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A High-Accuracy Multidomain Legendre
Pseudospectral Frequency-Domain Method With
Penalty Scheme for Solving Scattering and
Coupling Problems of Nano-Cylinders
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Abstract—A new multidomain pseudospectral frequency-do-
main (PSFD) method based on the Legendre polynomials with
penalty scheme is developed for numerically modeling electromag-
netic wave scattering problems. The primary aim of the proposed
method is to more accurately analyzing scattering and coupling
problems in plasmonics, in which optical waves interact with
nanometer-sized metallic structures. Using light scattering by a
silver circular cylinder as a first example, the formulated method
is demonstrated to achieve numerical accuracy in near-field
calculations on the order of with respect to a unity field
strength of the incident wave with excellent exponentially con-
vergent behavior in numerical accuracy. Then, scattering by a
dielectric square cylinder and that by several coupled metallic
structures involving circular cylinders, square cylinders, or di-
electric coated cylinders are examined to provide high-accuracy
coupled near-field results.

Index Terms—Electromagnetic near fields, electromagnetic
wave scattering, plasmonics, pseudospectral frequency-domain
(PSFD) method.

I. INTRODUCTION

P LASMONICS is a relatively new field concerning the col-
lective electromagnetic resonances of free electrons in-

side nanometer-scaled metallic structures [1], which has been
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widely studied and applied in many areas, like surface enhanced
Raman scattering (SERS) [2], nanoantennas [3], waveguides
[4], etc. Strong electromagnetic fields can be locally enhanced
and radiated by this collective oscillation of electric charges.
The field coupling between metallic nanoparticles under dif-
ferent incident polarizations thus plays an important role in such
plasmonics research. Accurate electromagnetic near-field cal-
culation is essential and significant for understanding the un-
derlying optical behaviors [5]. However, due to the nanometer-
sized dimension and spacing of metallic particles as well as
strongly enhanced near fields, there exist challenges to achieve
relevant numerical simulations with good accuracy. The Mie
theory [6] and the multiple scattering methods [7], [8] for ana-
lytically calculating light wave scattering by spheres or circular
cylinders have been proposed. But for more general geometries
of the plasmonic objects, numerical methods, like the finite-dif-
ference time-domain (FDTD)method [9], [10] and the finite ele-
ment method (FEM) [11], [12], could provide more flexibilities.
Plasmon resonance and field enhancement in complicated struc-
tures have also been analyzed using the surface integral method
[13] and the volume integral method [14] and discussed by the
surface-charge hybridization picture [15].
To more accurately model the interaction of electromag-

netic waves with metallic structures, we present here a new
Legendre pseudospectral frequency-domain (PSFD) method to
solve Maxwell’s equations for relevant two-dimensional (2-D)
scattering problems. Although not so popularly used, the pseu-
dospectral methods have been demonstrated their high-order
accuracy and fast convergence behavior in applications to
computational electromagnetics in time domain [16]–[19]. The
idea of the pseudospectral method in frequency domain was
initially proposed by Liu [20] based on Chebyshev polynomials
and the second-order Helmholtz equation to solve a scattering
problem. Later, based on Helmholtz equations, pseudospectral
eigenmode solvers have been established for analyzing 2-D
photonic crystals [21] and obtaining full-vector optical wave-
guide modes [22]. In this paper, we formulate our new PSFD
method, instead, from the first-order differential equations
using the similar scheme of a related Legendre pseudospectral
time-domain (PSTD) method recently established [23] and
utilizing the Legendre polynomials as the interpolation basis.
Besides, the penalty scheme as developed in [23] is used to
better handle boundary conditions for well-posedness consid-
eration, and the perfectly matched layers (PMLs) [24]–[26]
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are incorporated into the PSFD formulation to absorb out-
ward propagating waves and effectively reduce reflection of
out-going waves. The multidomain approach is employed, as
in [23], with which the computational domain with the PMLs is
divided into suitable number of subdomains, with the material
interfaces fitting the sides of some subdomains, so that the field
continuity conditions can be accurately fulfilled. The equations
approximating the physical processes of the corresponding sub-
domains are finally packed into a linear matrix equation which
can be easily solved by iterative algorithms. Using the PSFD
method, we will show that numerical accuracy on the order
of can be achieved in the scattered-field calculation of a
circular metallic cylinder, as compared with known analytical
results provided in [27], [28]. More importantly, this PSFD
method provides exponentially convergent rate in numerical
accuracy with respect to grid resolution, which implies its effi-
ciency in that few grid points added can exponentially increase
computation accuracy. We believe this method can provide
high-accuracy results in the analysis of electromagnetic field
characteristics of plasmonic problems including the important
ones of coupled cylinder structures.
The finite-difference time-domain (FDTD) method [9] has

