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Abstract 

Let G = (YE) be a graph. We associate with each edge ei E E an ordered pair of rational numbers (ai, bi) . Let the weight 

of a spanning tree T, w(T), be defined as xeiET ai + netET bi. A spanning tree T in G is called a w-optimum spanning tree 

if w(T) > w( T’) for all spanning trees T’ in G. The function w is one instance in a class of two-parameter objectives. Hassin 
and Tan-k proposed a unified approach for solving the class of two-parameter objective optimum spanning tree problems. Let 
s be an objective in the class and Fs( G) denote the weight of the s-optimum spanning tree of G. The element perturbation 
problem of the s-optimum spanning tree is to compute FS (G - ek) for all ek E E. With Hassin and Tank’s approach, let 
ts(p, q) be the complexity of computing the s-optimum spanning tree where p = [VI and q = IEl. In this paper, we present 
an approach to solve the element perturbation problem of the s-optimum spanning tree in t,(p, q). 

Keywords: Combinatorial algorithms; Complexity; Spanning trees; Matroid 

1. Introduction and notation 

Most of the graph definitions used in this paper are 
standard (see, e.g., [ l] ). Here, we limit ourselves to 
defining the most commonly used terms and those that 
may produce confusion. G = (YE) is called a graph 
ifVisafinitesetandEisasubsetof{(u,u) 1 (u,u> 
is an unordered pair of V, where u # u}. We say V is 
the vertex set of G and E is the edge set of G. Let p = 

]V]andq=IEl.Let,!?beasubsetofE.WeuseG-E 
to denote the graph G’ = (YE - I?). In particular, 
we use G - ek to denote the graph G - {ek}, where 

ek E E. Graph H = (V’, E’) is called a subgraph of 
GifV’CVandE’s Efl(V’xV’).Asubgraph 

H = (V’, E’) of G with V’ = V is called a spanning 

subgraph of G. A spanning tree of G is a connected 
spanning subgraph of G that contains exactly p - 1 
edges. We also use T to denote the spanning tree with 
edge set T. D = ((I, A) is called a directed graph if the 
vertex set U is a finite set and the arc set A is a subset 

of{[u,u] 1 [u,u] isanorderedpairofU,whereu # 
u}. We use [u, u] to denote the arc incident from u 
to v. 

Let G = (YE) be a graph. We associate with 
each edge ei E E an ordered pair of rational num- 
bers (ai, bi). For a subset E’ of E, define A( E’) = 

C~,EE~ Q an d B(E’) = CelEE, bi. Let g be a real 

valued function defined in R2. The problem of max- 
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imizing g( A( T) , B(T) ) over all spanning trees 
T of G has been discussed by Hassin and Tamir 
[3]. Finding a spanning tree T which maximizes 

(C e,Er ~i)~ + (CeZEr bi)2Y (CeiErai + l-Ie,Er bi or 

l-I&T ai + neiET bi, respectively) can be transformed 
into the problem of maximizing A(T)2 + B(T)2 

(A(T) + expB’(T) with B’(T) = CeiErlogbi or 
exp A’(T) + exp B’(T) with A’(T) = zeiET log ai 
and B’(T) = CeiET log bi, respectively). Hassin 
and Tamir proposed a unified strategy which yields 
strongly polynomial algorithms for a class of two- 

parameter maximization problems that includes the 
above three objective functions. Note that the prob- 
lem of minimizing the cost/reliability ratio over 

all spanning trees of a graph [2] is modeled as 

lX,,r bil C~,ET ai and also solved in [ 31. 
Let s(T) = g(A(T),B(T)) be one of the above 

two-parameter objectives. The weight of a spanning 
tree T is the objective value of s(T). A spanning 
tree T in G is called an s-optimum spanning tree if 
s(T) 3 s( T’) for all spanning trees T’ of G. Find- 
ing the s-optimum spanning tree with respect to s is 

called the s-MST problem. We use t,(p, q) to denote 
the time complexity of solving the s-MST problem 
with Hassin and Tamir’s approach. Let F,(G) denote 
the weight of the s-optimum spanning tree of G if G 
is connected; otherwise, F,(G) = -ca The element 

perturbation problem (EPP) of the s-optimum span- 
ning tree, s-EPP for short, is to compute F, (G - ek) 

for all ek E E. A naive method of solving the s-EPP 

is to repeatedly apply Hassin and Tamir’s algorithm to 
compute F, (G - ek) for every ek. This approach takes 

