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a b s t r a c t

A novel adaptive control strategy is proposed herein to increase the efficiency of adaptive
control by combining Takagi–Sugeno (T–S) fuzzy modeling and the Ge–Yao–Chen (GYC)
partial region stability theory. This approach provides two major contributions: (1)
increased synchronization efficiency, especially for parameters tracing and (2) a simpler
controller design. Two simulated cases are presented for comparison: Case 1 utilizes nor-
mal adaptive synchronization, whereas Case 2 utilizes the Takagi–Sugeno (T–S) fuzzy
model-based Lorenz systems to realize adaptive synchronization via the new adaptive
scheme. The simulation results demonstrate the effectiveness and feasibility of our new
adaptive strategy.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Synchronization in chaotic dynamic systems has recently received a great deal of interest among scientists from various
fields [1,22,28,29,34,37]. The phenomenon of synchronization of two chaotic systems is fundamental in science and has a
wealth of applications in technology. Over the last several years, an increased number of applications of chaos synchroniza-
tion have been proposed. There are many control techniques for synchronizing chaotic systems, such as linear error feedback
control [16,30,39,40], impulsive control [6,17,41], backstepping control [19,31–33] and sliding mode control [4,7,20].

To the best of our knowledge, most of the methods mentioned above and many other existing synchronization methods
mainly address the synchronization of two identical chaotic or hyperchaotic systems. The methods for synchronizing two
different chaotic or hyperchaotic systems are far from straightforward because of the different structures and the parameter
mismatch. Moreover, most of these methods are used to synchronize two systems with known structures and parameters.
However, in practical situations, some or all of the system parameters are unknown. In recent years, an increasing number of
applications for secure communication require the synchronization of two different hyperchaotic systems with uncertain
parameters [5,23,35,38]. Thus, the synchronization of two different hyper-chaotic systems with uncertain parameters has
been a subject of intense study.

For current adaptive synchronization, the traditional Lyapunov stability theorem and Barbalat lemma are used to prove
that the error vector approaches zero as time approaches infinity; however, why these estimated parameters approach these
. All rights reserved.
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uncertain values remains an open question [2,14,15,36,42]. In [9,10], Ge, Yu and Chen proposed the pragmatical asymptot-
ically stability theorem and an assumption of equal probability for ergodic initial conditions to strictly prove that these esti-
mated parameters approach uncertain values.

Fuzzy logic [3,21,43–46] has received much attention from control theorists as a powerful tool for nonlinear control.
Among the various types of fuzzy methods, the Takagi–Sugeno fuzzy system is widely used as a tool for the design and anal-
ysis of fuzzy control systems [8,12,25,26,47]. Thus, in this paper, we use this powerful tool in our new strategy: fuzzy mod-
eling and a new adaptive scheme. Adaptive synchronization using this approach has four advantages: (1) the new Lyapunov
function is a simple linear homogeneous state function; (2) lower-order, linear and simple controllers can be obtained; (3)
fewer simulation errors occur; and (4) adaptive synchronization is achieved in much less time.

The layout of the rest of this manuscript is as follows. In Section 2, a new adaptive synchronization scheme is presented.
In Section 3, the time-reversed Lorenz system is introduced. In Sections 4 and 5, two simulation cases are provided for com-
parison and discussion. Conclusions are provided in Section 6.
2. New adaptive synchronization scheme

There are two identical nonlinear dynamical systems: the master system controls the slave system. The master system is
described as
_x ¼ Axþ f ðx;BÞ ð2-1Þ
where x = [x1,x2, . . . ,xn]T 2 Rn denotes a state vector, A is an n � n uncertain constant coefficient matrix, f is a nonlinear vector
function, and B is a vector of uncertain constant coefficients in f.

The slave system is described as
_y ¼ bAyþ f ðy; bBÞ þ uðtÞ ð2-2Þ
where y = [y1,y2, . . . ,yn]T 2 Rn denotes a state vector, bA is an n � n estimated coefficient matrix, bB is a vector of estimated coef-
ficients in f, and u(t) = [u1(t),u2(t), . . . ,un(t)]T 2 Rn is a control input vector.

Our goal is to design a controller u(t) so that the state vector of the chaotic system (2-1) asymptotically approaches the
state vector of the master system (2-2).