been a popular numerical analysis and simulation method in
computational electromagnetics, including plasmonics. For
curved material interfaces, the simple stair-casing approxima-
tion of such interfaces as often utilized in the FDTD calculation
of the electromagnetic field may result in numerical-accuracy
reduction in field values along the curved interface [29]. How-
ever, obtaining high-accuracy near fields for such situations
can be important for understanding the plasmonic phenomenon
and proposing relevant applications. More efforts must be
paid for overcoming such stair-casing problem in the FDTD
method, e.g., using the conformal scheme [30], the triangular
mesh [31], the effective permittivity [32], etc. The PSFD
method, however, can avoid such stair-casing problem since its
subdomain partitioning with curvilinear geometries can match
exactly to the shape of the structure interface [33], thus can
provide accurate computation.
Furthermore, in numerically modeling the plasmonic struc-

tures, material dispersive properties of metals need to be
carefully considered. In time-domain computation methods,
the auxiliary differential equation (ADE) technique [9] can
be employed to take into account the Drude-Lorentz material
model for a metal in the simulation. But the parameters in
the material dispersion model need to be carefully assigned
through curve fitting the measured dielectric function of the
metal [34], [35]. As a frequency-domain method, however,
the PSFD method can directly adopt the measured or given
complex dielectric constant of the metal at the considered fre-
quency without needing the ADE approach and the associated
curve-fitting procedure for treating material dispersion in the
electromagnetic calculations.
The remainder of this paper is outlined as follows. Maxwell’s

equations with the penalty scheme for the 2-D scattering
problem are described in Section II. The Legendre pseudospec-
tral method is introduced in Section III. Scattering calculation
results for a silver circular cylinder, a dielectric square cylinder,
and several coupled metallic structures involving circular
cylinders, square cylinders, or dielectric coated cylinders are
presented and discussed in Section IV. Some remarks on the

Fig. 1. Computational domain with pseudospectral subdomain division for the
scenario in which a plane wave is scattered by a 2-D object.

proposed formulation and scheme are given in Section V. The
conclusion is drawn in Section VI.

II. MAXWELL’S EQUATIONS WITH THE PENALTY SCHEME

For time-harmonic electromagnetic fields, and , in a
linear isotropic medium region with permittivity and per-
meability , Maxwell’s curl equations can be written in the
complex form as

(1a)

(1b)

where and represent the source electric and magnetic
current densities, respectively, and is the angular frequency.
Here, we consider the 2-D problem with no field variation
along the direction. Fig. 1 shows one example scenario in
which a plane wave is scattered by a 2-D circular cylinder.
We particularly study the transverse-magnetic (TM) waves
with , and field components because of plasmonics
applications. Therefore, Maxwell’s curl equations become three
first-order equations as

(2a)

(2b)

(2c)

In the multidomain PSFD method, the computational do-
main is partitioned into suitable non-overlapping subdomains
of curvilinear quadrilateral shape. Using the scattering by a cir-
cular cylinder as depicted in Fig. 1 as an example, if boundary
conditions are rigorously considered at the interface between
adjacent subdomains I and II with the unit normal vector
perpendicular to the interface expressed as ,
the continuity of tangential fields across the interface for
source-free dielectrics requires that

(3a)

(3b)
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for the TM waves, where the superscripts, and , denote
the subdomains and denotes the tangential electric field, i.e.,

.
In our formulation, an incident TM plane wave is generated

by assigning a uniform -directed source surface current density
with unit A/m on the PML/air interface, as shown in Fig. 1,

using the required boundary condition, ,
where I and II refer to the corresponding PML subdomain and
air subdomain, respectively, and is taken to be zero in (2c).
This -directed would generate both -polarized rightward
(to the PML) and leftward propagating plane waves [36], with
the rightward wave absorbed by the PML. Note that the relation
between and , the latter being the volume current density
with unit A/m , is if flows in the direction, and
we would have , where is the quadrature weight
on the interface which will be defined in the next section.
In [23], the Legendre PSTD formulation with the penalty

scheme based on well-posed boundary impositions of physical
boundary conditions in terms of characteristic variables has
been discussed in detail. The same penalty scheme is employed
here to impose weakly characteristic boundary conditions.
Briefly speaking, (2) can be first written as

