct a scheduling matrix of size n0i �Gi;j such

that the mth row is Ai;j circularly shifted to the right by oi;m
positions. The content of Bi;j½k� is updated as the minimum

of the kth column. Of course, a new representative TS is
selected before the update process if the finished one was

originally the representative TS of Class i. The complexity
of the update process is n0i �

PC
j¼1 Gi;j comparisons.

Again, we break a tie based on column sum of the global
scheduling matrix which requires 2ðC � 1Þ additions and

one comparison. Note that one can precompute Ai;j½k�,
1 � i, j � C, and 0 � k � Gi;j � 1. The initial content of

Bi;j½k� is set to a sufficiently large value for all j and k if
there is no Class i TS, i.e., ni ¼ 0.

Example 2. Assume that C ¼ 2, n1 ¼ 2, n2 ¼ 1, p1 ¼ 6, and
p2 ¼ 9, and a new TS of Class 2 is to be scheduled. Based
on the assumptions, we have G1;1 ¼ 6, G1;2 ¼ 3, G2;1 ¼ 3,
and G2;2 ¼ 9. Besides, the contents of Ai;j½k� are given
by A1;1 ¼ ½0 1 2 3 2 1�, A1;2 ¼ ½0 1 1� and A2;1 ¼ ½0 1 1�,
A2;2 ¼ ½0 1 2 3 4 4 3 2 1�. Let e1 and e2 represent the TSs
in Class 1 with e1 being the representative. Also, let f1 be
the representative TS in Class 2. Assume that TS e1 was
scheduled first, followed by TS f1, and then TS e2. As a
result, when the new TS f2 is to be scheduled, we have
O2 ¼ 1 (which is randomly selected from 1 and 2) and
o1;2 ¼ 3 (which is randomly selected among 2, 3, and 5).
At this moment, the contents of Bi;j½k� are given by
B1;1 ¼ ½0 1 1 0 1 1�, B1;2 ¼ ½0 1 1�; a n d B2;1 ¼ ½0 1 1�,
B2;2 ¼ ½0 1 2 3 4 4 3 2 1�. The global scheduling matrix

M ¼ 0 1 1 0 1 1 0 1 1
1 0 1 2 3 4 4 3 2

� �
:

Therefore, the value of k� can be chosen as 2, 4, 5, 7, or 8.
We select k� ¼ 5 because it has maximum column sum.
Then we compute o2;2 ¼ k� �O2 ¼ 4 and update B2;1 ¼
½0 0 1�; B2;2 ¼ ½0 1 2 1 0 1 2 2 1�.

5 PERFORMANCE EVALUATION

The considered scenario for our simulations is composed of
periodic beacons and five classes of traffic. The five classes of
traffic in the system are bidirectional real-time voice, real-
time video, streaming audio, streaming video, and gaming.
The traffic characteristics, listed in Table 1, are obtained from
[4], [6], and [8]. The video traces are available online [13]. It is
assumed that there are K STAs, each is configured with a
scheduled TS belonging to one of the five classes. The number
of STAs is increased in multiples of five STAs to maintain
the same number of TSs in each traffic class. The system
parameters conform to the Orthogonal Frequency Division
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Fig. 7. The illustration of constructing a global scheduling matrix.



Multiplexing (OFDM) PHY specification [16] and the

calculation for frame transmission time can be found in [9].

The repetition period L equals lcmf100; 40; 60; 150; 300g ¼
600 (ms) when all traffic classes, including the beacons, exist

in the system. The chosen maximum precision in our

simulations is 1�s.

5.1 Comparison of Computational Complexity

For the OAS-APSD algorithm, it needs to insert the already

scheduled events within L into the ListSE and sort the

elements. The complexity of sorting is log2 K �
PK

i¼1 L=pi
comparisons if the Merge Sort [7] is used. To find the two

closest scheduled events for all the scheduled instants given

a candidate of SST, by the idea of the Insertion Sort [7],

requires
PK

i¼1 L=pi comparisons. Since there are q candi-

dates, the overall complexity is q �
PK

i¼1 L=pi comparisons.

Computation of relative distances for all the q candidates

takes q � 2� L=q ¼ 2L subtractions. To find the minimum

relative distances for all the q candidates requires q � 2�
L=q ¼ 2L comparisons. Finally, it takes q comparisons to

determine the optimal SST. Note that the tie-breaking can

be realized by using the sum of relative distances, rather

than the average distance. It takes 2L� q additions to obtain

those sums of relative distances and each tie-breaking needs

one comparison. Comparisons of online scheduling com-

plexity are listed in Table 2.

In addition to complexity analysis, we also provide some
numerical results. In the numerical evaluation, we increase
the number of existing TS in each class of application, and
check the average online complexity of the OAS-APSD
algorithm and that of the proposed algorithms. Given the
number of existing TSs, the average complexity for finding
the SST is derived by averaging the number of necessary
online operations when a new TS belonging to each class of
application joins. Since the ListSE of OAS-APSD could be
reused after it is established, the complexity of sorting is
ignored here. The Low Complexity S-APSD (LCS-APSD)
algorithm refers to the idea described in Section 3.2; however,
to reduce complexity, the contents of dðXX0i; YY þ kÞ’s are
reused for the TSs of the same class. Therefore, the complex-
ity in preparing the scheduling matrix for K existing TSs is
reduced from 4� q �K to 4� q � C comparisons. Our
proposed algorithm using the suggested implementation
method presented in Section 4.2 is referred to as Class-based
LCS-APSD (CLCS-APSD) algorithm. The number of required
operations and complexity reduction ratios are shown in
Fig. 8. Here, the complexity reduction ratios are defined as

ðNOAS-APSD �NLCS-APSDÞ=NOAS-APSD; ð30Þ

and

ðNOAS-APSD �NCLCS-APSDÞ=NOAS-APSD; ð31Þ

where NOAS-APSD is the number of operations (compar-
isons and subtractions) required by the OAS-APSD algo-
rithm and NLCS-APSD and NCLCS-APSD are those required
by LCS-APSD and CLCS-APSD, respectively. As can be
seen, the average reduction ratio is as high as about 82
percent for LCS-APSD and 98 percent for CLCS-APSD
when there are 50 TSs in the system.