The chaos synchronization can be accomplished if the limit of the error vector e(t) = [e1,e2, . . . ,en]T approaches zero:
lim
t!1

e ¼ 0 ð2-3Þ
where
e ¼ x� yþ K ð2-4Þ
where K is a positive constant, in which the error dynamics occur in the first quadrant of state space of e [9,10].
From Eq. (2-4), we have
_e ¼ _x� _y ð2-5Þ
_e ¼ Ax� bAyþ f ðx;BÞ � f ðy; bBÞ � uðtÞ ð2-6Þ
A Lyapnuov function Vðe; eA; eBÞ is chosen as a positive definite function in the first quadrant of the state space of e; eA and eB
[9,10].

We have
_Vðe; eA; eBÞ ¼ eþ eA þ eB ð2-7Þ
where eA ¼ A� bA; eB ¼ B� bB. eA and eB are column matrices with elements that include all the elements of matrices bA and bB,
respectively.

The derivatives for any solution of the differential equation system consisting of Eq. (2-6) and the update parameter dif-
ferential equations for eA and eB are
_Vðe; eA; eBÞ ¼ ½Ax� bAyþ Bf ðxÞ � bBf ðyÞ � uðtÞ� þ _eA þ _eB ð2-8Þ
where uðtÞ; _eA, and _eB are chosen so that _V ¼ Ce, C is a diagonal negative definite matrix, and _V is a negative semi-definite
function of e with parameter differences eA and eB. For adaptive control of chaotic motion [23,24], the traditional Lyapunov
stability theorem and Babalat lemma are used to prove that the error vector approaches zero as time approaches infinity.
However, why the estimated or given parameters also approach the uncertain or goal parameters remains an open question.
The pragmatical asymptotical stability theorem can answer this question.
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3. Time-reversed Lorenz system

The classical Lorenz equation [18] derived by Lorenz is described as
dx1ðtÞ
dt ¼ aðx2ðtÞ � x1ðtÞÞ

dx2ðtÞ
dt ¼ cx1ðtÞ � x1ðtÞx3ðtÞ � x2ðtÞ

dx3ðtÞ
dt ¼ x1ðtÞx2ðtÞ � bx3ðtÞ

8>>><
>>>:

ð3-1Þ
when the initial condition (x10,x20,x30) = (�0.1,0.2,0.3) and the parameters a = 10, b = 8/3 and c = 28, chaos occurs in the Lor-
enz system. The chaotic behavior of Eq. (3-1) is shown in Fig. 1.

The classical Lorenz system has been studied in detail and frequently used for simulations [13,24,27,36,38]. However, the
time-reversed Lorenz system has yet to be studied. Thus, in [11], we use positive parameters (P-parameters) for the original
Lorenz system and negative parameters (N-parameters) for the time-reversed Lorenz system and provide a complete report
for the time-reversed Lorenz system.

The time-reversed Lorenz system can be described as follows:
dx1ð�tÞ
dð�tÞ ¼ aðx2ð�tÞ � x1ð�tÞÞ

dx2ð�tÞ
dð�tÞ ¼ cx1ð�tÞ � x1ð�tÞx3ð�tÞ � x2ð�tÞ

dx3ð�tÞ
dð�tÞ ¼ x1ð�tÞx2ð�tÞ � bx3ð�tÞ

8>>><
>>>:

ð3-2Þ
From the left-hand sides of Eq. (3-2), the derivatives use the back-time. When the initial condition (x10,x20,x30) =
(�0.1,0.2,0.3) and the parameters a = �10, b = �8/3 and c = �28 (N-parameters [45]), the chaotic behavior of Eq. (3-2) oc-
curs, as shown in Fig. 2. Furthermore, the dynamic behaviors of the time-reversed Lorenz systems with different parameter
signs are provided in Table 1.

4. Simulation results

In this section, two cases are presented for comparison. In Case 1, an adaptive synchronization with a traditional adaptive
method is provided. In Case 2, an adaptive synchronization with the new strategy is presented to synchronize two chaotic
systems. The time-reversed Lorenz system is the slave system, and the original Lorenz system is the master system. These
two systems are described in the equations shown below:
Fig. 1. Projections of the phase portrait of a chaotic contemporary Lorenz system with P-parameters a = 10, b = 8/3 and c = 28.



Fig. 2. Projections of the phase portrait of a chaotic time-reversed Lorenz system with N-parameters a = �10, b = �8/3 and c = �28.