(4)

where , and the ma-
trices and are simply constructed with 0, 1, and cor-
responding to the presence of fields in (2). Next, the penalty term

will be added. The ma-
trices, and , are constructed respectively from the eigen-
values and eigenvectors of the matrix , which is defined
as , and the characteristic state vectors

are defined as as in [23]. Then, after
matrix multiplications of , and in the
penalty term ,Maxwell’s equations in (2) with penalty
added become

(5a)

(5b)

(5c)

where is unity when the grid point is on the boundary edge,
and is zero otherwise [23]. The variable is a free parameter
defined by Theorem 3.1 in [23] with value for supporting
(5) to be a convergent system during iteration processes. In the
PML subdomains, (5) are rewritten, following the derivations
in [23] and [26], as

(6a)

(6b)

(6c)

where and are absorbing profiles along the and axes,
respectively, and denotes the derivative of with respect
to . Taking as an example, we choose

, where is the distance of the point,
, from the initial point, is the total length of PML,
and the parameters and are free variables for tuning the
PML performance. After employing the Legendre pseudospec-
tral scheme and packing all subdomains, (5) and (6) would lead
to a linear matrix equation, , with the unknown vector
consisting of and fields, the vector corresponding to

the known sources, and the matrix consisting of spatial dif-
ferential operators and penalty terms. The unknown electric and
magnetic fields can be solved from using efficient
iterative algorithms such as the bi-conjugate gradient (BiCG)
method.

III. LEGENDRE PSEUDOSPECTRAL METHOD

Now, we discuss the Legendre pseudospectral method for
numerically treating the spatial derivatives in the above gov-
erning equations. Under the multidomain scheme, each curvi-
linear quadrilateral subdomain region in Cartesian coordinates

can be mapped onto a square region in
curvilinear coordinates by using the transfinite blending
function described in [29] to construct and

. Applying the chain rule, derivatives of a 2-D function
will then become

(7a)

(7b)

Some properties of Legendre polynomials, which we use as the
basis for the interpolation of a function, will be given below.
In the Legendre pseudospectral method, spatial arrangement

of grid points is defined by the Legendre–Gauss–Lobatto (LGL)
quadrature points arranged in the interval , which are
the roots of the polynomial [23] with the prime
denoting derivative and being the Legendre polynomial of
degree defined by

(8)

Associated with these LGL quadrature points are a set of
quadrature weights for . If is a
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polynomial of degree at most , we have the quadrature
rule [23]

(9)

where the quadrature weights are defined by

otherwise.
(10)

Based on these LGL collocation points, one can use the de-
gree- Lagrange interpolation polynomials as the bases
to approximate an arbitrary function such that

(11)

where

(12)

Then, the derivative of the function at the LGL quadrature
point can also be approximated as

(13)

The differential coefficient is defined in [23] by

otherwise

(14)

if ; and

(15)

if . The so-called differential matrix operator with
elements can thus be substituted into the spatial derivative in
(13) as

...
...

...
...

(16)

This is the key feature of the Legendre PSFD method, i.e., for
the 1-D example, the derivative of at an LGL point in
the region can be approximated in terms of values
at the LGL points in the same region. Spatial derivatives
of fields in (5)–(7) can be simply replaced by these differential
matrix operators in the linear matrix system. The matrix
thus becomes a sparse matrix containing penalty, PML, and
terms. Note that those terms for spatial derivatives repeat-
edly appear in and are located with regularity, thus only this
small matrix in (16) is needed to be stored and our PSFD im-
plementation will be memory-saving, which can then be applied
to solve large problems or those requiring dense grid points. In

Fig. 2. Portion of the subdomain division profile in the computational domain
near the cylinder scatterers (the colored region) for . (a) A single cir-
cular cylinder. (b) Two coupled circular cylinders. (c) Two coupled rectangular
cylinders. (d) 45 -tilted square cylinder.

Fig. 2, the grid meshes based on the LGL points in each sub-
domain, except the PML ones, are plotted for . As
shown in the figure, the curved structure and the whole compu-
tational region are partitioned into curvilinear subdomains, and

LGL grid points are not uniformly distributed
but somewhat following the outline of the domain edges. Please
note that the LGL grid points at each edge side of a subdomain
are colocated with the LGL grid points at one edge side of its
adjacent subdomain. These colocated grid points are counted as
distinct sets of points, and the penalty scheme is applied on the
two sets for exchanging information of boundary conditions.

