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a b s t r a c t

This paper considers an infinite buffer M/M/c queueing system in which servers follow
a multi-threshold vacation policy. With such a policy, at a service completion instant,
if the number of customers in the system is less than a prefixed threshold value, part
of servers together take a single vacation (or leave for a random amount of time doing
other secondary job). At the vacation completion instant, they return to the system for
serving the customers. Some practical production and inventory systems or call centers
could be modeled as this Markovian queue with a multi-threshold vacation policy. Using
the Markovian process model, we obtain the exact closed-form expression of rate matrix
and the stationary distribution of the number of customers in the system. A cost model is
developed to search the joint optimal values of the thresholds of vacation policy and service
rate of each server, which minimizes the long-term average cost. Some numerical results
are presented to illustrate the optimization procedures.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wu andWu [1] analyzed the reliability of a two-unit cold standby repairable system under Poisson shocks consideration.
The explicit expressions of some reliability indices such as the steady-state availability, the mean up-time, and the steady-
state failure frequency of a system consisting of one switch unit and one repairmanwere derived. GI/BMSP/1/∞ queueswith
and without state-dependent arrival were investigated by Banik [2]. The steady-state queue length distributions at pre-
arrival and arbitrary epochs were derived by implementing matrix-geometric method, the argument of Markov renewal
theory and semi-Markov process. Moreover, queueing models with server vacations are effective tools for performance
analysis of manufacturing systems, local area networks, and data communication systems. For example, consider an airline
company where a group of employees is trained to load/unload baggages (primary tasks) as well as the jobs like drivers
(aerial ladders), machine repair and runway maintenance which are regarded as vacations. The employees would be
partitioned into several groups and operation by the groups. In this case, the synchronous vacation policy could be applied.

Past works on vacation queueing models are either single server or multiple server systems. Excellent surveys on the
single server vacationmodels have been reported byDoshi [3] and Takagi [4]. The variations and extensions of these vacation
models were developed by several researchers such as Krishna Reddy et al. [5], Choudhury [6,7], Shomrony and Yechiali [8],
Yechiali [9], Tadj and Choudhury [10], Ke [11,12], and Ke et al. [13] and many others. Later, Tian and Zhang [14] studied
an M [x]/G/1 queueing system with a controllable N policy, in which the server takes at most J vacations during the idle
period. For the multiple server vacation models, there are only a limited number of studies due to the complexity of the
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systems. The M/M/c queue with exponential vacations was first studied by Levy and Yechiali [15]. Chao and Zhao [16]
investigated a GI/M/c vacation system and provided an algorithm to compute the performance measures. Tian et al. [17]
and Tian and Xu [18] gave a detailed study of theM/M/c vacation systems in which all servers takemultiple vacation policy
when the system is empty. Zhang and Tian [19,20] and Xu and Zhang [21] analyzed theM/M/c vacation systems that partial
servers with a multiple vacation policy in which some servers (only the idle ones) take single or multiple vacations, which
is called the synchronous vacation policy. Multi-server vacation models are more flexible and applicable in practice than
single server models. Later, a discrete-timemulti-server queueing systemwith infinite buffer size, Bernoulli arrival process,
and multi-threshold service policy was discussed by Peng [22]. An algorithm for computing the stationary waiting time
distribution was presented, and the stationary waiting time distribution was also derived. More recent, Ke et al. [23] used
quasi-birth–death and matrix-analytical method to investigate an infinite capacityM/M/c queueing systemwith modified
Bernoulli vacation under a single vacation policy.