Table 1
Dynamic behaviors of time reversed Lorenz system for different signs of parameters.

a b c States

� + + Approach to infinite
+ � + Approach to infinite
+ + � Periodic
� � + Approach to infinite
� + � Approach to infinite
� � � Chaos and periodic
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Master Lorenz system:
dx1ðtÞ
dt ¼ aðx2ðtÞ � x1ðtÞÞ

dx2ðtÞ
dt ¼ cx1ðtÞ � x1ðtÞx3ðtÞ � x2ðtÞ

dx3ðtÞ
dt ¼ x1ðtÞx2ðtÞ � bx3ðtÞ

8>><
>>: ð4-1Þ
Slave time-reversed Lorenz system:
dy1ð�tÞ
dð�tÞ ¼ �âðy2ð�tÞ � y1ð�tÞÞ þ u1

dy2ð�tÞ
dð�tÞ ¼ �ðĉy1ð�tÞ � y1ð�tÞy3ð�tÞ � y2ð�tÞÞ þ u2

dy3ð�tÞ
dð�tÞ ¼ �ðy1ð�tÞy2ð�tÞ � b̂y3ð�tÞÞ þ u3

8>>><
>>>:

ð4-2Þ
where xi(t) includes the states of the variables of the master system and yi(�t) includes the states for the slave system.
Parameters a, b and c are positive uncertain parameters of the master system. â; b̂ and ĉ are estimated parameters. u1, u2

and u3 are nonlinear controllers that synchronize the slave Lorenz system with master system, i.e.
lim
t!1

e ¼ 0 ð4-3Þ
where the error vector e = [e1(t)e2(t)e3(t)].

Case 1: Adaptive synchronization with the traditional method.
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The error vector e = [e1(t)e2(t)e3(t)] and
e1ðtÞ ¼ x1ðtÞ � y1ð�tÞ
e2ðtÞ ¼ x2ðtÞ � y2ð�tÞ
e3ðtÞ ¼ x3ðtÞ � y3ð�tÞ

8><
>: ð4-4Þ
From Eq. (4-4), we have the following error dynamics:
de1ðtÞ
dt ¼

dx1ðtÞ
dt �

dy1ð�tÞ
dt ¼ dx1ðtÞ

dt þ
dy1ð�tÞ

dð�tÞ
de2ðtÞ

dt ¼
dx2ðtÞ

dt �
dy2ð�tÞ

dt ¼ dx2ðtÞ
dt þ

dy2ð�tÞ
dð�tÞ

de3ðtÞ
dt ¼

dx3ðtÞ
dt �

dy3ð�tÞ
dt ¼ dx3ðtÞ

dt þ
dy3ð�tÞ

dð�tÞ

8>>><
>>>:
_e1 ¼ aðx2 � x1Þ þ ð�âðy2 � y1Þ þ u1Þ
_e2 ¼ cx1 � x1x3 � x2 þ ð�ðĉy1 � y1y3 � y2Þ þ u2Þ
_e3 ¼ x1x2 � bx3 þ ð�ðy1y2 � b̂y3Þ þ u3Þ

ð4-5Þ
The two systems will be synchronized for any initial condition with the appropriate controllers and update laws for the
estimated parameters. Thus, the following controllers and update laws are designed using the pragmatical asymptotical sta-
bility theorem as follows:

The Lyapunov function is selected as
V ¼ 1
2

e2
1 þ e2

2 þ e2
3 þ ~a2 þ ~b2 þ ~c2

� �
ð4-6Þ
where ~a ¼ a� â; ~b ¼ b� b̂ and ~c ¼ c � ĉ.
The time derivative of this function is
_V ¼ e1 _e1 þ e2 _e2 þ e3 _e3 þ ~a _~aþ ~b _~bþ ~c _~c

¼ e1ðaðx2 � x1Þ þ ð�âðy2 � y1Þ þ u1ÞÞ þ e2ðcx1 � x1x3 � x2 þ ð�ðĉy1 � y1y3 � y2Þ þ u2ÞÞ þ e3ðx1x2 � bx3

þ ð�ðy1y2 � b̂y3Þ þ u3ÞÞ þ _~aða� âÞ þ _~bðb� b̂Þ þ _~cðc � ĉÞ ð4-7Þ
The update laws for the uncertain parameters are
_~a ¼ � _̂a ¼ �ðx2 � x1Þe1 þ ~ae1

