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Identification and Prediction of Dynamic Systems
Using an Interactively Recurrent Self-Evolving

Fuzzy Neural Network
Yang-Yin Lin, Jyh-Yeong Chang, Member, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract— This paper presents a novel recurrent fuzzy neural
network, called an interactively recurrent self-evolving fuzzy
neural network (IRSFNN), for prediction and identification of
dynamic systems. The recurrent structure in an IRSFNN is
formed as an external loops and internal feedback by feeding
the rule firing strength of each rule to others rules and itself.
The consequent part in the IRSFNN is composed of a Takagi–
Sugeno–Kang (TSK) or functional-link-based type. The proposed
IRSFNN employs a functional link neural network (FLNN) to
the consequent part of fuzzy rules for promoting the mapping
ability. Unlike a TSK-type fuzzy neural network, the FLNN in
the consequent part is a nonlinear function of input variables. An
IRSFNNs learning starts with an empty rule base and all of the
rules are generated and learned online through a simultaneous
structure and parameter learning. An on-line clustering
algorithm is effective in generating fuzzy rules. The consequent
update parameters are derived by a variable-dimensional
Kalman filter algorithm. The premise and recurrent parameters
are learned through a gradient descent algorithm. We test
the IRSFNN for the prediction and identification of dynamic
plants and compare it to other well-known recurrent FNNs. The
proposed model obtains enhanced performance results.

Index Terms— Dynamic sequence prediction, fuzzy
identification, on-line fuzzy clustering, recurrent fuzzy neural
networks.

I. INTRODUCTION

DYNAMIC systems depend on past inputs, past outputs, or
both, and identification and modeling of such systems are

not as straightforward as that for static/algebraic systems. For
dynamic system processing, practical problems are encoun-
tered in a variety of areas, such as control, pattern recognition,
time series prediction, and signal processing. Recently, the
combination of recurrent structures and fuzzy neural networks
has become popular in identifying and recognizing tempo-
ral behaviors [1]–[16]. Therefore, recurrent structures enable
effectively address temporal sequences responding to memory
information from prior system states.
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In contrast with pure feed-forward fuzzy neural network
(FNN), we have to know the number of lagged inputs and
outputs in advance, and feed these lagged values as feed-
forward FNN input. The exact order of a dynamic system
is usually unknown, and thus, we do not know the number
of lagged values to provide. Moreover, the lagged values
increase input dimensions and result in a larger network size.
Apparently, the use of a feed-forward FNN is unsuitable
for constructing dynamic system. Therefore, some recurrent
fuzzy neural networks (RFNNs) have already been proposed
[1]–[16] for solving the temporal characteristics of dynamic
systems, and have been shown to outperform feed-forward
FNNs and recurrent neural networks.

One important purpose is to design a consequent part of
FNN, which is able to impact performance on using different
types. Researchers usually use two types of fuzzy if-then
rules and fuzzy reasoning employed, i.e., Mamdani-type and
Takagi–Sugeno–Kang (TSK)-type. For Mamdani-type fuzzy
neural networks [2], [6], [17]–[19], the minimum fuzzy impli-
cation is adopted in fuzzy reasoning. For TSK-type fuzzy
neural networks [5], [9], [14], [20], [21], the consequent part
of each rule is a linear function of input variables. Several
studies [14], [20], [21] indicate that the performance of a
feedforward TSK-type fuzzy network in network size and
learning accuracy is superior to those of Mamdani-type fuzzy
networks. A feedforward TSK-type fuzzy network appears to
have more free parameters to adjust input space mapping.
However, each consequent part of each fuzzy rule in a standard
TSK-type fuzzy neural network does not take full advantage
of the mapping capabilities of local approximation by rule
hyper-planes. Therefore, several studies [22]–[28] consider
trigonometric functions to replace the traditional TSK-type
fuzzy reasoning and also obtain the better performance.

In this view, the functional-link neural networks (FLANN)
[22], [23] have been proposed using trigonometric functions to
construct consequent part. The functional expansion increases
the dimensionality of the input vector and thus, creation of
nonlinear decision boundaries in the multidimensional space
and identification of complex nonlinear functions become
simple with this network. It seems to be more efficient, based
on these results, to include the functional-link fuzzy rules into
the design of recurrent fuzzy network.

With above mentioned motivations, this paper presents the
combination of a novel recurrent structure and a FLANN to
construct the consequent part, called an interactively recurrent
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self-evolving fuzzy neural network (IRSFNN), for dynamic
system identification and prediction. The proposed IRSFNN
contains four major contributions as follows.

1) A novel recurrent structure with interaction feedback
incorporates the advantages of local feedback and global
feedback. The global feedback in the proposed network
means that the necessary information is obtained from
the other fuzzy rules. Local source (a rule gets feedback
from itself only) is not sufficient to represent the nec-
essary information. For a more efficient flow, external
(global) feedback for reimbursing the local information
is derived.

2) Many studies [1]–[13] have only considered the past
states in recurrent structure, which is insufficient
without referring to current states. Previous studies
[14], [29] provided strong evidence that compatibly use
past and current states to be more desirable. Therefore,
the proposed model depends on current states along with
previous states.

3) We use the FLNN to replace the traditional TSK-
type fuzzy reasoning, and compare their performance.
As explained before, the functional expansion increases
the dimensionality of the input pattern and thus, creation
of nonlinear decision boundaries in the multidimensional
space and identification of complex nonlinear functions
become simple with this network.