Existing research works mentioned earlier, have not addressed the optimization issue of vacation criteria in the infinite
buffer multiple-server systems, in which some servers take vacations together. Since the arrival is random, the systemmay
blow up or overload sometimes. Nevertheless, it may be unmanned (even empty) once in some time interval. The manager
could employ more employees to deal with this variation. However, it need more labor cost and more time spending. In
order to reduce the cost of companies and increase the working efficiency of employees, adopting an appropriate allocation
strategy is essential and necessary. For example, the operator in facility would leave the service station (product line) to
take some secondary job when the system is not hard-pressed. Perhaps, theymay be assigned to execute other second tasks
as they are idly in the system. This situation could be regarded as the vacation of servers. Therefore, we investigate a multi-
server queueing systemwith synchronous vacation policywhich is described formally later. In this study,wewish to develop
a computationalmodel that helpsmanagers to answer the following important questions: (1) Under a certain cost structure,
what is the optimal multi-threshold vacation policy that minimize the expected cost function; That is howmany servers are
needed and how to utilize their idle time when the customers in the queue are served till some predetermined thresholds.
(2) When the optimal multi-threshold vacation policy is determined, how to adjust the service rate on the minimum cost
reduced.

The paper is organized as follows; In Section 2, the mathematical model and the quasi-birth–death (QBD) model of an
infinite capacityM/M/c queuewith a synchronous single vacation are set up. The closed-form of the ratematrix for the QBD
model is derived explicitly in Section 3. By using the matrix-analytical method, the stationary probabilities are obtained in
Section 4. In Section 5, some system performance measures are derived. A cost model is further developed to determine the
optimal values of number of servers and service rate, simultaneously which minimize the total expected cost per unit time.
We use direct search method and Quasi-Newtonmethod to deal with the optimization tasks. Some numerical examples are
provided to illustrate the two optimization methods. Section 6 concludes.

2. Model description and QBD process

We consider a multi-server M/M/c queueing system with mean arrival rate λ, mean service rate µ, and a multiple-
threshold synchronous vacation policy. The system allows at most s orders (groups) of synchronous vacation. When the
number of customers in the system is less than a pre-determined threshold value hi (hi < c), ki (ki < c and

s
i=1 ki < c)

of servers (partial servers) would take a synchronous vacation with mean vacation time 1/θi, i = 1, 2, . . . , s. At a vacation
completion instant, the returned servers start servicing the customers in the system or wait idly for serving new arrivals if
system is empty, that is, the single vacation policy. In addition, the inter-arrival time, the service time and the vacation time
are all exponentially distributed and mutually independent. The service discipline is assumed to be First Come First Served
(FCFS).

Let S(t) and N(t) denote, respectively, the number of normal (not on vacation) servers and the number of customers in
the system at time t . The state S(t) = i indicates that there are (c − i) servers on vacation. The process {S(t),N(t) : t ≥ 0}
is a continuous-time Markov chain with state space given by Ω =


{(i, n) : i = c, c − k1, . . . , c −

s
j=1 kj, n ≥ 0}. For

analysis convenience, it is assumed that θ1 > θ2 > · · · > θs. Following the concepts by Neuts [24], using the lexicographical
sequence for the states (i, n), the infinitesimal generator for the Markov process could be written as a block-partitioned
form:

Q =



A0 B
C1 A1 B

C2 A2 B
. . .

. . .
. . .

. . .
. . .

. . .

Cc−1 Ac−1 B
Cc Ac B

Cc Ac B
. . .

. . .
. . .


, (1)
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where each entry of Q is a square matrix of size (s + 1). B = λIs+1 with Is+1 denotes the identity matrix with size (s + 1).
For 1 ≤ i ≤ c, i ∉ {h1, h2, . . . , hs} (i.e., i does not belong to the threshold values), Ci is a diagonal matrix with diagonal
element Ci[j, j] = min(i, c −

j−1
ℓ=1 kℓ)µ, 1 ≤ j ≤ s+ 1. The remainder matrix Chr (r = 1, 2, . . . , s) is the same as Ci but the

element of Chr [r, r] is shifted to the position of Chr [r, r + 1] (i.e., Chr [r, r + 1] = min(hr , c −
r−1

ℓ=1 kℓ)µ and Chr [r, r] = 0).
Consequently, matrix Ci could be obtained by a general formula as follows:

Ci =



(1 − I1i )µ
c
i I1i µ

c
i

(1 − I2i )µ
c−k1
i I2i µ

c−k1
i

. . .
. . .