_~c ¼ � _̂c ¼ �ðx1Þe2 þ ~ce2

_~b ¼ � _̂
b ¼ ðx3Þe3 þ ~be3

8>><
>>: ð4-8Þ
From Eqs. (4-7 and (4-8), the appropriate controllers can be designed as
u1 ¼ �âðx2 � x1 � y2 þ y1Þ � ~a2 � e1

u2 ¼ �ĉðx1 � y1Þ þ x1x3 þ x2 þ y1y3 þ y2 � ~c2 � e2

u3 ¼ b̂ðx3 � y3Þ � x1x2 � y1y2 � ~b2 � e3

8><
>: ð4-9Þ
We obtain
_V ¼ �e2
1 � e2

2 � e2
3 < 0 ð4-10Þ
which is a negative semi-definite function of [e1,e2,e3], â; b̂ and ĉ. The Lyapunov asymptotical stability theorem is not sat-
isfied. We cannot obtain a common origin for the error dynamics (4-5) and the parameter dynamics (4-8) are asymptotically
stable. From the pragmatical asymptotically stability theorem [26,27], D is a 6-manifold (n = 6) and the number of error state
variables is p = 3. When e1 = e2 = e3 = 0 and â; b̂, and ĉ have arbitrary values, _V ¼ 0; thus, X has three dimensions,
m = n � p = 6 � 3 = 3, and m + 1 < n is satisfied. According to the pragmatical asymptotically stability theorem, the error vec-
tor e approaches zero and the estimated parameters also approach the uncertain parameters. The equilibrium point is prag-
matically asymptotically stable. From the equal probability assumption, the equilibrium point is actually asymptotically
stable. The simulation results are shown in Figs. 3–5.

Case 2: Adaptive synchronization with the new adaptive strategy.

To achieve simple and linear controllers, the master and slave system should be transferred into a fuzzy set.
Fuzzy modeling of the Lorenz system:



Fig. 3. Time histories of the errors for Case 1.

Fig. 4. Time histories of the parametric errors for Case 1.
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Fig. 5. Phase portraits of the synchronization for Case 1.
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_x1 ¼ aðx2 � x1Þ
_x2 ¼ cx1 � x1x3 � x2

_x3 ¼ x1x2 � bx3

8><
>: ð4-11Þ
Assuming that x1 2 [�d,d] and d > 0, the Lorenz system can be exactly represented with a T–S fuzzy model as follows:
Rule 1 : IF x is M1; THEN _XðtÞ ¼ A1XðtÞ ð4 - 12Þ
Rule 2 : IF x is M2; THEN _XðtÞ ¼ A2XðtÞ ð4-13Þ
where
X ¼ ½x1; x2; x3�T

A1 ¼
�a a 0
c �1 �d
0 d �b

2
64

3
75; As ¼

�a a 0
c �1 d
0 �d �b

2
64

3
75

M1ðxÞ ¼
1
2

1þ x1

d

� �
; M2ðxÞ ¼

1
2

1� x1

d

� �
and d = 20. M1 and M2 are fuzzy sets of the Lorenz system. We call (4-12) the first liner subsystem and (4-13) the second liner
subsystem under the fuzzy rule. The final output of the fuzzy Lorenz system is inferred as follows, and the chaotic behavior is
shown in Fig. 6.
_XðtÞ ¼
X2

i¼1

hiAiXðtÞ ð4-14Þ
where
h1 ¼
M1

M1 þM2
; h2 ¼

M2

M1 þM2
Because M1 + M2 = 1, Eq. (4-21) can be described as follows:
_x ¼
_x1

_x2

_x3

2
64

3
75 ¼

M1

M1

M1

2
64

3
75

T aðx2 � x1Þ
cx1 � dx3 � x2

dx2 � bx3

2
64

3
75þ

M2

M2

M2

2
64

3
75

T aðx2 � x1Þ
cx1 þ dx3 � x2

�dx2 � bx3

2
64

3
75 ð4-15Þ
Fuzzy modeling of the time-reversed Lorenz system:



Fig. 6. Projections of the phase portrait of a fuzzy chaotic Lorenz system with P-parameters a = 10, b = 8/3 and c = 28.
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_y1 ¼ �âðy2 � y1Þ þ u1