5.2 Comparison of Energy Consumptions

In this evaluation, we fix the number of existing TSs at 50
(10 for each class) and use the OAS-APSD and our
proposed algorithms to schedule those TSs. In our simula-
tions, we consider power saving for TSs which require QoS
support and HCCA is chosen as the access policy. As a
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TABLE 2
Online Complexity Comparisons

(In Comparisons/Subtractions/Additions).

Fig. 8. The performance of complexity reduction.

TABLE 1
Traffic Characteristics



consequence, the QAP is responsible for coordinating the
channel access and no collision can happen. We assume
that the ð5� iþ jÞth TS belongs to Class j for 0 � i � 9
and 1 � j � 5. The simulation is performed to model
600 seconds of the real time. The Awake state takes 1.4 W
while the Doze state consumes only 0.045 W [14]. The
switchover in between the states takes about 250 �s [10]
and consumes the same power as that in the Awake state.
The system parameters conform to the 802.11a and are
available in [12]. The PHY data rate is 24 Mbps while the
PHY control rate is 6 Mbps. In addition to OAS-APSD and
LCS-APSD/CLCS-APSD, we also conduct simulation for
the Random algorithm which selects the SST for the newly
joined TS randomly and uniformly over ½0; SInew � 1�. An
ideal case which assumes no SP overlapping is also
presented as a reference.

Comparison of total energy consumption of the 50 STAs
for the investigated schemes is provided in Fig. 9. In this
figure, Rand-Min, Rand-Avg, and Rand-Max are, respec-
tively, the minimum, average, and maximum energy
consumptions for the Random algorithm of 500 simulations.
As revealed in Fig. 9, the OAS-APSD performs slightly
better than LCS-APSD/CLCS-APSD, which in turn con-
sumes slightly less energy than Rand-Min. The reason OAS-
APSD performs slightly better than the proposed LCS-
APSD/CLCS-APSD is that it adopts a more complicated tie-
breaking scheme based on average distances. However, the
difference is not significant. As for the Random algorithm,
its performance varies randomly. In our simulations, the
proposed LCS-APSD/CLCS-APSD algorithms consume,
respectively, about 9 and 26 percent less energy as
compared with average and maximum energy consump-
tions of the Random algorithm. Because of the low online
complexity, we believe it is worthwhile to use the proposed
CLCS-APSD algorithm for energy saving.

The energy consumption of an STA depends on the time
spent for data delivery (including interframe spaces and
acknowledgments), the waiting time the STA has to stay
awake before transmission, and the number of switchovers
during simulations. The waiting time of an STA in a given SP
starts from its scheduled wake-up time and covers the
duration during which it cannot access the medium because

of the transmissions of previous STAs. In our simulations,
we give higher channel access priorities to the TS/STAs
which are scheduled earlier, i.e., the STAs with smaller
indices. Therefore, the later-order STAs tend to wait longer
than the earlier ones. The average waiting time and energy
consumption of different STAs for the proposed LCS-APSD/
CLCS-APSD are shown in Figs. 10 and 11, respectively.

To explain the results shown in Figs. 10 and 11, the
following statistics are helpful. In our simulations, the ideal
average SPs for delivering these five classes of applications
are 0.5, 0.22, 1.52, 1, and 2.39 ms, while the SIs are 100, 40,
60, 150, and 300 ms, respectively. Fig. 10 shows the waiting
time of STAs. In general, the waiting time increases as STA
index increases. However, since TSs are added one by one,
scheduling of their SSTs may slightly affect the results.
According to the results shown in Fig. 11, real-time video
consumes the most energy among all classes because it
requires a large number of switchovers and long time
duration for delivering data. As for streaming video,
although it also has long time duration for delivering data,
it needs the least number of switchovers among the five
classes of applications due to its long SI. Consequently, its
energy consumption is moderate. Define the duty cycle of a
TS as the ratio of its average SP to its SI. One can easily
compute the duty cycles for the five classes of applications
as 0.005, 0.006, 0.025, 0.007, and 0.008, respectively. In
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Fig. 10. Average waiting time among STAs.

Fig. 11. Energy consumptions among STAs.

Fig. 9. Comparison of energy consumptions.



general, a larger duty cycle implies more energy consump-
tion. The exception in our simulations is that real-time voice
consumes more energy than real-time gaming, streaming
audio, and streaming video. The reason is that real-time
voice requires a large number of switchovers.

6 CONCLUSION

Compared with PSM, the S-APSD scheme defined in IEEE

802.11e provides a better mechanism to increase power

saving performance when delivering QoS-sensitive traffic. In

this paper, we focus on designing a feasible noncontiguous

scheduling algorithm to be used for S-APSD. Our design

takes advantage of the periodicity property of schedule to

largely reduce online computational complexity. We also

present an efficient implementation method for class-based

systems. As demonstrated in performance comparison, the

online computational complexity of our proposed algo-

rithms is much smaller than that of previous related work

with comparable energy consumption performance. Some

interesting and challenging further research topics such as

efficient rearrangement of existing schedule when a new TS

is to be added is currently under investigation.
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