. . .
. . .

(1 − Is−1
i )µ

c−
s−1

ℓ=1 kℓ
i Is−1

i µ
c−
s−1

ℓ=1 kℓ
i

µ
c−
s

ℓ=1 kℓ
i


(s+1)×(s+1)

, i ≥ 0 (2)

with Iba = 1 if a = b, i.e., the indicator function. The symbol µb
a = min(a, b)µ denotes the mean service rate corresponding

to various statuses. In addition, the matrix Ai is given by

Ai =



∗

θ1 ∗

θ2 ∗

. . .
. . .

θs−1 ∗

θs ∗


(s+1)×(s+1)

, i ≥ 0. (3)

The diagonal elements of matrix Ai (or Q), indicated by ‘‘*’’, are magnitudes satisfy that the sum of each row of Q is zero.
From the matrix structure of Q, we find that the Markov process {S(t),N(t)} is a QBD process (see Neuts [24] and Latouche
and Ramaswami [25]).

Based on the Theorem 3.1.1 in Neuts [24], the queueing system would be stable and the steady state probability exists if
and only if

xBe < xCce (4)

where e is a column vector of dimension s+ 1 with all elements equal to one. x = [xc, xc−k1 , . . . , xc−k1···−ks ] is the invariant
probability of the matrix F = Cc + Ac + B which satisfies xF = 0 and xe = 1. Solving xF = 0 and xe = 1 implies xc = 1
and other xi = 0, for i ≠ c . Substituting B, Cc and x into Eq. (4) and doing some routine manipulations, then we have

cµ > λ or 1 >
λ

cµ
= ρ, (5)

which is a common and reasonable conclusion.

3. Steady state results

Asρ = λ(cµ)−1 < 1, thisQBDprocess could be investigated in steady-state. Let {S,N}be the stationary randomvariables
for the status of the vacation servers and the number of customers in the system. Denote the stationary probability by

pi,n ≡ P{S = i,N = n} = lim
t→∞

P{S(t) = i,N(t) = n}, (i, n) ∈ Ω. (6)

Let Π denotes the corresponding steady-state probability vector of Q. By partitioning the vector Π as Π =

[Π0, Π1, . . . , Πc−1, Πc, Πc+1, . . .], where each sub-vector Πi = [pc,i, pc−k1,i, pc−k1−k2,i, . . . , pc−k1···−ks,i] is a row vector
with dimension (s + 1). Then, the steady state probability vector Π is the unique solution that satisfies ΠQ = 0 and the
normalization condition


∞

n=0 Πne = 1 (see Neuts [24] and Latouche and Ramaswami [25]). It is noted that the vector
Π = [Π0, Π1, . . . , Πc−1, Πc, Πc+1, . . .] has the following properties

Πc+ℓ = ΠcRℓ, for ℓ ≥ 1 (7)

where the matrix R, called ‘‘rate matrix’’, is the minimal non-negative solution of the matrix quadratic equation

R2Cc + RAc + B = 0. (8)
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The rate matrix R could be explicitly determined using an efficient Maple computer program. Because the coefficient
matrices of Eq. (8) are all lower-triangular, R is also lower-triangular. We develop the explicit formula for rate matrix R
as following:

R =



r1,1
r2,1 r2,2
r3,1 r3,2 r3,3
...

...
...

. . .

rs,1 rs,2 rs,3 · · · rs,s
rs+1,1 rs+1,2 rs+1,3 · · · rs+1,s rs+1,s+1

 (9)

where ri,i =
λ+θi−1+µi−1

c −

√
[λ+θi−1+µi−1

c ]2−4λ µi−1
c

2µi−1
c

, for 1 ≤ i ≤ s + 1,

ri,j =

ri,j+1θj + µ
j−1
c

i−1
ℓ =j+1

ri,ℓ rℓ,j

λ + θj−1 + µ
j−1
c (1 − ri,i − rj,j)

, for 1 ≤ j ≤ i ≤ s + 1,

ri,j = 0, for j > i,

θ0 = 0, µi
c = (c −

i
ℓ=1 kℓ)µ and empty summation (

j
i, j < i) is defined to be zero.