4) We use innovative learning algorithms for the structure
and parameters of the system. For structure learning,
all of the rules and fuzzy sets are generated on-line in
an IRSFNN, which helps to automate rule generation.
We do not need to set any initial IRSFNN structure
in advance. The antecedent part and recurrent para-
meters are learned by gradient descent algorithm. The
consequent parameters in an IRSFNN are tuned using
a variable-dimensional Kalman filter algorithm. This
algorithm handles inputs with variable dimensions, a
phenomenon caused by incremental rules during the
structure learning process.

We then conduct several simulations to assess the IRSFNN
performance, and compare the IRSFNN with other existing
models.

The rest of this paper is organized as follows. Section II
illustrates brief survey of some existing methods; Section III
introduces the FLANN and IRSFNN structure. Section IV
introduces an interpretation of structure and parameter learning
methods for the IRSFNN. Section V presents results from
two types of dynamic system identification and prediction of
time series problems, including the Henon chaotic sequence,
Mackey–Glass time series, and Box–Jenkins time series; and
finally, Section VI offers a conclusion.

II. BRIEF SURVEY OF SOME EXISTING METHODS

Recently, considerable research has been devoted toward
these developing RFNNs, and these networks can be separated
into two major categories. One category of recurrent FNNs in
[1]–[9] and [16], uses global feedbacks. In [2], a recurrent
self-organizing neural fuzzy inference network (RSONFIN)

computes the values of the internal feedback variables using
all rule firing strengths and the consequent parts are fuzzy
sets. The recurrent structure in the RSONFIN just considers
past state. For parameter learning, the RSONFIN uses gradient
descent algorithm to tune free parameters. The authors in [3]
and [4] proposed an output-RFNN where the output values are
fed back as input values. In [7], the TSK-type recurrent fuzzy
network’s (TRFNs) structure is similar to an RSONFIN. The
recurrent neuron-fuzzy network in [9] feeds back the network
output values not only globally to all the rule inputs, but
also locally to the consequent part of each rule, in the form
of the autoregressive moving average with exogenous inputs
model. The recurrent high-order neural network (RHONN)
[16] trained with an extended Kalman filter algorithm was
proposed for optimal control of nonlinear systems.

The other approach of recurrent FNNs [10]–[14] uses
feedback loops from internal state variables as its recurrence
structure. The design of local recurrent structures seems to
be simpler than that of global recurrent structures, and also
obtains superior performance. In [10] and [11], the recurrent
property is achieved by feeding the output of each membership
function (MF) back to itself; thus each membership value is
only influenced by its previous value. The recurrent property
in study [14], a recurrent self-evolving fuzzy neural network
with local feedback (RSEFNN-LF) is achieved by locally
feeding the output of temporal firing strength back to itself;
thus, temporal firing strength is influenced by current and past
states.

As mentioned earlier, many researchers frequently use
Mandani-type or TSK-type to construct consequent part of
fuzzy rules. Many studies indicate that TSK-type fuzzy sys-
tems significantly outperform Mandani-type fuzzy systems.
However, TSK-type fuzzy neural network does not take full
advantage of the mapping capabilities of local approximation
by rule hyper-planes. In order to overcome this problem, our
proposed model employs the FLANN [22], [23] to strength the
mapping ability of input space. Therefore, nonlinear function
(trigonometric function) to the consequent part shall be able
to effectively discriminate in mapping input space. Previous
studies [22]–[28] indicated that the use of trigonometric func-
tion obtains better performances than the use of TSK-type.
As a result, in this paper, the marriage of a novel recurrent
structure and functional-link-based NN is a significant research
for addressing the temporal problems.

III. IRSFNN STRUCTURE

This section introduces the structure of the FLNN and
multiple-input-single-output IRSFNN. The recurrent structure
in the IRSFNN uses interaction feedback that has the ability to
capture critical information from other rules. The consequent
part of each recurrent fuzzy rule is functional link and executes
a nonlinear model. Next, we have described the structure of
FLNN.

A. Functional Link Artificial Neural Network

The functional link artificial neural network (FLANN) is
basically a single layer structure in which nonlinearity is
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Fig. 1. Structure of FLANN.

introduced by enhancing the input pattern with nonlinear
functional expansion. Therefore, the FLANN structure con-
siders trigonometric functions. Fig. 1 shows the structure
of FLANN, where each of the input patterns is passed
through a functional expansion block yielding a corresponding
N-dimensional expanded vector. Suppose that for the input
pattern X is of a 2-D input (x1, x2), the expanded inputs are
using trigonometric functions to be taken. The expanded input
variables can be denoted as

⇀
ϕ = (1, x1, sin(πx1), cos(πx1),

x2, sin(πx2), and cos(πx2)).
The theory of the FLANN for multidimensional

function approximation has been discussed and analyzed
below [22], [23].