_y2 ¼ �ðĉy1 � y1y3 � y2Þ þ u2

_y3 ¼ �ðy1y2 � b̂y3Þ þ u3

8><
>: ð4-16Þ
Assuming that y1 2 [�e,e] and e > 0, Eq. (4-16) can be exactly represented with a T–S fuzzy model as follows:
Rule 1 : IF y is N1; THEN _YðtÞ ¼ B1YðtÞ þ U1 ð4 - 17Þ
Rule 2 : IF y is N2; THEN _YðtÞ ¼ B2YðtÞ þ U2 ð4-18Þ
where
Y ¼ ½y1; y2; y3�
T

B1 ¼
â �â 0
�ĉ 1 e

0 �e b̂

2
64

3
75; B2 ¼

â �â 0
�ĉ 1 �e

0 e b̂

2
64

3
75

N1ðxÞ ¼
1
2

1þ y1

e

� �
; N2ðxÞ ¼

1
2

1� y1

e

� �
U1 ¼ ½u11;u12;u13�; U2 ¼ ½u21;u22;u23�
and e = 20. M1 and M2 are fuzzy sets of the time-reversed Lorenz system. We call (4-17) the first liner subsystem and (4-18)
the second liner subsystem under the fuzzy rule. The final output of the fuzzy time-reversed Lorenz system is inferred as
follows, and the chaotic behavior is shown in Fig. 7.
_YðtÞ ¼
X2

i¼1

giBiYðtÞ ð4-19Þ
where
g1 ¼
N1

N1 þ N2
; g2 ¼

N2

N1 þ N2
Because N1 + N2 = 1, Eq. (4-19) can be described as follows:



Fig. 7. Projections of the phase portrait of a fuzzy chaotic time-reversed Lorenz system with N-parameters a = �10, b = �8/3 and c = �28.
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_y ¼
_y1

_y2

_y3

2
64

3
75 ¼

N1

N1

N1

2
64

3
75

T �âðy2 � y1Þ þ u11

�ðĉy1 � ey3 � y2Þ þ u12

�ðey2 � b̂y3Þ þ u13

2
64

3
75þ

N2

N2

N2

2
64

3
75

T �âðy2 � y1Þ þ u21

�ðĉy1 þ ey3 � y2Þ þ u22

�ð�ey2 � b̂y3Þ þ u23

2
64

3
75 ð4-20Þ
For adaptive synchronization, the fuzzy sets in Eq. (4-20) are substituted with the estimated parameters as follows:
_y ¼
_y1

_y2

_y3

2
64

3
75 ¼

bN1bN1bN1

2
64

3
75

T �âðy2 � y1Þ þ u11

�ðĉy1 � ey3 � y2Þ þ u12

�ðey2 � b̂y3Þ þ u13

2
64

3
75þ

bN2bN2bN2

2
64

3
75

T �âðy2 � y1Þ þ u21

�ðĉy1 þ ey3 � y2Þ þ u22

�ð�ey2 � b̂y3Þ þ u23

2
64

3
75 ð4-21Þ
where bN1 ¼ f̂ � 1
2 1þ y1ðtÞ

e

� �
þ ĝ � S1; bN2 ¼ f̂ � 1

2 1þ y1ðtÞ
e

� �
þ ĝ � S1

f̂ and ĝ are the estimated parameters and ðf̂ 0; ĝ0Þ ¼ ð1;0Þ: The goal values for the estimated parameters f̂ and ĝ are 0 and
1. Si, i = 1 � 2 are the fuzzy sets of the master system, in which Si = Mi and i = 1 � 2.

The synchronization flowchart is shown in Fig. 8. The synchronizing processes in Fig. 8 are divided into two steps. (1) Use
the first linear subsystem of the slave system in Eq. (4-17) to trace the trajectory of the first linear subsystem of the master
system in (4-12). (2) Use the second linear subsystem of the slave system in Eq. (4-18) to trace the trajectory of the first lin-
ear subsystem of the master system in (4-13).

Step 1: The error and error dynamics in the first linear subsystem are
Fig. 8. The flowchart of Synchronization.
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e1ðtÞ ¼ x1ðtÞ � y1ð�tÞ þ K

e2ðtÞ ¼ x2ðtÞ � y2ð�tÞ þ K

e3ðtÞ ¼ x3ðtÞ � y3ð�tÞ þ K

8><
>: ð4-22Þ
where K is a constant (200). From (4-22), the following error dynamics are obtained:
de1ðtÞ
dt ¼

dx1ðtÞ
dt �

dy1ð�tÞ
dt ¼ dx1ðtÞ

dt þ
dy1ð�tÞ

dð�tÞ
de2ðtÞ

dt ¼
dx2ðtÞ

dt �
dy2ð�tÞ

dt ¼ dx2ðtÞ
dt þ

dy2ð�tÞ
dð�tÞ

de3ðtÞ
dt ¼

dx3ðtÞ
dt �

dy3ð�tÞ
dt ¼ dx3ðtÞ

dt þ
dy3ð�tÞ

dð�tÞ

8>>><
>>>:

_e1ðtÞ ¼ aðx2 � x1Þ � ð�âðy2 � y1Þ þ u11Þ
_e2ðtÞ ¼ cx1 � dx3 � x2 � ð�ðĉy1 � ey3 � y2Þ þ u12Þ
_e3ðtÞ ¼ dx2 � bx3 � ð�ðey2 � b̂y3Þ þ u13Þ

8><
>: ð4-23Þ
The two systems will be synchronized for any initial condition with the appropriate controllers and update laws for the
estimated parameters. Thus, the following controllers and update laws are designed with our new method as follows.

The Lyapunov function is selected as
V ¼ e1 þ e2 þ e3 þ ~aþ ~bþ ~c þ 1
2
ð~f 2 þ ~g2Þ ð4-24Þ
where ~a ¼ a� â; ~b ¼ b� b̂; ~c ¼ c � ĉ; ~f ¼ f � f̂ and ~g ¼ g � ĝ. a–c are positive uncertain parameters, and â; b̂ and ĉ are esti-
mated parameters with negative initial values, where (f,g) = (0,1).

The time derivative of the function is
_V ¼ _e1 þ _e2 þ _e3 þ _~aþ _~bþ _~c þ ~f _~f þ ~g _~g

¼ ðaðx2 � x1Þ � ð�âðy2 � y1Þ þ u11ÞÞ þ ðcx1 � dx3 � x2 � ð�ðĉy1 � ey3 � y2Þ þ u12ÞÞ þ ðdx2 � bx3 � ð�ðey2

� b̂y3Þ þ u13ÞÞ þ _~aþ _~bþ _~c þ _~f ðf � f̂ Þ þ _~gðg � ĝÞ ð4-25Þ
The update laws for the uncertain parameters are
_~a ¼ � _̂a ¼ �ðx2 � x1Þ~a� ~ae1

_~b ¼ � _̂
b ¼ ðx3Þ~b� ~be3

_~c ¼ � _̂c ¼ �ðx1Þ~c � ~ce2

_~f ¼ � _̂
f ¼ �~f e1

_~g ¼ � _̂g ¼ �~ge2

8>>>>>>>><
>>>>>>>>:

ð4-26Þ
From Eqs. (4-25) and (4-26), the appropriate controllers can be designed as:
u11 ¼ âðx2 � x1 þ y2 � y1Þ
u12 ¼ ĉðx1 þ y1Þ � dx3 � x2 � ey3 � y2

u13 ¼ dx2 þ ey2 � b̂ðx3 þ y3Þ

8><
>: ð4-27Þ
We obtain
_V ¼ �ð~aþ ~f 2Þe1 � ð~bþ ~g2Þe2 � ~ce3 < 0 ð4-28Þ
which is a negative semi-definite function of e1; e2; e3; ~a; ~b; ~c; ~f and ~g. The Lyapunov asymptotical stability theorem is not
satisfied. We cannot obtain a common origin of the error dynamics (4-23), and the parameter dynamics (4-26) are asymp-
totically stable. From the pragmatical asymptotically stability theorem [26,27], D is an 8-manifold (n = 8) and the number of
error state variables is p = 3. When e1 = e2 = e3 = 0 and â; b̂; ĉ; f̂ and ĝ have arbitrary values, _V ¼ 0; thus, X has five dimen-
sions m = n � p = 8 � 3 = 5 and m + 1 < n is satisfied. According to the pragmatical asymptotically stability theorem, the error
vector e approaches zero and the estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. From the equal probability assumption, this point is actually asymptotically stable.