Theorem 1. If ρ = λ(cµ)−1 < 1, the spectral radius of rate matrix R, sp(R), is less than 1.

Proof. It is noted that the diagonal elements are the corresponding eigen-values of the matrix R. Firstly, because of the
assumption of θ0 = 0

R[1, 1] =
λ + cµ − |λ − cµ|

2cµ
=

λ + cµ − (cµ − λ)

2cµ
= λ(cµ)−1 < 1. (10)

For 2 ≤ i ≤ s + 1, the diagonal element R[i, i] = ri,i is obtained from the quadratic equation

f (x) = µi−1
c x2 − (λ + θi−1 + µi−1

c )x + λ = 0. (11)

By the intermediate value theorem, there exists exact one real root in (0, 1) because

f (0) = λ > 0,

f (1) = µi−1
c − (λ + θi−1 + µi−1

c ) + λ = −θi−1 < 0.
(12)

From (10) and (12), all diagonal elements (eigen-values) of rate matrix R are less than 1. Therefore, the spectral radius of
rate matrix R, sp(R) = max1≤i≤s+1{ri,i} is less than 1. �

Theorem 2. The rate matrix R satisfies RT = λe, where T = [µc
c, µ

c−k1
c , . . . , µ

c−
s

i=1 ki
c ].

Proof. Multiplying both sides of Eq. (8) by e gives

(R2Cc + RAc + B)e = R2Cce − R(B + Cc)e + λe

= R2T − R(λe + T) + λe = (I − R)(λe − RT) = 0, (13)

since (B + Ac + Cc)e = 0 and Cce = T. However, I − R is invertible, hence λe = RT.
Once the rate matrix R is determined, the steady state probability Πi, i > c could be evaluated recursively. Furthermore,

the steady-state equations ΠQ = 0 are given by

Π0A0 + Π1C1 = 0, (14)
Πi−1B + ΠiAi + Πi+1Ci+1 = 0, 1 ≤ i ≤ c, (15)

ΠcRi−1−c(B + RAc + R2Cc) = 0, c + 1 ≤ i, (16)

and the following normalization condition
i


n

pi,n =


i

Πie = 1. (17)

Eqs. (14)–(15) could be manipulated routinely, we have

Π0 = Π1C1(−A0)
−1

= Π1φ0,

Πi = Πi+1Ci+1[−(φi−1B + Ai)]
−1

= Πi+1φi, 1 ≤ i ≤ c − 1,
(18)
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and

Πcφc−1B + ΠcAc + ΠcRCc = 0. (19)

Consequently, Πi (1 ≤ i ≤ c − 1) in Eqs. (14)–(15) could be written in terms of Πc as Πi = ΠcΦi where Φi =

φc−1φc−2 · · · φi+1φi, 0 ≤ i ≤ c − 1 and φ0 = C1(−A0)
−1, φi = Ci+1[−(φi−1B + Ai)]

−1, 1 ≤ i ≤ c − 1. Once the steady-state
probability Πc is obtained, Π = [Π0, Π1, . . . , Πc−1, Πc, Πc+1, . . .] is determined. Πc could be derived by simultaneously
solving Eq. (19) and the following normalization condition

i


n

pi,n =


i

Πie = (Π0 + Π1 + · · · + Πc−1 + Πc + Πc+1 + Πc+2 · · ·)e

= (ΠcΦ0 + ΠcΦ1 + · · · + ΠcΦc−1 + Πc + ΠcR + ΠcR2
· · ·)e

= Πc


c−1
i=0

Φi + (I − R)−1


e = 1. � (20)

4. Special case of s = 1

Our model could be reduced to the queue system with synchronous single vacation for some servers, which was one
vacation threshold investigated by Zhang and Tian [19]. As s = 1, set k1 = d, h1 = c − d and θ1 = θ , we have

Cc =


cµ 0
0 (c − d)µ


, Ac =


−(λ + cµ) 0

θ −[λ + (c − d)µ]


, B =


λ 0
0 λ


.