IV. NUMERICAL RESULTS

Here, the PSFDmethod is applied to analyze some basic scat-
tering problems. Accuracy will be first verified by examining
a circular-metallic-cylinder problem and comparing the results
with those obtained from the analytical approach. With the high
accuracy provided, the PSFDmethod is then applied to simulate
several coupled structures between closely placed, in nanometer
scale, metallic cylinders and investigate their optical behaviors.

A. Single Circular Metallic Cylinder

First, we examine the accuracy of the formulated Legendre
PSFD method by solving a simple problem of TM scattering
of a plane wave by a silver circular cylinder in free space at
an optical wavelength. Such problem is known to have an an-
alytical solution [27], [28]. Nevertheless, it is a good example
to test how accurate a numerical analysis method can perform
when dealing with plasmonic structures. The computational-do-
main setup with PMLs and the subdomain division is as shown
in Fig. 1, and the grid mesh is as depicted in Fig. 2(a). The ra-
dius of the cylinder is m and the wavelength of
the incident plane wave is m. At this wavelength, the
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Fig. 3. Maximum absolute difference between the PSFD calculated field value
and its corresponding analytical one scanned over the computational domain
versus the degree of the Legendre polynomial used for the , and
components, respectively, for TM scattering of a plane light wave at m
by a silver circular cylinder of radius 0.25 m in free space.

measured complex dielectric constant of silver is about
[34]. Fig. 3 shows the maximum absolute

difference, , between the PSFD calculated field value and
its corresponding analytical one scanned over the computational
domain versus the degree of the Legendre polynomial used
for the , and components, respectively, when the in-
cident electric field intensity is 1 V/m, where refers to the
field component. For , the difference in is considered,
where is the free-space impedance. It is seen that the errors
are on the order of when and on the order of
when and can get down to when . These
results demonstrate that our PSFD algorithm can provide high
accuracy for solving light scattering by plasmonic structures.
Also, the convergent plots show that the error exponentially,
rather than linearly, decreases with respect to . This is the
inherent characteristic of the spectral method having the con-
vergent ratio proportional to . Fig. 4(a)–(c)
plots the field profiles for , and , respectively,
when the incident TM wave comes from right with po-
larization. The computing resources used are described as fol-
lows. For , and 12, the required matrix sizes are
31 164, 51 516, 76 956, and 107 484, respectively, the computer
running times are 175, 429, 958, and 1970 s, respectively, and
the memory usages are 9, 14, 20, and 27 Mb, respectively, exe-
cuted by a single processing core on a personal computer with
quad-core i7 3.42-GHz CPU in Linux environment. The compu-
tation time approximately doubles as is increased by two, and
the memory usages are not much. Note that the accuracy with

can be more than what is required in practice since the
error in the calculated field is on the order of as mentioned
above.
In this verifying example of the PSFDmethod achieving such

high accuracy, PML tuning is also an important process. From
the given absorbing profile of PML, free parameters and
can be varied to optimize the accuracy. According to our

Fig. 4. Field profiles for (a) , (b) , and (c) , respectively, for the
case of Fig. 3, with the incident wave propagating from right to left.

experiences and in this case, the choices of and
or 3 can provide better results as shown. This gives a

gradually growing profile, and we adopt a wide PML with 3- m
thickness for reducing reflection of waves.

B. The Single Dielectric Square Cylinder

Scattering of a 45 -tilted dielectric square cylinder investi-
gated in [37] is considered next. The side length of the square
is , where is the free-space wavenumber,
and the plane wave incidence is as indicated in the inset of Fig. 5
with wavelength . Here, the dimensions are all normalized
to according to [37], so the size of the dielectric cylinder is
measured in terms of . Note that the square was as-
sumed in [37] to have rounded corners with a radius of curvature

but it is assumed to have sharp corners in our cal-
culations. Thus, there would be four singular points expected at
these sharp corners in our results. The tangential electric field of
the TM case versus , where is the distance along the upper
square surface from the left apex to the right apex, is shown in
Fig. 5(a) and (b) for cylinders of dielectric constants
and , respectively. The calculations were done for
from 12 up to 28. The results are seen to well agree with those
of [37], even for smaller s. Notice that the fields at the sin-
gular points, for example, grow up as the grid reso-
lution (or ) increases. Here, we used only one subdomain for
this square structure, and there are points along

to . The field distributions with are
depicted in Fig. 6. Because the incident wave comes from the
left, the fields are seen to be longitudinally symmetric. The sin-
gular points can be observed at the upper and bottom apexes
in Fig. 6(b). To observe more clearly the singular-point char-
acteristics, the expanded view of those results in Fig. 5(a) near

is shown in Fig. 5(c). Note that, at , there
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Fig. 5. Tangential electric field versus for (a)
and (b) for the scattering of a 45 -tilted dielectric square cylinder

with side length . The dots are adopted from [37] and other lines stand
for PSFD calculated results of different degrees . (c) The expanded view
of those results in (a) near together with the corresponding PSFD
calculated total electric field results for showing the singular electric-field
characteristic at the dielectric corners.