Step 2: The error and error dynamics in the second linear subsystem are
e1ðtÞ ¼ x1ðtÞ � y1ð�tÞ þ K

e2ðtÞ ¼ x2ðtÞ � y2ð�tÞ þ K

e3ðtÞ ¼ x3ðtÞ � y3ð�tÞ þ K

8><
>: ð4-29Þ
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where K is a constant (200). From Eq. (4-29), the following error dynamics are obtained:
de1ðtÞ
dt ¼

dx1ðtÞ
dt �

dy1ð�tÞ
dt ¼ dx1ðtÞ

dt þ
dy1ð�tÞ

dð�tÞ
de2ðtÞ

dt ¼
dx2ðtÞ

dt �
dy2ð�tÞ

dt ¼ dx2ðtÞ
dt þ

dy2ð�tÞ
dð�tÞ

de3ðtÞ
dt ¼

dx3ðtÞ
dt �

dy3ð�tÞ
dt ¼ dx3ðtÞ

dt þ
dy3ð�tÞ

dð�tÞ

8>>><
>>>:
_e1ðtÞ ¼ aðx2 � x1Þ � ð�âðy2 � y1Þ þ u21Þ
_e2ðtÞ ¼ cx1 þ dx3 � x2 � ð�ðĉy1 þ ey3 � y2Þ þ u22Þ
_e3ðtÞ ¼ �dx2 � bx3 � ð�ð�ey2 � b̂y3Þ þ u23Þ

8><
>: ð4-30Þ
The two systems will be synchronized for any initial condition with the appropriate controllers and update laws for the
estimated parameters. Thus, the following controllers and update laws are designed with the new method as follows.

The Lyapunov function is
V ¼ e1 þ e2 þ e3 þ ~aþ ~bþ ~c þ 1
2
ð~f 2 þ ~g2Þ ð4-31Þ
where ~a ¼ a� â; ~b ¼ b� b̂; ~c ¼ c � ĉ; ~f ¼ f � f̂ and ~g ¼ g � ĝ. a–c are positive uncertain parameters, and â; b̂ and ĉ are esti-
mated parameters with negative initial values, where (f,g) = (0,1).

The time derivative of this function is
_V ¼ _e1 þ _e2 þ _e3 þ _~aþ _~bþ _~c þ ~f _~f þ ~g _~g

¼ ðaðx2 � x1Þ � ð�âðy2 � y1Þ þ u1ÞÞ þ ðcx1 þ dx3 � x2 � ð�ðĉy1 þ ey3 � y2Þ þ u2ÞÞ þ ð�dx2 � bx3 � ð�ð�ey2

� b̂y3Þ þ u3ÞÞ þ _~aþ _~bþ _~c þ _~f ðf � f̂ Þ þ _~gðg � ĝÞ ð4-32Þ
The update laws for the uncertain parameters are
_~a ¼ � _̂a ¼ �ðx2 � x1Þ~a� ~ae1

_~b ¼ � _̂
b ¼ ðx3Þ~b� ~be3

_~c ¼ � _̂c ¼ �ðx1Þ~c � ~ce2

_~f ¼ � _̂
f ¼ �~f e1

_~g ¼ � _̂g ¼ �~ge2

8>>>>>>>><
>>>>>>>>:

ð4-33Þ
From Eqs. (4-32) and (4-33), the appropriate controllers can be designed as
u21 ¼ âðx2 � x1 þ y2 � y1Þ
u22 ¼ ĉðx1 þ y1Þ þ dx3 � x2 þ ey3 � y2

u23 ¼ �dx2 � ey2 � b̂ðx3 þ y3Þ

8><
>: ð4-34Þ
We obtain
_V ¼ �ð~aþ ~f 2Þe1 � ð~bþ ~g2Þe2 � ~ce3 < 0 ð4-35Þ
which is a negative semi-definite function of e1; e2; e3; ~a; ~b; ~c; ~f and ~g. The Lyapunov asymptotical stability theorem is not
satisfied. We cannot obtain the common origin of the error dynamics (4-30) and the parameter dynamics (4-33) are asymp-
totically stable. From the pragmatical asymptotically stability theorem, D is an 8-manifold system (n = 8) and the number of
error state variables is p = 3. When e1 = e2 = e3 = 0 and â; b̂; ĉ; f̂ and ĝ have arbitrary values, _V ¼ 0; thus, X has five dimen-
sions m = n � p = 8 � 3 = 5 and m + 1 < n is satisfied. According to the pragmatical asymptotically stability theorem, the error
vector e approaches zero and the estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. From the equal probability assumption, this point is actually asymptotically stable.
After steps 1 and 2, the two linear subsystems of the slave system can be synchronized to the two linear subsystems of
the master system. This synchronization shows that chaos synchronization for these two fuzzy chaotic systems can be
achieved. The simulation results are shown in Figs. 9–11, where eN1 ¼ M1 � bN1 and eN2 ¼ M2 � bN2.
5. Discussion

In this section, the numerical simulation results in Cases 1 and 2 are compared.