O(qt,(p,q)) time. However, F,(G - ek) = f(G) if 
the edge ek is not in the s-optimum spanning tree. 
Thus, we can reduce the time to O( pts (p, q) > . In this 
paper, we present a t,(p, q) algorithm for solving the 

s-EPP 
The study of the s-EPP is interesting for several 

reasons. First, the concept of the EPP can be gen- 
eralized to combinatorial optimization problems. Re- 
cently, Hsu, Leu, and Sung discussed general EPP 
strategies [ 51. If we solve the EPP of a combinatorial 
optimization problem, we can find the second opti- 
mal solution(s) and the critical element(s). A naive 
method of solving an EPP is to repeatedly solve the 
original problem. To avoid repeated execution of an 
algorithm, we extract and reuse information from what 
we have solved. Several EPPs can then be solved with 

the same time complexity as the original problem [ 4- 
7,9]. Algorithms that reuse information in this way are 
called recycling algorithms [ 51. It has been observed 
that recycling strategies are problem-dependent. It is 

interesting to collect as many recycling strategies as 
possible. Hassin and Tamir’s algorithm is a unified 

approach for a class of interesting problems. Thus, 
it is worthwhile to investigate the corresponding re- 
cycling strategy. Also, since the two-parameter maxi- 
mum spanning tree problem is a topic in matroid the- 
ory [ 81, we expect that our approach may lead to some 
insights into matroid theory. 

2. Previous work 

To make this paper self-contained, we first review 
the basic strategy of Hassin and Tamir’s approach as 
proposed in [ 31. Assume that (ai, bi) # (uj, bj) if 
ei # ej to avoid degenerate cases. Let T* be the s- 
optimum spanning tree with respect to the objective 
function s. We call a spanning tree T a local optimal 

spanning tree if there is no pair of elements ei, ej E E 
such that ei E T, ej $ T, and T’ = T - {ei} + { ej} is a 
spanning tree which yields a larger weight than T does. 

Hassin and Tamir divided the R2 plane into a number 
of cells and showed that all points in a cell produce 
at most one local optimal spanning tree. Obviously, 
the s-optimum spanning tree T* is one of these local 

optimal spanning trees. T* will be contributed by the 

unique cell in R2 containing (A (T*) , B( T*) > . 
Let (A, B) be a point in R2. Define a directed graph 

DQ(G) with the vertex set being the edge set E of 
G. In short, we use D_.Q to denote DA,B( G) . Let ei, ej 
be distinct elements in E. [ ei, ej] is an arc in DA,B if 
andonlyifg(A--ai+aj,B-bi+bj) > g(A,B).An 
equivalence in R2 can be defined by (A, B) N (C, D) 

if and only if DA,B = Dc,D. 

Let ei, ej E E, ei # ej. Define the function 
gij(A,B)=g(A-ui+uj,B-bi+bj) -g(A,B). 
The equivalence regions in R2 are induced by the 
set of q( q - 1) gij( A, B) functions. Define Rij = 

{(A,B) 1 g(A-ai+Uj,B-bi+bj) > g(A,B)}* 
Let f : R2 + Rk be a mapping of R2 into Rk. Fur- 
ther, let zj, ei, ej E E, ei # ej be a collection of 
subsets in Rk such that (A, B) E Rij if and only 
if f(A, B) E Tij for ei, ej E E, i # j. Suppose 
there exists a polynomial hij( x1,. . . , xk) such that 
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Kj = ((X17. .-7Xk) 1 hij(xlt- ..,xk) > 0). Then 
the number of equivalence regions is bounded by the 
number of topological components induced on Rk by 
the set of polynomials hij. If d, the maximum degree 
of hij, and k, the dimension of Rk, are constant and in- 
dependent of q, then it can be proved that the number 
of equivalence regions will be a polynomial in q. 

For ease of exposition, we use the weight function 

w(T) = CeiET ai +neiET bi as the objective. In the w- 

MSTproblem,g(A(T),B’(T)) =A(T)+expB’(T) 
with A(T) = CeiET ai, B’(T) = Ce,ET log bi. Given 
a point (A,B) = (A(T),B’(T)), Rij = ((A,B) 1 
(A - ui + uj) + exp (B - logbi +logb;) > A + 
expB}= {(A,B) 1 -ai+aj > (l-bj/bi)expB}. 
Set f(A, B) = expB and zj = {x 1 -ai + Uj > 
~(1 - bj/bi)}. Hence, (A,B) E Rij if and only 
if f(A, B) E Tij for every pair of distinct edges 

ei, ej E E. The number of equivalence regions is 
O(q2> for the w-MST problem. These regions cor- 
respond to the partition of the line induced by the 

points dij = bi(uj - ui)/(bi - bj), where ei,ej E E 

and ei # ej. Each equivalence region defines a DA,B, 

where (A, B) is a point in that region. 
Let E(DA,B) be the arc set of D,+,B. Let 7’1 and 

T2 be two distinct spanning trees of G. We say that 
T2 is a DA,B-improvement of Tl if there exist ei E Tl 

and ej $! Tl such that [ei, ej] E E(DAJ) and T2 = 
Tl - {ei} + {ej}, i.e., T2 is obtained from Tl by a single 
edge swap. A spanning tree T of G is DA,*-optimal if 
there exists no spanning tree T’ of G which is a D,Q- 

improvement of T. In [3], the following theorem is 

presented. 