Fig. 6. Field profiles for (a) , (b) , and (c) , respectively, for the
case of Fig. 5(b).

are two values for each since the tangential component
value referring to the left side and that referring to the right side
are different. Also displayed in Fig. 5(c) are the corresponding
profiles for the magnitudes of the total electric field, , which
show sharper singular behavior. The subdomain division profile
near the square cylinder is plotted in Fig. 2(d).

Fig. 7. and field distributions for plane-wave scattering by two cou-
pled silver circular cylinders. The plane wave is incident from left in (a) and
(b), and from bottom in (c) and (d). The radii are 50 nm and the side spacing
between the two cylinders is 10 nm.

C. Two Coupled Circular Metallic Cylinders

The field coupling between metallic nanoparticles plays an
important role in plasmonic research, which in particular may
result in strong local-field enhancement that can provide many
useful applications. We apply the PSFD method to study the
phenomenon of field coupling between two silver nano-cylin-
ders, with focus on two closely placed cylinders interacting with
incident light waves of different directions and polarizations.
The first case is a system of two 50-nm-radius circular cylin-

ders with 10-nm spacing allocated along the -axis. For the
and distribution results shown in Fig. 7(a) and (b), the wave
is incident from left at m and with polarization.
The measured complex dielectric constant of silver at this wave-
length is . The two cylinders are coupled such
that strong electric field enhancement occurs within the gap be-
tween them, with the maximum being about 6.42 times the
incident electric field intensity, as indicated in the color bar in
Fig. 7(a). Due to the direction of the incident wave, the elec-
tric field profile is longitudinally symmetric with respect to the
arrangement of cylinders. There is a null at the center, and the
fields below and above it are oppositely signed in phase. Also,
the incident polarization causes the first cylinder to oscillate
with strong fields on both -ended surfaces, as depicted in
Fig. 7(b), and less influence is on the second cylinder due to the
shielding from the first cylinder.
If the propagation direction of the incident wave is changed

to be bottom-up with polarization, strong field enhancement
occurs at m with the and field distribu-
tions shown in Fig. 7(c) and (d), respectively. At this wave-
length, the measured complex dielectric constant of silver is
about . In this case, obviously, the incident
field leads the free electrons in both cylinders to oscillate hori-
zontally and induces a strongly coupled field within the gap,
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Fig. 8. and field distributions for plane-wave scattering by two cou-
pled silver rectangular cylinders. The plane wave is incident from left in (a) and
(b), and from bottom in (c) and (d). The edge length are 100 nm and the side
spacing between the two cylinders is 10 nm.

which is about 9.14 times enhancement. Note that the maximum
induced field is not exactly located right at the center, but
about 5 nm upper. The induced field is transversely sym-
metric and not strongly enhanced, and the phases of the
two cylinders are reversed such that there also exists a null in
between. It is seen in the above two situations that the plane
wave incident from the bottom provides higher field enhance-
ment than that from the left.

D. Two Coupled Square Metallic Cylinders

Next, we study the field coupling between two squaremetallic
cylinders. Different from the circular ones, the square cylin-
ders have four sharp corners, which would cause singular points
and thus induce extremely, infinity theoretically, strong fields
would exist around these apexes, causing challenges in numer-
ical computations.
The simulated case is a system of two square cylinders, each

having 100-nm edge width, again with 10-nm spacing. This
structure is to be compared with the above one of circular cylin-
ders. Fig. 8(a) and (b) shows the and distributions
when the wave is incident from left at m. The
complex dielectric constant of silver at this wavelength is about

. From the field shown in Fig. 8(a), it re-
veals two spots of field enhancement at the upper and lower
corners in the gap, with the field enhancement being as high
as up to 30 times. The calculated fields at the apexes would be
even higher as is increased. As in the case of coupled circular
cylinders, the profile is distributed mainly at both -ended
edges of the first cylinder. The appearance of symmetric upper
and lower field-enhancement regions is quite similar to those in
Fig. 7(a) and (b).