Let us consider a set of basis functions B = {ϕk ∈
�(A)}k∈K, with the following properties: 1) ϕ1 =1; 2) the
subset B j = {ϕk ∈ B}N

k=1
is a linearly independent set,

that is, if
∑N

k=1 ϕkwk = 0, then wk = 0 for k =
1, . . . , j ; and 3) sup j

[∑ j
k=1 ‖ϕk‖2

A

]1/2
< ∞. Next, BN =

{ϕk}N
k=1

is a set of a set of basis functions to be con-
sidered, as shown in Fig. 1. Hence, output of functional
expansion block is composed by (ϕ1, ϕ2, . . ., ϕN ) ∈ BN

with the following input–output relationship for the j -th
output:

ŷ j = ρ(Sj ); Sj =
N∑

k=1

φkjwk(X) (1)

where X ∈ A ⊂ �n , that is, X = (x1, x2, . . . , xn)
T is the

input dimension and W = (w j1,w j2, . . . , w j N )
T is the weight

vector associated with the j -th output of the FLANN. The
vector S is a matrix of linear outputs of the FLANN, and the
output vector is ŷ ∈ �V , that is, ŷ = (ŷ1, ŷ2, . . . , ŷV )

T . The
nonlinear function can be denoted as

ρ (·) = tanh (·). (2)

In the IRSFNN model, the corresponding weights of functional
link bases do not exist in the initial state, and the amount
of the corresponding weights of functional link bases gener-
ated by the online learning algorithm is consistent with the
number of fuzzy rules. Section III describes the self-evolving
technology.

B. IRSFNN Structure

This section describes the IRSFNN model that employs
FLANN to the consequent part of the IRSFNN for enhancing

Fig. 2. Structure of the proposed IRSFNN model, where each recurrent fuzzy
rule in layer 4 forms a locally and globally recurrent structure and each node
in layer 5 combines functional-link-based framework.

network’s performance. Fig. 2 shows the proposed six-layered
IRSFNN structure. The detailed function of each layer is
discussed next.

For a clear understanding of the mathematical function of
each node, we will describe function relationship between
each layer. The net input to the i -th node in layer l is
represented as u(l)i and the output value is represented as
O(l)

i .
Layer 1 (Input Layer): The inputs are crisp values and −→x =

(x1, . . . , xn) are fed as inputs to this layer. This is in contrast
to feed-forward FNNs where both current and past states are
fed as inputs to input layer when such networks are used to
model time-varying systems. Weight requiring adjustment in
this layer is absent.

Layer 2 (Fuzzification Layer): Each node in this layer
defines a Gaussian MF and performs a fuzzification operation.
For the i -th fuzzy set Ai

j on the input variable x j , j = 1,
. . . , n, a Gaussian MF is computed by (3)

μi
j (x j ) = O(2)

i = exp

⎧
⎨

⎩
−1

2

(
u(2)j − mi

j

σ i
j

)2
⎫
⎬

⎭
, and

u(2)j = O(1)
j . (3)

Layer 3 (Spatial Firing Layer): Each node in this layer
represents one fuzzy rule that computes the firing strength.
Because this layer does not depend on any temporal input, we
call this layer “spatial” to distinguish it from the “temporal”
firing strength computed in the next layer. For the obtained
spatial firing strength φi , each node performs a fuzzy meet
operation on inputs it receives from layer 2 using an algebraic
product operation.
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There are M nodes in this layer, and the spatial firing
strength is computed as

ϕi = O(3)
i =

n∏

j=1

u(3)j , and u(3)j = O(2)
j . (4)

As in (2), M is the total number of rules.
Layer 4 (Temporal Firing Layer): Each node in this layer is

a recurrent rule node, which formulates an internal feedback
(self-loop) and external interaction feedback loop. The output
of a recurrent rule node is a temporal firing strength that
depends not only on current spatial firing strength but also
on the previous temporal firing strength. The temporal firing
strength is a linear combination function expressed as

O(4)
i =

∑

k=1

(λ
q
ik · O(4)

k (t − 1))+ (1 − γ
q
i ) · u(4)i , and

u(4)i = O(3)
i (5)

that is

ψ
q
i (t) =

∑

k=1

(λ
q
ik · ψq

k (t − 1))+ (1 − γ
q
i ) · ϕi (t),

i = 1, . . . ,M and q = 1, . . . , nO (6)

where γ q
i = ∑M

k=1 λ
q
ik and λq

ik = (Cq
ik)/M (0 ≤ Cq

ik ≤ 1)
is the rule interaction weight between itself and other rules.
For the updated recurrent weights, the proposed approach uses
a gradient descent algorithm to derive the optimal values.
The recurrent weights λq

ik determine the compromised ratio
between the current and previous inputs to the network out-
puts.

Layer 5 (Consequent Layer): Each node in this layer is an
optional node, called a consequent layer, and can be TSK-
type or functional-link-based fuzzy rules. The weight of the
link from a node in layer 4 to one in layer 5 is aq

i0, for q =
1, . . . , no and i = 1, . . . ,M . For the TSK-type IRSFNN, the
node output is a linear combination of current input states
x1, . . . , xn . The output of TSK-type vq

i of the i -th rule node
connecting to the q-th output variable is computed as follows:

v
q
i = Ō(5)

i =
n∑

j=0

aq
i j · u(4)j , and u(4)j = O(1)

j (7)

where x0 ≡ 1.
For the functional-link-based IRSFNN, the output uses a

functional expansion as given by the trigonometric polynomial
basis function [x1 sin(πx1) cos(πx1)x2 sin(πx2) cos(πx2)] for
2-D input variables. The output of functional-link-based ṽq

i (t)
is expressed by

ṽ
q
i = Õ(5)

i =
nt∑

k=0

aq
ik · φk, nt = 3 × (n + nu) (8)

where φ0 ≡ 1.
The coefficient nu denotes lag numbers of system output or

control input. If we do not use extra lagged values (nu = 0),
ϕk = (x1, sin(πx1), cos(πx1), . . . , xn , sin(πxn), cos(πxn))
and k = 1, . . . , nt . The constant nt is an amount of basis
expansion according to input variables.

Fig. 3. Flowchart of the structure and parameter learning of the IRSFNN.