Substituting these three matrices into Eq. (8) gives the system of equations

cµr21,1 − (λ + cµ)r1,1 + λ = 0, (21)

cµr2,1(r1,1 + r2,2) − (λ + cµ)r2,1 + λ = 0, (22)

(c − d)µr22,2 − [λ + (c − d)µ]r2,2 + λ = 0. (23)

Then R =


r11 0
r21 r22


is the minimal nonnegative solution of the system of Eqs. (21)–(23). Also, the rate matrix R could be

found from Eq. (9),

r1,1 =
λ + cµ −


[λ + cµ]2 − 4λc µ

2cµ
=

λ

cµ
= ρ,

r2,2 =
λ + θ + (c − d)µ −


[λ + θ + (c − d)µ]2 − 4λ (c − d)µ
2(c − d)µ

(set = r),

r2,1 =
r2,2θ

λ + cµ(1 − r1,1 − r2,2)
=

θr
λ + cµ(1 − ρ − r)

=
θr

cµ(1 − r)
.

Consequently, the rate matrix is

R =


r11 0
r21 r22


=

 ρ 0
θr

cµ(1 − r)
r

 . (24)

By resorting the state sequence, we get the R that is consistent with Eq. (4) in Zhang and Tian [19].

5. Performance measures and cost model

In this section, some performancemeasures of the system are given. Based on thesemeasures, we develop a costmodel to
determine the optimal vacation policyK = [k1, k2, . . . , ks]when the threshold valuesH = [h1, h2, . . . , hs] and the vacation
rate Θ = [θ1, θ2, . . . , θs] are given. Various system measures of our model are defined as follows. Let

Ls ≡ the average number of customers in the system
Lq ≡ the average number of customers in the queue
E[V ] ≡ the average number of servers on vacation
E[I] ≡ the average number of idle servers
E[B] ≡ the average number of busy servers
O.U . ≡ the operative utilisation.
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The expressions for Ls, Lq, E[V ], E[I], and E[B] are given as follows:

Ls = Π1e + 2Π2e + · · · + (c − 1)Πc−1e + cΠce + (c + 1)Πc+1e + · · ·

= ΠcΦ1e + 2Π2Φ2e + · · · + (c − 1)ΠcΦc−1e + cΠce + (c + 1)ΠcRe + · · ·

= Πc


c−1
i=1

iΦi + c(I − R)−1
+ R(I − R)−2


e (25)

Lq =

c−1
i=1

Πi


max{i − c, 0}

max{i − (c − k1), 0}
...

max


i −


c −

s
j=1

kj


, 0


+ Πc


0
k1
...

s
j=1

kj

+ ΠcR




0
k1
...

s
j=1

kj

+ e

+ · · ·

=

c−1
i=1

Πi


max{i − c, 0}

max{i − (c − k1), 0}
...

max


i −


c −

s
j=1

kj


, 0


+ Πc(I − R)−1


0
k1
...

s
j=1

kj

+ ΠcR(I − R)−2e (26)

E[V ] =

∞
i=0

Πi


0
k1
...

s
j=1

kj

 = Πc


c−1
i=1

Φi + (I − R)−1


0
k1
...

s
j=1

kj

 (27)

E[I] =

∞
i=0

Πi


max{c − i, 0}

max{c − k1 − i, 0}
...

max


c −

s
j=1

kj − i, 0


 =

c−1
i=0

ΠcΦi


max{c − i, 0}

max{c − k1 − i, 0}
...

max


c −

s
j=1

kj − i, 0


 (28)

E[B] = c − E[V ] − E[I], O.U . = E[B]/c. (29)

Next, we construct a total expected cost function per unit time based on these system performance measures. Let

Ch ≡ cost per unit time when one customer in the system,
Cb ≡ cost per unit time when one server is busy,
Ci ≡ cost per unit time when one server is idle,
Co ≡ loss cost of operative untilisation.