Fig. 9. and field distributions for plane-wave scattering by two cou-
pled silver circular cylinders having a dielectric coating of 10-nm thickness. The
plane wave is incident from left in (a) and (b), and from bottom in (c) and (d).

Likewise, if we change the incident wave direction to
bottom-up at m, the strong enhancement
appears in the gap near the bottom corner, as shown in Fig. 8(c),
due to the -polarized incident field, with the enhancement
being up to 12 times, which is smaller than that in Fig. 8(a).
The complex dielectric constant of silver at this wavelength
is . Note that the field is now not enhanced
at the center but near the bottom of the gap. Opposite field
phases in Fig. 8(a) with respect to horizontal symmetric plane
and in Fig. 8(d) with respect to the vertical symmetric plane in
Fig. 8(d) cause obvious null-field appearances within the gap
region.

E. Two Coupled Metallic Cylinders With Dielectric Coating

We further study the situations with each of the cylinders in
Figs. 7 and 8 coated with a 10-nm-thickness dielectric layer of
dielectric constant . We maintain the diameter or edge
width of each silver cylinder, and the gap size is still kept as
10 nm. It is known that this outer dielectric material can make
the plasmonic resonant frequency shifted, but the optical field
characteristics are rarely seen, especially for coupled cylinders.
The results corresponding to Fig. 7 are shown in Fig. 9 and those
corresponding to Fig. 8 are shown in Fig. 10. The incident wave-
lengths in Fig. 9(a)–(b), Fig. 9(c)–(d), and Fig. 10(a)–(b), and
Fig. 10(c)–(d) are 0.467, 0.417, 0.649, and 0.616 m, respec-
tively, with the corresponding complex dielectric constants of

, and
, respectively. The characteristics of and pro-

files are seen to be quite similar with those in Figs. 7 and 8, but
the localized fields now appear mainly at the dielectric-dielec-
tric interfaces and in the gaps, which could reduce the ohmic
losses in the metals. The field enhancement is found to be lower
compared with uncoated cases, which can be explained by the
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Fig. 10. and field distributions for plane-wave scattering by two cou-
pled silver rectangular cylinders having a dielectric coating of 10-nm thickness.
The plane wave is incident from left to right in (a) and (b) and from bottom in
(c) and (d).

fact that the actual distance between the metallic cylinders is
30 nm rather than 10 nm.

F. Three Pairs of Circular Metallic Cylinders

We finally investigate two-by-three arranged six-silver-
cylinder arrays studied in [10], where the FDTD method was
used for simulations. This cylinder arrangement is shown
to give not only particle-particle but pair-pair interactions,
thus strong localized field enhancement could be generated
in the gap of the middle pair [10]. In [10], measured material
characteristics for silver given in [35] instead of [34] were
used. We also adopt the data in [35] in our calculations for
comparison. Our PSFD results given in Fig. 11 are for the
incident wave from left to right and the spacing between ad-
jacent cylinders being 20 nm. In [10], it was found that with
gap size of 20 nm and at nm, the maximum field
enhancement of about 8.89 occurs when the cylinder radius is
36 nm. Our PSFD simulated profile for this case is shown
in Fig. 11(a), where the maximum field value is 11.11 V/m,
referring to the incident field of 1 V/m, and the field value at
the center of the gap of the middle pair is about 9.33 V/m,
which is larger than that value of [10] by 4.72%. The value
is defined here by . The measured
complex dielectric constant of silver given in [35] is about

at this wavelength. If the value given
in [34], , is used, the PSFD calculated
maximum field value and the field value at the center of the
gap of the middle pair would be about 13.78 and 11.65 V/m,
respectively.
When the wavelength is changed to 650 nm, the cylinder ra-

dius was found in [10] to be 58 nm for generating largest field
enhancement of 13.04. Our results for this case are presented

Fig. 11. field distributions for plane-wave scattering by six silver circular
cylinders with incident wave from left. (a) Cylinder radius nm at
460 nm. (b) Cylinder radius 58 nm at nm. All gap widths are
20 nm.

in Fig. 11(b), where the maximum field is 15.54 V/m and
the field value at the same gap center is about 14.09 V/m, again
larger than those values of [10] by 8.05%. The complex dielec-
tric constant of silver cylinder is about
from [35] for this incident wavelength. Again, if we choose
to adopt the measured parameter from [34], which is

, the PSFD calculated maximum field
value and the field value at the center of the gap of the middle
pair would be about 17.07 V/m and 15.51 V/m, respectively.