Layer 6 (Output Layer): Each node in this layer corresponds
to one output variable. For defuzzification operations, the q-th
output layer node computes the network output variable yq by
using the weighted average method.

For the TSK-type IRSFNN, the output can be expressed as

yq = O(6) =

M∑

i=1
O(4)

i O
(5)
i

M∑

i=1
O(4)

i

=

M∑

i=1
ψ

q
i (t) ·

n∑

j=0
aq

i j · x j

M∑

i=1
ψ

q
i (t)

,

q = 1, . . . , no (9)

where v denotes the consequent value and a denotes the
parameters.

For the functional-link-based IRSFNN, the output is

yq = O(6) =

M∑

i=1
O(4)

i Õ(5)
i

M∑

i=1
O(4)

i

=

M∑

i=1
ψ

q
i (t) ·

nt∑

k=0
aq

ik · φ j

M∑

i=1
ψ

q
i (t)

,

q = 1, . . . , no (10)

where ṽ denotes the consequent value and a denotes the
parameters.

IV. IRSFNN LEARNING

In this section, two-phase learning is used for constructing
the IRSFNN. Initially, no rules are in an IRSFNN. All of the
recurrent fuzzy rules evolve from the simultaneous structure
and parameter learning after receiving each piece of training
data. Fig. 3 presents flowchart of the IRSFNNs learning
scheme. The proposed model uses efficient structure learning
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to evolve fuzzy rules and fuzzy sets on-line. The parame-
ter learning phase describes the use of a gradient descent
algorithm and a variable-dimensional Kalman filter algorithm.
The following sections introduce the structure and parameter
learning algorithms explicitly.

A. Structure Learning

The first task in structure learning is to determine whether
a new rule should be extracted from the training data and to
determine the number of fuzzy sets in the universe of discourse
of each input variable because one cluster in the input space
corresponds to one potential fuzzy rule, in which mi

j represents
the mean and σ i

j represents the variance of that cluster. The
spatial firing strength ϕi in (4) is used to determine whether
a new rule should be generated. The first incoming data point
x is used to generate the first fuzzy rule, and the mean and
width of the fuzzy MFs associated with this rule are set as:

m1
j = x j and σ 1

j = σfixed, j = 1, . . . , n (11)

where σfixed is a predefined value (we use σfixed = 0.3 in
this paper) that determines the width of the memberships
associated with a new rule. For subsequent new incoming
data x(t), we find

I = arg max
1<i<M(t)

fci (t) (12)

where M(t) is the number of existing rules at time t .
If f I

c (t) ≤ fth( fth is a pre-specified threshold), then a new
fuzzy rule is generated and M(t + 1) = M(t) + 1. In this
approach, if the present data do not match well according to
the existing rules, then a new rule is evolved. We also use
the same procedure to assign the mean of fuzzy sets as we
have done for first rule. For a new rule, the mean and width
of corresponding fuzzy sets are defined as

mM(t)+1
j = x j and σ

M(t)+1
j = β ·

∣
∣
∣x j − mI

j

∣
∣
∣ ,

j = 1, . . . , n (13)

where β is an overlap coefficient. Equation (13) indicates that
the initial width is equal to the Euclidean distance between
current input data x and the center of the best matching rule
for this data point times an overlapping parameter β. In this
paper, β is set to 0.5, so that the width of new fuzzy set is
half of the Euclidean distance from the best matching center,
and a suitable overlap between adjacent rules is realized.

B. Parameter Learning

In addition with the structure, all free parameters in an
IRSFNN are also learned, including those newly generated and
previously existing. For clarification, we consider the single-
output case and define the objective to minimize the error
function as

E = 1

2

[
yq(t)− yd(t)

]2 (14)

where yq(t) represents the IRSFNN output and yd(t) repre-
sents the desired output. Parameters in the consequent part

of the TSK-type IRSFNN are learned based on the variable-
dimensional Kalman filter algorithm as discussed in [14].
According to [14], (10) of a functional-link-based IRSFNN
can be re-written as

yq = −→
ψ (t)TFuL

⇀
aFuL (15)

where
−→
ψ (t)TFuL =⎡

⎢
⎢
⎣

nt +1
︷ ︸︸ ︷

ψ
q
1 (t)

M∑

i=1
ψ

q
i (t)

ϕ0, . . . ,
ψ

q
1 (t)

M∑

i=1
ψ

q
i (t)

ϕnt , . . . ,

nt +1
︷ ︸︸ ︷

ψ
q
M (t)

M∑

i=1
ψ

q
i (t)

ϕ0, . . . ,
ψ

q
M (t)

M∑

i=1
ψ

q
i (t)

ϕnt

⎤

⎥
⎥
⎦

∈ �1×(nt+1)×M

(16)

and

−→a FuL =
[
aq

10, . . . , aq
1nt
, . . . , aq

M0, . . . , aq
Mnt

]T

∈ �M×(nt +1)×1 (17)

and

[ϕ0, ϕ1, . . . , ϕnt ] = [1, x1, sin(πx1), cos(πx1), . . . , xn,

sin(πxn), cos(πxn)]. (18)

The consequent parameter vector −→a FuL is updated by
executing the following variable-dimensional Kalman filtering
algorithm:
−→a FuL(t + 1) = −→a FuL(t)+ S(t + 1)

⇀

ψFuL(t + 1)(yd(t + 1)

−⇀

ψFuL(t + 1)−→a FuL(t))

S(t + 1) = 1

κ

⎡

⎣S(t) − S(t)
⇀

ψFuL(t + 1)
⇀

ψ
T

FuL
(t + 1)S(t)