Using the definitions of these cost elements listed above, the total expected cost function per unit time is given by

F(K) = ChLs + CbE[B] + CiE[I] + Co(1 − O.U .). (30)

Our objective is to determine the optimum vacation policy, say K∗, so as to minimize this function. Due to the
discrete property of K, a direct search method may be adopted. We use direct substitution of successive values of
k1, k2, . . . , ks (

s
i=1 ki < c) into the cost function until all feasible combinations (solutions) are computed. The specific

steps in the direct search algorithm to establish the optimal value K∗ are as follows:

Step 1. LetM be a sufficient large number and set candidate = M (Initialize).
Step 2. For each variable ki, 1 ≤ i ≤ s, make a do loop with lower bound 1 and upper bound c − s −

i−1
ℓ=1 kℓ.

Step 3. Calculate the cost function F(K) along this do loop and replace candidate by F(K) if F(K) < candidate.
Step 4. Candidate is the optimal solution, output.

An example is provided to illustrate the direct search algorithm described above.

Example. An example (such as the airline company mentioned in Section 1) is provided to illustrate the direct search
procedure. For example:

• There are c = 6 employees who are responsible for baggage loading/unloading.
• The baggages arrive follows a Poisson process with rate λ = 1.5/min.
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Table 1
System performance measures of the multi-server queueing system under a
multiple-threshold vacation policy (c = 10, s = 3, λ = 2.5, µ = 0.3 and
Θ = [0.05, 0.2, 0.5]).

H [1, 2, 3] [2, 4, 6] [3, 6, 9] [1, 3, 5] [2, 5, 8] [1, 5, 9]

K [2, 3, 2] [2, 2, 1] [1, 3, 1] [2, 2, 2] [2, 2, 1] [2, 2, 1]
F 776.665 769.793 753.675 776.574 769.564 776.450
Ls 10.8406 11.3788 12.1737 10.8496 11.4833 10.8798
Lq 2.50731 3.04551 3.84032 2.51631 3.14997 2.54650
E[V ] 0.01935 0.15551 0.42291 0.02135 0.16966 0.02609
E[I] 1.64732 1.51116 1.24376 1.64532 1.49701 1.64058
E[B] 8.33333 8.33333 8.33333 8.33333 8.33333 8.33333
O.U 0.83333 0.83333 0.83333 0.83333 0.83333 0.83333
K [5, 3, 1] [3, 3, 3] [1, 3, 5] [4, 3, 2] [2, 2, 2] [2, 3, 4]

H [1, 2, 9] [4, 5, 6] [6, 7, 8] [2, 3, 9] [6, 7, 8] [5, 6, 7]
F 778.588 759.305 720.953 776.954 720.166 736.143
Ls 11.2481 17.8398 16.2541 12.8384 17.5490 17.2506
Lq 2.91480 9.50645 7.92072 4.50505 9.21566 8.91728
E[V ] 0.04326 0.98991 1.23986 0.23811 1.32582 1.18181
E[I] 1.62341 0.67676 0.42681 1.42856 0.34085 0.48486
E[B] 8.33333 8.33333 8.33333 8.33333 8.33333 8.33333
O.U 0.83333 0.83333 0.83333 0.83333 0.83333 0.83333

• The baggage loading/unloading time are according to an exponential distribution with rate µ = 0.3/min.
• When the number of baggage is less than fixed threshold valuesH = [1, 2, 3],K = [k1, k2, k3] employees would go away

from the primary task to deal with other secondary job (taking vacation).
• The vacation rates are Θ = [0.05, 0.2, 0.5] (1/min).
• Holding cost Ch = $10/unit, Cb = $60/person, Ci = $90/person, Co = $120.

Step 1. LetM = 5000 and set candidate = M .
Step 2. Make three do loops: k1 from 1 to 3, k2 from 1 to 3-k1, and k3 from 1 to 3-k1-k2.
Step 3. Calculate F(1, 1, 1) = 482.592 < 5000, set candidate = 482.592.