V. SOME REMARKS ON THE PROPOSED
FORMULATION AND SCHEME

The proposed pseudospectral formulation and scheme in this
paper have been based on the Legendre collocation points, the
first-order Maxwell’s equations, and the penalty scheme for in-
terface conditions, which are in contrast to some existing ones
based on the Chebyshev collocation points, the second-order
Helmholtz equations, and/or directly matching interface condi-
tions. The advantages of our ones are discussed in the following.

A. Legendre Collocation Points Versus Chebyshev
Collocation Points

A major factor, which makes the Chebyshev pseudospectral
approximations based on the Chebyshev–Gauss–Lobatto points
more popular than the Legendre pseudospectral approximations
based on the Legendre–Gauss–Lobatto points, is the fast fourier
transform (FFT). This technique allows the numerical deriva-
tives to be computed in operations. Indeed, Cheby-
shev pseudospectral method is very attractive for problems de-
fined on regular domains, based on single domain computational
framework. For these problems, either time-dependent or time-
independent, if the required number of grid points is beyond
100, then the FFT technique does improve the computational ef-
ficiency. However, in a multidomain computational framework
which can be used to solve problems defined on complicated
domains, the number of grid points in each subdomain is gen-
erally much less than 100 and thus, we do not gain efficiency
on using Chebyshev pseudospectral method [38]. Of course this
does not mean we need to use Legendre pseudospectral method
instead. The reason of using Legendre pseudospectral approx-
imation will be discussed after addressing issues related to the
penalty methodology of imposing boundary conditions.
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B. Penalty Method for Interface Conditions and Directly
Matching Interface Conditions

We now address issues related to the approaches of imposing
boundary conditions. Generally speaking, an interface boundary
condition is a constraint relating field values on both sides of
the interface in a specific way, possibly involving differentia-
tions and geometrical parameters. In the present study, the ge-
ometrical parameter is the unit vector normal to the interface.
In a multidomain computational framework, a problem domain
is decomposed into a union of subdomains. Thus, at the sub-
domain interfaces we need to enforce interface boundary con-
ditions. As a consequence, it is necessary to specify a unique
normal vector at every boundary grid point, and this becomes a
problem at a vertex point of a 2-D subdomain. Is it possible to
assign a unique normal vector at a vertex point? Or does it exist
a unique normal vector at a vertex point? Frankly speaking, we
have no answer to the problem and we doubt that there is an
answer to the problem. Thus, this becomes a problem when we
want to impose boundary condition through a directly matching
approach at a location shared by vertex points of different sub-
domains, and great care must be exercised to resolve this issue.
In contrast, the penalty methodology offers an edge-by-edge ap-
proach to impose boundary conditions [23], [39], [40]. It is not
necessary to specify a unique normal vector at a vertex point,
because a vertex point is an intersection of two boundary edges
of a subdomain. Since we can specify normal vector functions
along the edges of a subdomain, we define two normal vec-
tors at a vertex point based on the normal vectors on the edges
that intersect at the vertex. As a result, every vertex point is en-
forced with two penalty boundary conditions with field values
from two attached edges belonging to different subdomains.
This does not ruin the consistency (accuracy) of the scheme at
all. As we have shown in our numerical experiments, the results
are exponentially convergent. This explains why we adopt the
penalty methodology for imposing boundary conditions.

C. Why the Legendre Pseudospectral Method?

The penalty method incorporates numerical partial differ-
ential equations and boundary conditions through a linear
combination parameterized by a penalty parameter [23],
[39]–[41]. The value of this parameter is commonly determined
such that the scheme is stable in an energy sense. To conduct
such an analysis, one needs to establish a discrete energy
norm measurement. This issue makes Legendre pseudospec-
tral method very attractive, because Legendre pseudospectral
method is equipped with a quadrature integration rule (Le-
gendre–Gauss–Lobatto quadrature rule) which can be used to
construct a discrete norm measurement for grid-functions
[42]. The Chebyshev pseudospectral method also has a quadra-
ture integration rule [42]. However, the rule does not coincide
with the usual energy norm measurements for functions.
Using the Legendre–Gauss–Lobatto quadrature rule to conduct
an energy estimate, one can determine the value of the penalty
parameter to ensure the stability of a scheme in a theoretical
basis, instead of a trial-and-error basis. This procedure is useful
and important, because high-order accurate numerical methods,
compared to the low-order accurate ones, are very sensitive to
the impositions of boundary conditions [42], [43]. For time-de-
pendent problems, if boundary conditions are not imposed