κ + ⇀

ψ
T

FuL
(t + 1)S(t)

⇀

ψFuL(t + 1)

⎤

⎦

(19)

where κ is a forgetting factor and lies in [0, 1] (κ = 0.99995 in
this paper). Once a new rule is generated, the dimension of the

vectors
⇀
aFuL,

⇀

ψFuL, and the matrix S increases accordingly.
When a new rule evolves at time t + 1, the new vector
⇀

ψFuL(t + 1) becomes
−→
ψ (t + 1)TFuL =⎡

⎢
⎢
⎣

nt +1
︷ ︸︸ ︷

ψ
q
1 (t)

M∑

i=1
ψ

q
i (t)

ϕ0, . . . ,
ψ

q
1 (t)

M∑

i=1
ψ

q
i (t)

ϕnt , . . . ,

nt +1
︷ ︸︸ ︷

ψ
q
M+1(t)

M∑

i=1
ψ

q
i (t)

ϕ0, . . . ,
ψ

q
M+1 (t)

M∑

i=1
ψ

q
i (t)

ϕnt

⎤

⎥
⎥
⎦

∈ �1×(nt +1)×(M+1).

(20)

An IRSFNN augments
⇀
aFuL(t) and S(t) on the right-hand side

of (16) as follows:

−→a FuL new =
[−→a FuL,a

q
(M+1)0, . . . , aq

(M+1)nt

]T

∈ �(M+1)×(nt+1)×1 (21)

and

Snew(t) = blockdiag[S(t)C · I ] ∈ �(M+1)(nt+1)×(M+1)(nt+1)

(22)

where C is a large positive constant (we use C = 10).



LIN et al.: IDENTIFICATION AND PREDICTION OF DYNAMIC SYSTEMS 315

TABLE I

PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 1

Models RSONFIN
[2]

WRFNN
[11]

HO-RNFS
[6]

TRFN
[7]

RSEFNN-LF
[14]

IRSFNN
(TSK)

IRSFNN
(FuL)

Rules 4 5 3 3 4 3 3

Number of
Parameters 36 55 45 33 32 30 42

Training
RMSE 0.025 0.064 0.054 0.032 0.020 0.015 0.011

Test
RMSE 0.078 0.098 0.082 0.047 0.040 0.036 0.031

∗FuL denotes Functional−Link−based.

TABLE II

PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 2

Models RSONFN
[2]

WRFNN
[11]

TRFN
[7]

RSEFNN-LF
[14]

IRSFNN
(TSK)

IRSFNN
(FuL)

Rules 6 5 3 4 3 2

Number of
Parameters 36 55 33 30 30 26

Training
RMSE 0.03 0.057 0.007 0.016 0.014 0.011

Test RMSE 0.06 0.083 0.031 0.028 0.026 0.022

This paper uses resetting operations to keep S bounded and
to avoid divergence problems. After a period of training, the
matrix S is re-set as C · I . Simulation results in Section IV
show that the learning of the IRSFNN achieves good training
and test performance. A gradient descent algorithm tunes the
antecedent parameters of the IRSFNN. This gradient descent
algorithm is performed once for each piece of incoming datum.

By using a gradient descent algorithm for the updated
recurrent weights, we have

λ
q
ik(t + 1) = λ

q
ik (t)− η

∂E

∂λ
q
ik

(23)

where η is the learning rate and

∂E

∂λ
q
ik

= ∂E

∂yq

∂yq

∂ψ
q
i

∂ψ
q
i

∂λ
q
ik

= (yq − yd) · (vq
i − yq) · (ψq

k (t − 1)− φi (t))
M∑

i=1
ψ

q
i (t)

. (24)

The antecedent part of parameter mi
j is updated as

mi
j (t + 1) = mi

j (t)− η
∂E

∂mi
j

(25)

where

∂E

∂mi
j

= ∂E

∂yq

∂yq

∂ψ
q
i

∂ψ
q
i

∂φi

∂φi

∂μi
j

∂μi
j

∂mi
j

= (yq − yd) · (v
q
i − yq)

M∑

i=1
ψ

q
i (t)

· (1 − γ
q
i ) · φi · 2(x j − mi

j )

(σ i
j )

2
. (26)

The antecedent part of parameter σ i
j is updated as

σ i
j (t + 1) = σ i

j (t)− η
∂E

∂σ i
j

(27)

where

∂E

∂σ i
j

= ∂E

∂yq

∂yq

∂ψ
q
i

∂ψ
q
i

∂φi

∂φi

∂μi
j

∂μi
j

∂σ i
j

= (yq − yd) · (v
q
i − yq)

M∑

i=1
ψ

q
i (t)

· (1 − γ
q
i ) · φi · 2(x j − mi

j )
2

(σ i
j )

3
. (28)

V. SIMULATION

This section presents five examples to assess the per-
formance of the proposed IRSFNN. These simulation
studies include two types of dynamic system problems
(Examples 1, 2) and three types of prediction problems
(Examples 3–5). These examples are also used to compare
the performance of the IRSFNN with those of existing recur-
rent FNNs. For dynamic system identification, the recurrent
structure in the proposed approach shows the advantages, as
listed in Tables I–V.