Calculate F(1, 1, 2) = 482.506 < 482.592, set candidate = 482.506.
. . .
Calculate F(3, 1, 1) = 497.537 > 482.375.

Step 4. F(1, 2, 1) = 482.375 is the optimal solution.

Analogously, the optimal value ofH could be solved by adopting a similar optimization procedure.More systemmeasures
and optimal values of K (H) given H (K) are shown in Table 1. The manager could use the information provided in Table 1 to
decide the discipline and the staff mobility in order tominimize the total cost. In practice, the service ratemay be adjusted to
reduce the total cost as other system parameters are determined. After the determination of the discrete system parameters,
the Quasi-Newtonmethod is employed to search the optimal service rateµ∗ until theminimum cost is achieved. To find the
optimal value µ∗, we should show the convexity of F . However, it is very difficult to implement. Note that the derivative of
the cost function F with respect to µ indicates the direction which cost function increases. Therefore, the (local) minimum
of F could be found along this opposite direction of the gradient (see Chong and Zak [26]). An effective procedure to calculate
µ∗ is presented as follows:

Step 1. Set an initial trial solution µ(0) and give a tolerance ε > 0.
Step 2. Compute F(µ(i)), F ′(µ(i)) = ∂F/∂µ|µ(i) , and F ′′(µ(i)) = ∂2F/∂µ2

|µ(i) .
Step 3. If

F ′(µ(i))
 > ε, find the new trial solution µ(i+1)

= µ(i)
− F ′(µ(i))/F ′′(µ(i)) and back to step 2. Otherwise, the

approximate optimal solution is found.

In the following, two examples are provided to illustrate this optimization procedure are presented in Table 2. From
Table 1 and Table 2, (i) the average number of busy servers is equal to the traffic intensity λ/µ, which is a reasonable result;
(ii) minimum cost may be achieved by a combination of various values of K and H, that is, the optimal decision may be
very sensitive to the original system setting and parameters; and (iii) the Quasi-Newtonmethod is effective to deal with the
continuous variable optimization problem (the approximation solution is found by repeating five times of the procedure
listed above), i.e., it is easily converged to the optimum values. It is very useful and helpful in deal with cost reduction
problem. Finally, a sensitivity investigation to the optimal values of K and µ for various values of λ and H is performed.
The corresponding system performance measures and cost are shown in Table 3. From Table 3, we observe that (i) as λ
becomes larger, the system loading becomes heavy, the optimal mean service rate µ∗ also increases in order to keep the
service quality and the total cost acceptable; (ii) as expected, the expected number of customer in the system Ls and the
cost function F also increase if λ increases; and (iii) the optimal vacation policy K∗ seems insensitive to the change of H. It
means that K∗ could be adopted to be a (near) optimal solution in various values of H (i.e., it is robust for the optimal values
of number of vacation servers in various thresholds).
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Table 2
The illustration of the optimization procedure of the Newton-Quasi method when c =

10, s = 3, λ = 2.5, ε = 10−6 and Θ = [0.05, 0.2, 0.5].

Iterations 0 1 2 3 4 5

Case (i): K = [2, 2, 1], H = [2, 4, 6], µ(0)
= 0.5

F 635.047 590.297 587.832 587.737 587.736 587.736
µ(i) 0.5 0.61844 0.65604 0.66536 0.66586 0.66586
∂F/∂µ −710.452 −117.628 −19.7837 −0.96597 −0.00270 3 × 10−7

∂2F/∂µ2 5922.60 3128.30 2124.00 1918.40 1907.40 1908.30
Ls 5.80376 4.47601 4.15654 4.08406 4.08022 4.08021
E[V ] 2.58879 3.38533 3.48536 3.50326 3.50417 3.50417
E[I] 2.41121 2.57221 2.70389 2.73935 2.74129 2.74129
E[B] 5.00000 4.04245 3.81076 3.75739 3.75455 3.75454
O.U . 0.50000 0.40425 0.38108 0.37574 0.37545 0.37545