Theorem 1. There is at most one D,+B-optimal spun- 

ning tree ofG for every (A, B) in R2. 

We use T*,J to denote the DA,B-optimal spanning 
tree if it exists. Let r( DA,B) (ei) be the set {ej 1 
[ei, ej] E E(D,Q)} for ei E E. Also let X(DAJ) 

be the set {ei 1 the two endpoints of ei in G are 
on different connected components of the graph H = 
(YrA,B (ei))}. In short, we use ~,J,B( ei) to denote 

r( DA,J) (ei) and XA,B to denote X( DA,J). The fol- 
lowing theorem is also from [ 31. 

Theorem 2. If the DA*B-optimal spanning tree T,Q 
exists, then the edge set of TAJ is exactly XAJ. 

This theorem states that a necessary condition for 
the existence of the DA,B-optimal spanning tree is that 
XA,J forms a spanning tree. If XA,J forms a spanning 
tree, it is a candidate solution. It is suggested in [ 31 
that we do not have to verify that the candidate so- 
lution is DA,B-optimal. To reduce the computational 
complexity, it will suffice simply to find the candidate 
solution. The s-optimum spanning tree is a candidate 
solution which has maximum weight with respect to 

s. The following algorithm proposed in [3], Algo- 
rithm 1, finds X,Q and then tests whether it forms a 
candidate solution in a D,Q. 

Algorithm 1. 
Step 1. Compute ~A,B (e,) for all e, E E. 

Step 2. Set XA,B = 4. 
Step 3. For each e, E E do the following: 

If the two endpoints of e, are disconnected in H = 

(~~A,B(ex)), set XA,B = XA,B u {ex). 

Step 4. If XA,B does not form a spanning tree, stop and 
conclude that the DA,J has no DA,n-optimal solu- 

tion. Otherwise, XA,B forms the candidate solution. 

Obviously, step 1 in Algorithm 1 takes O(q2) time. 
Step 3 needs q tests to see if the endpoints of e, are 
not connected in H = ( Y~A,B (e,) ). Each test takes 

O(q) time. Hence, step 3 takes 0( q2) time. Step 4 
is completed in O(p) time. Hence, the complexity of 
Algorithm 1 is 0( q2). For the weight function w(T), 
we can find the w-optimum spanning tree by finding all 

candidate solutions among all 0( q2) different DA,JS. 

Then we select the candidate solution with maximum 
weight to be the w-optimum spanning tree. The whole 

process takes 0( q”) time. 

3. The EPP strategy 

Although our EPP strategy is independent of the 
equivalence region construction, we use the w-EPP 
as an example to demonstrate our method. We want 

to extract some useful information when computing 
F,,,(G) and then reuse this information to compute 

F, ( G - ek ) s. Assume we are given a graph G = ( YE) 
and each edge ei E E is associated with an ordered 
pair of rational numbers (ai, bi). Let T’ be the w- 
optimum spanning tree of G and Tek be the w-optimum 
spanning tree of G - ek, 
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Fig. I. A graph G = (YE) and the (ai. bi) for every edge. 

Fig. 1 is an example of a graph G with four vertices. 
The (ui, bi) s are listed in the table. In this example, 
T* = {eh,es,ec}, Tel = Te2 = Te’ = T*, and Te4 = 
Tes = Te6 = {el, e2, e3). 

To apply Hassin and Tamir’s algorithm, we need 

to construct D,QS for all equivalence regions in 
R’. There are 0(q2) different D,QS for G. When 
constructing a DA,B, we create an arc [ei,ej] if 
g(A-ai+uj,B--logbi+logbj) > g(A,B), where 
g(A(T),B’(T)) = A(T) +expB’(T). Let DXB be 
DA,J (G - ek) . From the construction of a DA,B, we 
know that if [et, ej] is an arc in DTB, [ei,ej] must 

be an arc in DA,J. We have the following lemma. 

Lemma 3. D& is the subgraph of DA,B induced by 
the vertex set E - {ek}. Moreover, r( DzB) (ei) is 
exactly ~A,B (ei) - { ek}, where ei # ek. 