A. Example 1 (Dynamic System Identification)

This example uses an IRSFNN to identify a nonlinear
dynamic system, which is a nonlinear plant with multiple time
delays that has been studied in [7]. The dynamic system is
described by the following difference equation:
yp(t + 1) = f (yp(t), yp(t − 1), yp(t − 2), u(t), u(t − 1))

(29)
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TABLE III

PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR CHAOTIC SEQUENCE PREDICTION IN EXAMPLE 3

Models
RFNN

[10]
WRFNN

[11]
TRFN-S

[7]
RSEFNN-LF

[14]
IRSFNN

(TSK)
IRSFNN

(FuL)

Rules 15 7 6 9 4 3

Number of
Parameters

60 70 66 45 32 40

Training
RMSE 0.463 0.191 0.028 0.032 0.017 0.016

Test RMSE 0.469 0.188 0.027 0.023 0.015 0.014

TABLE IV

PERFORMANCE OF IRSFNN AND OTHER MODELS FOR MACKEY–GLASS

CHAOTIC SEQUENCE PREDICTION PROBLEM IN EXAMPLE 4

Models Rules
Number

of
Parameters

Train
RMSE

Test
RMSE

D-FNN [12] 10 100 – 0.0082

G-FNN [1] 10 90 – 0.0056

Recurrent ANFIS [31] – – – 0.0013

SEELA [32] 9 198 0.0067 0.0068

SuPFuNIS [33] 10 94 – 0.0057

TRFN-S [7] 5 95 – 0.0124

CSPSO [34] 10 104 – 0.0064

FLNFN-CCPSO [35] – – 0.0083 0.0084

LLWNN+Hybrid [36] – 110 0.0033 0.0036

FWNN [37] 16 128 0.0023 0.0023

RSEFNN-LF [14] 9 94 0.0032 0.0031

IRSFNN (TSK) 5 90 0.0040 0.0039

IRSFNN (FuL) 4 100 0.0002 0.0002

TABLE V

PERFORMANCE OF IRSFNN AND OTHER MODELS

FOR BOX–JENKINS PREDICTION IN EXAMPLE 5

Models Rules
Number

of
Parameters

Train
RMSE

Test
RMSE

HyFIS [38] – – – 0.0205

Recurrent ANFIS [31] – – 0.006 0.0193

TRFN-S [7] 5 65 0.0524 0.0482

TNFIS [39] – 43 0.0245 0.0230

FuNN [40] – – – 0.0226

LLWNN+Hybrid [36] – 56 – 0.0138

FWNN [37] 9 57 0.0189 0.0279

RSEFNN-LF [14] 7 56 0.0172 0.0344

IRSFNN (TSK) 5 65 0.0121 0.0297

IRSFNN (FuL) 3 51 0.00062 0.0009

where

f (x1, x2, x3, x4, x5) = x1x2x3x5(x3 − 1)x4

1 + x2
2 + x2

3

. (30)

The dynamic system output depends on three previous outputs
and two previous inputs. In this paper, only two current
values, u(t) and yp(t), are fed as input to the IRSFNN input
layer. Here, we do not use extra lagged values (nu = 0) in
the consequent part. The desired output of the IRSFNN is
yd(t +1). In the training procedure of the IRSFNN, we follow
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Fig. 4. Outputs of the dynamic plant (blue line), IRSFNN (red line),
RSEFNN_LF (green line), and TRFN (black line) in Example 1.

the same computational protocols as in [7] and [14], i.e., we
use only ten epochs, with 900 time steps in each epoch. In
each epoch, the first 350 inputs are random values uniformly
distributed over [−2, 2] and the remaining 550 training inputs
are generated from a sinusoid, 1.05 sin(π t/45).

We follow this strategy for an online training process
because a similar procedure was followed in [14], where
the total number of online training time steps is 9000. The
structure learning threshold fth decides the number of rules to
be generated. After training, three rules are generated when the
structure learning threshold is set to 0.01. Table I shows the
root-mean-squared error (RMSE) of training data. The testing
input signal u(t) is guided by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin(π t
25 ), t < 250

1.0, 250 ≤ t < 500

−1.0, 500 ≤ t < 750

0.3 sin(π t
25 )+ 0.1 sin(π t

32 )

+0.6 sin(π t
10 ), 750 ≤ t < 1000.

(31)

Fig. 4 shows a comparison of the actual output with the out-
put produced by the IRSFNN for the test input. Fig. 5 shows
the error difference between the actual plant output and the
IRSFNN. Figs. 4 and 5 show a very good match, suggesting
that IRSFNN architecture combined with the proposed system
identification scheme adequately identifies the dynamic system
with feedback.

Table I shows the performance of the IRSFNN compared
with the other recurrent networks, including a RSONFIN [2],
a wavelet RFNN (WRFNN) [11], a TSK-type TRFN [7], a
HO-RNFS [6], and a RSEFNN-LF [14].
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Fig. 5. Test errors between the MRIT2FNN and actual plant outputs.

The consequent part in the RSEFNN-LF is composed by
a first-order TSK-type that performs a linear combination
of input variables. As in the IRSFNN, all these networks
use the same information, including the number of input
variables, training data, test data, and training epochs. For
a fair comparison, the total number of parameters of the
IRSFNN is kept similar to that of the compared networks. The
result indicates that the IRSFNN achieves better identification
than the other recurrent networks.