Case (ii): K = [3, 3, 3], H = [4, 5, 6], µ(0)
= 1.0

F 474.127 459.192 451.623 451.462 451.462 451.462
µ(i) 1.0 0.68881 0.77674 0.79205 0.79241 0.79241
∂F/∂µ 195.707 −157.878 −20.7297 −0.47171 −0.00034 8.8×10−8

∂2F/∂µ2 628.900 1795.60 1353.80 1292.70 1290.70 1291.70
Ls 4.93867 7.64658 6.78833 6.64795 6.64464 6.64463
E[V ] 5.44733 5.38707 5.56754 5.58278 5.58309 5.58309
E[I] 2.05267 0.98348 1.21386 1.26085 1.26199 1.26199
E[B] 2.50000 3.62944 3.21860 3.15638 3.15492 3.15492
O.U . 0.25000 0.36294 0.32186 0.31564 0.31549 0.31549

Table 3
The optimal service rate and the system performance measures for various value
of λ and H when c = 10, s = 3, µ = 0.5, Θ = [0.05, 0.2, 0.5].

λ 1.0 2.0 3.0 1.0 2.0 3.0

H [1, 4, 7] [1, 4, 7] [1, 4, 7] [2, 5, 8] [2, 5, 8] [2, 5, 8]
K∗ [7, 1, 1] [4, 2, 1] [3, 1, 1] [7, 1, 1] [5, 1, 1] [3, 1, 1]
µ∗ 0.87879 0.79420 0.44896 0.57347 0.68213 0.72502
F 396.566 513.513 789.693 389.022 468.591 575.750
Ls 1.37236 2.92643 7.51312 2.69259 3.79130 4.78850
E[V ] 6.54850 4.77761 0.27544 6.49628 5.17976 3.53719
E[I] 2.31358 2.70415 3.04246 1.75995 1.88825 2.32501
E[B] 1.13793 2.51825 6.68210 1.74377 2.93199 4.13780
O.U . 0.11379 0.25182 0.66821 0.17438 0.29320 0.41378

H [3, 6, 9] [3, 6, 9] [3, 6, 9] [5, 7, 9] [5, 7, 9] [5, 7, 9]
K∗ [7, 1, 1] [5, 1, 1] [2, 3, 1] [7, 1, 1] [6, 1, 1] [3, 2, 1]
µ∗ 0.45851 0.60457 0.68623 0.33455 0.63715 0.65375
F 402.340 468.538 545.198 433.021 446.713 524.935
Ls 4.00764 4.72612 6.22994 6.87781 7.41322 7.26313
E[V ] 6.29034 5.10869 3.92765 5.79862 5.82133 4.16624
E[I] 1.52863 1.58319 1.70062 1.21225 1.03968 1.24484
E[B] 2.18098 3.30812 4.37173 2.98913 3.13898 4.58892
O.U . 0.21810 0.33081 0.43717 0.29891 0.31389 0.45889

6. Conclusions

In this paper, we have investigated a multi-server queueing system under multiple-threshold synchronous vacation
policy, where partial servers may take a synchronous single vacation when the number of customers in the system is less
than a pre-determined threshold. This system was formulated as a QBD process, and the necessary and sufficient condition
for the stability of systemwas discussed. The steady-state probability and the closed-formexpression of the ratematrixwere
obtained usingmatrix-analyticalmethodwith the aid of computer software.Weproved the convergence property of the rate
matrix and showed the explicit form of the rate matrix under a special case of single threshold. Based on the derived system
performance measures, a cost model was developed to search for the optimal vacation policy and the optimal service rate,
which minimize total expected cost function per unit time. Two approaches were implemented to deal with optimization
problems of the discrete variables and continuous variables, respectively. Two examples were provided to illustrate the
optimization procedure for each approach. We finally performed a sensitivity analysis between the optimal values of (µ,
K) and specific values of (λ, H). The analysis presented in this paper would be helpful for decision makers to promote the
competitiveness and profits of enterprize.
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