Fig. 10. Time histories of the parametric errors for Case 2.

Fig. 9. Time histories of the errors for Case 2.
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Fig. 11. Time histories of the fuzzy set errors for Case 2.

Table 2
Comparison between errors data at 19.96 s, 19.97 s, 19.98 s, 19.99 s and 20.00 s after the action of
controllers.

Time Errors for Case 2 Errors for Case 1
e1 e1

19.96 s 0.00000043256 0.00011282000
19.97 s 0.00000042825 0.00010565000
19.98 s 0.00000042399 0.00009795500
19.99 s 0.00000041977 0.00008996100
20.00 s 0.00000041560 0.00008187800

e2 e2

19.96 s 0.00000043267 �0.00210000000
19.97 s 0.00000042836 �0.00110000000
19.98 s 0.00000042410 �0.00020560000
19.99 s 0.00000041988 0.00061179000
20.00 s 0.00000041570 0.00130000000

e3 e3

19.96 s 0.00000043378 0.00009716000
19.97 s 0.00000042946 0.00001637300
19.98 s 0.00000042519 �0.00006358000
19.99 s 0.00000042096 �0.00013330000
20.00 s 0.00000041677 �0.00018590000
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In Case 1: From Figs. 3 and 4, all of the errors converge after 14 s and the parameter errors converge after 16 s. In contrast,
the numerical data in Tables 2 and 3 show that e1 � 8.1 � 10�5, e2 � 1.3 � 10�3, and e3 � 1.8 � 10�4 when the
time approaches 20.00 s and ~a � 0:00079843; ~b � 0:02310000, and ~c � 0:39130000 when the time approaches
10.00 s.

In Case 2: Figs. 9 and 10 show that all of the errors converge at approximate 6–8 s and the parameter errors converge in
0.1 s. Additionally, the numerical data in Tables 2 and 3 show that e1 � 4.1560 � 10�7, e2 � 4.1570 � 10�7, and
e3 � 4.1677 � 10�7 when the time approaches 20.00 s and ~a ¼ ~b ¼ ~c ¼ 0 when the time approaches 10.00 s.
Thus, as shown by the comparisons of the simulation results, the new adaptive scheme is effective and pow-
erful. This scheme largely increases the convergence speed to the goal values and reduces the simulation
errors. Additionally, the controllers, which are derived from the Lyapunov function, are linear.



Table 3
Comparison between parametric errors at 9.96 s, 9.97 s, 9.98 s, 9.99 s and 10.00 s after the action of controllers.

Time Errors for Case 2 Errors for Case 1
~a ~a

9.96 s 0 0.00075110
9.97 s 0 0.00075450
9.98 s 0 0.00076372
9.99 s 0 0.00077850
10.00 s 0 0.00079843

~b ~b

9.96 s 0 �0.01620000
9.97 s 0 �0.00630000
9.98 s 0 0.00430000
9.99 s 0 0.01440000
10.00 s 0 0.02310000

~c ~c

9.96 s 0 1.10510000
9.97 s 0 0.93560000
9.98 s 0 0.75750000
9.99 s 0 0.57490000
10.00 s 0 0.39130000
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6. Conclusions

An adaptive control scheme is effective and suitable for the synchronization of two chaotic systems with different struc-
tures and parameter mismatches. Most other methods only synchronize two systems with known structures and parame-
ters. However, in practical situations, some or all of the system parameters are unknown. The increasing numbers of
applications of chaos synchronization for secure communication have made this topic more important. In this study, a
new, effective and powerful scheme to achieve the adaptive synchronization of two nonlinear systems with mismatched
parameters is proposed. This new scheme has two main elements: (1) for the T–S Fuzzy model, complicated and nonlinear
systems can be linearized into several linear systems and the linear controllers can be obtained and (2) for the partial region
stability theorem, a new Lyapunov function can be directly chosen as a simple linear homogeneous state function. Simula-
tion results show that the state error parameters approach zero more precisely and efficiently when the synchronization and
controllers are simple and linear. The new scheme in this study is an efficient and feasible tool for synchronization and is not
limited to adaptive applications. Various types of applications should be studied with this scheme to improve performance,
such as sliding mode control or backstepping control.
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