B. Example 2 (Dynamic System Identification)

This example considers the use of the IRSFNN for dynamic
system identification with longer input delays that is described
by

yp(t + 1) = 0.72yp(t)+ 0.025yp(t − 1)u1(t − 1)

+ 0.01u2
1(t − 2)+ 0.2u1(t − 3). (32)

This plant is the same as the one used in [7]. This plant output
depends on four previous inputs and two previous outputs. As
shown in Example 1, the current variables u(t) and yp(t) are
fed as inputs to the IRSFNN input layer. In this example, we
do not use extra lagged values (nu = 0) in the consequent part.
The training data and time steps are the same as those used in
Example 1. When the structure learning threshold fth is set to
0.05, three rules are generated. The test signal used in Example
1 is also adopted here to assess the identified system. Fig. 6
shows the outputs of the plant and the IRSFNN for these test
inputs. Fig. 7 shows the test error between the outputs of the
IRSFNN and the desired plant. Table II shows the number of
rules, total number of parameters, and training and test RMSEs
of the IRSFNN. The performance of the IRSFNN is compared
with that of recurrent models, including an RSONFIN [2], a
TRFN [7], a WRFNN [11], and an RSEFNN-LF [14]. These
models use identical numbers of input variables, training data,
test data, and training epochs as designed by the IRSFNN.
For a fair comparison, the numbers of parameters in the
IRSFNN have been kept similar to those in these compared
models.

Apparently in Table I, the RSEFNN-LF only uses local
source, which is not enough to capture critical information
for the system, thus the test error of the IRSFNN_TSK is
lower than that of the RSEFNN-LF, even using fewer rules.
Here, we also investigate the performance comparison of the
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Fig. 6. Outputs of the dynamic plant (blue line) and IRSFNN-FuL (red line)
in Example 2.
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Fig. 7. Test errors between the IRSFNN-FuL and actual plant outputs.

IRSFNN-TSK and the IRSFNN-FuL, and results show that
the IFSFNN-FuL achieves the better performance. Finally, the
results show that the test RMSEs of the IRSFNN-FuL and
IRSFNN-TSK are smaller than those of the other networks.

C. Example 3 (Chaotic Series Prediction)

As introduced in [30], the IRSFNN is applied to pre-
dict the Henon chaotic sequence of a dynamic system with
one delay and two sensitive parameters generated by the
following equation:

yp(t + 1) = −P · y2
p(t)+ Q · yp(t − 1)+ 1.0. (33)

Equation (33), with P = 1.4 and Q = 0.3, produces a chaotic
attractor. The initial states [yp(1), yp(0)] = [0.4, 0.4] generate
2000 patterns, with the 1000 patterns used for training and the
remaining 1000 patterns used for testing. In this example, we
do not use extra lagged values (nu = 0) in the consequent
part. The training procedure uses the plant output yp(t + 1)
as the desired output yd(t + 1). The system has a single
output so that only output variable yp(t) is fed as input to
the IRSFNN. The training epoch in the IRSFNN is set to 90.
The structure learning threshold fth is set to 0.2 and number
of rules generated is five after the training procedure. Fig. 8
shows the phase plot of the actual and IRSFNN predicted
results for the test patterns.
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Fig. 8. Results of the phase plot for the chaotic system (blue), RSEFNN_FL
(green), TRFN (black), and IRSFNN-FuL (red).

Table III includes the network size, parameter numbers,
and training and test RMSEs of the IRSFNN. The TSK-
type IRSFNN and functional-link-based IRSFNN both use
four rules. We find that the latter achieves greater learning
performance. In a meaningful comparison, the number of
parameters of the IRSFNN must be similar to that of compared
models. The compared recurrent models include a recurrent
FNN [10], a wavelet recurrent FNN [11], a TSK-TRFN
[7], and a recurrent self-evolving FNN with local feedback
[14], where the locally recurrent is a simple structure but its
performance is superior to that of other compared models. The
training epochs, training data, and test data of the compared
models are identical to the conditions of the IRSFNN. Table III
shows that the IRSFNN exhibits the best performance by using
an interactively recurrent structure.

D. Example 4 (Mackey–Glass Chaotic Series Prediction)

The time series prediction problem used in this example is
the well-known Mackey–Glass chaotic series. The Mackey–
Glass time series is generated from the delay differential
equation

dx(t)

dt
= 0.2x(t − τ )

1 + x10(t − τ )
− 0.1x(t) (34)

where τ = 17 and the initial value is given as x(0) = 1.2. Four
past values are used to predict x(t), and the input–output data
format is [x(t − 24), x(t − 18), x(t − 12), x(t − 6); x(t)]. As
discussed in [1], [7], [12], [14], 1000 patterns are generated
from t = 124 to t =1123, with the first 500 patterns being used
for training and the remaining 500 for testing. The IRSFNN’s
training epoch is set to 500, and its structure threshold fth is set
to 0.001. After 500 epochs of training procedure, seven rules
are generated. The four input dimensions contain 28 fuzzy
sets. Fig. 9 displays the prediction results of the IRSFNN-
FuL, and Fig. 10 shows the prediction error between desired
output and the IRSFNN. Figs. 9 and 10 show an excellent
match, suggesting that the proposed scheme in the network
indicates an excellent ability to predict the Mackey–Glass time
series. Table IV shows the performance, including rules, a total
number of parameters, and training and test RMSE for the
TSK-type and functional-link-based IRSFNNs.

Fig. 9. Test result of chaotic series prediction using IRSFNN-FuL with five
rules in Example 4.
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Fig. 10. Prediction errors between the IRSFNN-FuL and actual outputs in
Example 4.

Table IV lists the performance comparison of the IRSFNN
with recently developed fuzzy systems designed by parti-
cle swarm algorithms or neural learning ( [1], [7], [12],
[14], [31]–[37]). Both local linear wavelet NN (LLWNN)
[36] and fuzzy wavelet NN (FWNN) [37] employ the
wavelet neural network in the consequent part, which
has the ability to localize in both time and frequent
space.