properly, it often causes numerical blow-up solutions because
of numerical instability inducing from subdomain boundaries.
For time-independent or time-harmonic problems, improper
impositions of boundary conditions may cause non-convergent
solutions during iteration processes. Roughly speaking, these
instabilities and nonconvergence problems are often resulting
from numerical solution operators being unstable, in the sense
that some eigenvalues of the solution operators have posi-
tive real part, commonly due to the impositions of boundary
conditions. To avoid these unwanted situations, constructing
a energy stable scheme in the theoretical stage becomes
important in building a multidomain computational framework
for simulations. Thus, based on the above arguments we adopt
the Legendre pseudospectral method instead of the Chebyshev
pseudospectral methods.

D. Why First-Order Maxwell’s Equations Instead of
Second-Order Helmholtz Equations?

In the present study, we solve first-order system Maxwell’s
equations instead of the equivalent second-order Helmholtz
equations. This approach, indeed, is a drawback of the present
formulation because it requires to solve more equations. In 2-D
space, three coupled first-order partial differential equations
need to be solved but only one equation to be solved if the
problem is described by the second-order Helmholtz equation.
However, the present first-order system formulation can be
directly extended for waves in anisotropic media, even possibly
with permittivity or permeability of media being a tensor. It is
because the material parameters are not associated with the curl
operator parts [23], [40]. Thus, we do not need to reformulate
the penalty boundary condition formulations. As mentioned
earlier, the penalty type boundary formulations avoid the ambi-
guity of specifying normal vectors at subdomain vertex points
and this simplifies the imposing of interface boundary condi-
tions. Of course, it would be even more attractive to construct
pseudospectral penalty schemes for Helmholtz equations di-
rectly. A possible way is first identifying well-posed boundary
operators for vectorial second-order wave equations which are
the time-domain representation of Helmholtz equations. Once
the well-posed operators for the second-order wave equations
are identified, a pseudospectral penalty scheme may be for-
mulated for the second-order wave equations. We can then
easily convert the time-domain scheme to frequency-domain
equations, which becomes a pseudospectral penalty scheme for
the equivalent Helmholtz equations. We are putting our effort
on this subject and hope to report the results in the future.

VI. CONCLUSION

A multidomain PSFD method has been developed based on
the Legendre polynomials and a penalty scheme for solving
Maxwell’s equations. The application is particularly aimed at
electromagnetic wave scattering problems in plasmonics with
the goal of obtaining high-accuracy near fields. Calculation of
light scattering by a silver circular cylinder has demonstrated
that this PSFD method indeed provides high-order accuracy
with the obtained field error down to referring to 1-V/m
incident electric field strength, thanks to the spectral conver-
gence property of the spectral method and the accurate fulfill-
ment of the field continuity conditions across the material inter-
faces provided by the multidomain approach as well as global
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interpolation by Legendre polynomials. In the multidomain ap-
proach, the whole computational domain is properly partitioned
into curvilinear subdomains fitting the generally curved mate-
rial-interface shapes.With this demonstrated extremely high nu-
merical accuracy, the formulated method should be useful for
plasmonics research and can provide reliable results for the cal-
culation of field enhancement near metal surface, as shown in
the numerical examples including coupled plasmonic cylinders
of either circular or square shape. Our analysis results also pro-
vide a good reference for other numerical methods to compare
with. Moreover, the frequency-domain approach has the advan-
tage of directly using a given complex dielectric constant of the
material in the calculation with no need of implementing a dis-
persive material model like in the time-domain approach.
A final remark goes to the possible singular-field behavior

when the material interface is non-smooth such as in the
square-shaped-cylinder cases, as was discussed in connection
with Fig. 5. Although the spectral convergence property of
the PSFD method has been demonstrated when simulating
round cylinders, when interface corners appear, numerical
convergence would unavoidably be degraded. In Fig. 5(c), it
was demonstrated that, although only one subdomain is em-
ployed for the square-cylinder cross-section, the singular-field
characteristic evolves as the degree in the PSFD calculation
is increased so that the grid size near the dielectric corner
shrinks. Related treatment of such singularities based on the
finite element method has been reported through using al-
gebraically graded grids near the corner where a singularity
exists [38]–[40]. Further treatment and more detailed study
about the corner singularities using the PSFD method, such as
with refined arrangement of subdomains, would worth being
pursued as a more basic topic.
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