With Lemma 3, we can easily obtain DzB from 

D,Q for every (A, B) in R* and ek E E. Fig. 2(a) is 
D30r,~~s40, where G is the graph in Fig. 1. Fig. 2(b) is 

DZKI log40. SincetheO DA,BScOverall (A,B)sin 

R*, the 02 Bs induced by E - { ek} from the DA,B (G) s 
will also cover all (A, B)s. 

Let XRB be X( DAJ (G - ek) ) . We want to obtain 

XFB from XA,B. Note that the two endpoints of an 
ei in XA,B are on different connected components of 
the graph H = (Yr~,~(ei)). Let ei be an edge in 
X2, but not in XA,J. The two endpoints of ei are 
connected in H = ( v ~A,B (ei) ) but are not connected 
in H’ = (v!rA,~(ei) - {ek}). In other words, ek is a 
cut edge of the connected component in H connecting 
the two endpoints of ei. We use ReAIB to denote the 
set {ei 1 ek is a cut edge of the connected component 
in H connecting the endpoints of ei}. We have the 
following theorem. 

e2 

e1 

e6 e6 & e3 

e4 

@I 

Fig. 2. (a) The Dm,lOg 40 for G in Fig. 1. (b) The D$, ,Og 4. for 

G-q. 

Theorem 4. X2,B = XA,B - {ek} U RTB. 

PrOOf. Obviously, ek $! X2, Since ek $! Dz,B. 
From the above discussion, ’ if ei is an edge of 
X”” A,B - xA.B, ei E R2.B. Suppose ei is in XAJ and 

ei # ek. Then the endpoints of ei are not connected 
in H = (vr~,~(ei)). The endpoints of ei are not 
connected in H’ = (v!rA,B(ei) - {ek}), which is 
a subgraph of H. Hence, ei is in XT,B. Therefore, 
XT, = xA,B - {ek) u RT,B. 0 

In Fig. 2, Xsc~t~s40 is (e4, es, es}, which forms the 
T*. es is not in X30o,t~~40 because r300,10g40(es) = 
(e4, es, e6) forms a conne&d component connect- 
ing the two endpoints of es in G. From Theorem 4, 
X”” - (e4, es,e6} - {es} U {e3}, where es iS 300,log 40 - 

the only element in R&,,,,,. Hence, D&, ,0g4o con- 
tributes the candidate solution XF&, ,0g4o = {es, e4, e6) 
to compete for the w-optimum spanning tree of G-es. 

Let e, E E and e, = (u,,u,), where u,,u, E V. 
The following algorithm, Algorithm 2, finds RT,B for 
every ek in E with respect to DA,B. 

Algorithm 2. 
Step 1. For each e,, E E, set R2,B = 4. 
Step 2. For each e, E E do the following: 

Construct rA,& (e,) . If the two endpoints of e, are 
connected in H = (v!rA,B (e,) ), find every CUt edge 
eY in the connected component that connects u, to 
u, and set Rz,B = RzsB U {e,}. 

Step 1 in Algorithm 2 takes O(q) time. The con- 
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struction of a ~A,B( e,) requires O(q) time. The cut 
edges can be found with depth-jrst search techniques 

starting from ux or ux in O(q) time [ lo]. Hence, step 
2 can be performed in 0(q2) for all e, E E. The loop 
in step 2 assigns the e, to all the Ry,‘s, where ek is a 
cut edge of the connected component in H that con- 

nects 24, to u,. Hence, step 2 constructs R& for all 

t?k E E. 
Note that the w-EPP algorithm reuses the XA,J ob- 

tained from Algorithm 1. Even if the XA,B fails to form 
a candidate solution for DA,~,, the X2, may become a 
candidate solution for D2B. After the’execution of Al- 
gorithms 1 and 2 for DA,B; the X&s can also be found 

in 0(q2) time by setting X& = XAJ - {ek} U R& 
for all ek E E. We conclude that the w-EPP can be 
solved in 0( q”) time. 

Hassin and Tank’s unified approach for finding 

local solutions applies to a class of maximization 
problems that construct equivalence regions in various 

ways. Our Algorithm 2 for a DA,B is independent of 
the method of constructing the equivalence regions. 
Hence, our strategy can be applied to this entire class 
of problems. If we define the weight function s(T) 

as (Ce,U G)~ + (CeiET bi)2, neiET ai + fle,ET bi, 

Or ILET bil CGET ai and use Hassin and Tank’s 

approach, the time compexity is the same for solving 
the s-MST problem and the S-EPP 
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