The compared models with particle swarm algorithm were
proposed as a clustering-aided simplex particle swarm opti-
mization (CSPSO) [34], a self-evolving evolutionary learning
algorithm (SEELA) designed for neural fuzzy inference
system [32], and FLNFN-CCPSO [35]. The FLNFN-CCPSO
also uses the functional-link-based neural network to the
consequent part in the FLNFN-CCPSO. The proposed models,
especially the IRSFNN-FuL, show superior performance to
compared models. Although the performance of the IRSFNN-
TSK is similar to that of RSEFNN-LF and FWNN, rule num-
ber used in the IRSFNN-TSK is fewer than those in RSEFNN-
LF and FWNN. The FWNN does not use recurrent structure
to memorize previous states and only considers wavelet char-
acteristic in the consequent part to address dynamic systems.
Hence, larger rules should be taken by FWNN to obtain good



LIN et al.: IDENTIFICATION AND PREDICTION OF DYNAMIC SYSTEMS 319

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

1.1
1.2

Time Step

O
ut

pu
t

ideal output
IRSFNN-FuL
RSEFNN-LF
TRFN

Fig. 11. Test result of Box–Jenkins series using IRSFNN-FuL with three
rules in Example 5.

performance. Unlike the FWNNs consequent, the consequent
of IRSFNN-TSK uses a simple structure of linear combination
of input variables. For a fair comparison of using nonlinear
system in the consequent part, the test RMSE of IRSFNN-FuL
is 11 times lower than that of FWNN. Finally, our proposed
IRSFNN-FuL has obtained the best performance among the
competitors.

E. Example 5 (Prediction of Box–Jenkins Time Series)

In this example, we consider the use of a real word
data set to assess the IRSFNN performance. Much of the
literature [31], [36]–[41] uses Box–Jenkins time series to
assess the performance of real word data. Box–Jenkins time
series data (gas furnace data), which were recorded from
a combustion process of a methane-air mixture [36], [42],
describe the operation of a gas furnace process with a gas
flow rate u(t) and a concentration of CO2 y(t). To predict
the process, u(t − 4) and y(t − 1) are fed as inputs to the
IRSFNN for predicting output y(t). If the appropriate lag
number nu is known in advance, then more past values can be
included in the IRSFNN-FuL consequent part for obtaining a
greater performance. Therefore, the past value u(t − 3), i.e.,
nu = 1, is used for the IRSFNN-FuL consequent part. The
Box–Jenkins time series data provide the 296 available
input–output pairs.

For a meaningful comparison, the training samples from
the first 200 pairs are used, and the remaining 92 pairs are
used for the test samples to predict IRSFNN performance.
The structure learning threshold fth is set at 0.01, and the
learning factor η is set at 0.08. After 100 training epochs
of an IRSFNN-FuL, four rules are generated. The training
epoch in the IRSFNN is the same as that in these existing
models. As in an IRSFNN, the compared models, except the
recurrent ANFIS [31], LLWNN [36], and HyFIS [38], utilize
the identical data set which is normalized. The abovemen-
tioned three models, recurrent ANFIS, LLWNN, and HyFIS,
use identical data set but with a scaled down output to
estimate the performance. Hence, they could obtain a lower
test RMSE than other compared models. We could assume
that the performance of IRSFNN_TSK is superior to that
of the above models in terms of the same training and test
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Fig. 12. Prediction errors between the IRSFNN-FuL and actual outputs in
Example 5.

data set. Fig. 11 shows the prediction results of the IRSFNN.
Fig. 12 displays the prediction error between the actual time-
series output and the IRSFNN output. As shown in Example 4,
Table V lists the parameter numbers, training RMSE, and test
RMSE. Table V also shows rules, a total number of network
parameters, and training and test error of these compared
models, including an HyFIS [38], a LLWNN with hybrid
learning (LLWNN+hybrid) [36], a recurrent ANFIS [31], a
tree-based neural fuzzy inference system (TNFIS) [39], a
Fuzzy neural network (FuNN) [40], a FWNN [37], and TSK-
TRFN with supervised learning (TRFN-S) [7]. As can be seen
in Table V, the IRSFNN-TSK utilizes fewer rules and achieves
a similar performance with the FWNN. For a fair comparison
in the consequent part, the test error of IRSFNN-FuL is 31
times lower than that of FWNN. Generally, the results from
real world data indicate that the IRSFNN achieves smaller test
RMSE than the other compared models.

VI. CONCLUSION

This paper presented a novel recurrent FNN, called an
IRSFNN, for handling problems with time-varying sys-
tem identification and time series prediction. The proposed
IRSFNN approach is effective in modeling dynamic systems
because of two major characteristics, online manner and recur-
rent structure. The online structure learning algorithm enables
the network to efficiently identify the required structure of
the network and does not need to set any initial IRSFNN
structure in advance. The proposed recurrent structure not
only effectively stores the local (internal) information but
also effectively collects critical global (external) information.
The IRSFNN employs the FLNN for the consequent part of
its fuzzy rule. In the experiments, the functional-link-based
IRSFNN outperformed the TSK-type IRSFNN. The learning
algorithm of the variable-dimensional Kalman filter helped
to improve network accuracy by tuning the consequent part
parameters, and accounted for the change in the network
size during learning. This paper demonstrated the consistently
superior performance of IRSFNN over several relevant existing
systems.
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