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Variability of volume strain in bounded heterogeneous media
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Abstract:

The deformation of the solid matrix affects the fluid pore pressure and flow by altering the pore volume. Such interaction in turn
affects the storage of groundwater in the void space. Obviously, this subject is of interest in groundwater hydrology. This paper
describes an investigation of the effect of aquifer heterogeneity on the variability of the fluid pressure head and solid’s volume
strain, where the assumption of a constant vertical total stress leads to a relatively simple relationship between changes in solid’s
volume strain and fluid pressure head. To solve the problem analytically, focus is placed on the one-dimensional models. It is
found from our closed-form solutions that the variance and correlation length of the log hydraulic conductivity are important in
increasing the variability of pressure head and solid’s volume strain. It is hoped that our findings will provide a basic framework
for understanding and quantifying field-scale volume strain processes and be useful in stimulating further research in this area.
Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Fluctuations in pore groundwater pressure in response to
the changes in imposed stresses are often encountered in
many practical problems of subsurface flow. In general,
the porous medium is deformable. Such interaction will
cause the deformation of the solid matrix, which in turn
affects the storage of groundwater in the void space. In
addition, under certain conditions, the deformation may
reach an extent that it manifests itself as land subsidence
(e.g. Yeh et al., 1996). Thus, the assessment of the
variability of the poroelastic response of the medium is
essential for the planning and management of groundwater
resources in aquifers.
It is well known that the heterogeneity of the medium

plays an important role in influencing the behavior of
groundwater flow at field scale. Many practical problems
of subsurface flow require predictions over relative
large space scale, where a wide range of formation
heterogeneities are included in the flow domain. There-
fore, there arises a need to incorporate the influence of
natural heterogeneity into the poroelastic response of
the medium. Motivated by that, the purpose of this paper
is to assess the influence of heterogeneity, related to
the random spatial variability of hydraulic conductivity,
on the earthquake-induced spatial variations in pore pressure
and volume strain.
Toward this goal, the spectral representation techniques

(Bakr et al., 1978; Gelhar and Axness, 1983; Li and
McLaughlin, 1991) posed in the framework of stochastic
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analysis will be adopted. The results of this work may
serve as rough estimates of the uncertainty of prediction
of field-scale poroelastic response of the aquifer and
provide a basis for the planning and management of
groundwater resources in aquifers.
PROBLEM FORMULATION

The behavior of fluid flow in fully elastic porous materials
cannot be fully described except through coupling the
two-way interaction between fluids and deformation,
according to the articles reported by Verruijt (1969) and
others (e.g. Van Der Kamp and Gale, 1983; Green and
Wang, 1990)
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where a = (l+2m)�1, l and m are macroscopic constant
coefficients called Lame’s coefficients for a porous
medium, eb is the solid’s volume strain, K is the hydraulic
conductivity, gw is the unit weight of water, n is the
porosity, b is the coefficient of fluid compressibility, and
P is the pressure increment. The term involving the time
derivative of volume strain couples the solid-matrix
deformation and the fluid flow. Rigorous application of
full coupling is often difficult because they cannot be
solved analytically for a general flow configuration.
However, under the assumptions of zero horizontal

strain and a constant vertical total stress, which admit a
relatively simple relationship between changes in solid’s
volume strain and fluid pressure, namely
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eb ¼ aP (3)

Equations (1) and (2) can then reduce to a diffusion type
of equation in P as (e.g. Verruijt, 1969; Van Der Kamp and
Gale, 1983; Green and Wang, 1990)
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where Ss = gw (nb + a).
Groundwater levels in aquifers may fluctuate in

response to the passage of seismic waves from distant
earthquakes. Seismic waves cause spatial variations in
volume strain and hence spatial variations in pore
pressure. Equation (4) has been widely used to explain
the post-seismic groundwater level changes in terms
of the pressure diffusion induced by the coseismic strain
(e.g. Kumpei, 1992; Rojstaczer et al., 1995; Roeloffs,
1996, 1998; Ge and Stover, 2000; Ohno et al., 2006).
Comprehensive overviews of earthquake-related hydrologic
phenomena are given by Roeloffs (1996, 1998).
The relationship (3) with (4) is of particular interest

regarding a simplification of hydromechanical coupling,
which allows for analyzing the effect of aquifer hetero-
geneity on the volume strain in randomly heterogeneous
aquifers analytically, and this is the task undertaken here.
Invoking the perturbation approximation and spectral

representation techniques (Bakr et al., 1978; Gelhar and
Axness, 1983; Li and McLaughlin, 1991), we seek the
solution of pressure head perturbation expressed in terms
of lnK perturbation. As such, the variability of pressure
head and hence the variability of solid’s volume strain can
be related to the statistical properties of lnK.
MATHEMATICAL DEVELOPMENT

The starting point is Equation (5). The pressure head and
the log hydraulic conductivity in Equation (5) are
regarded as realizations of random fields. The Lame’s
coefficients do not vary significantly in space compared
with the spatial variation of hydraulic conductivity (e.g.
Frias et al., 2004; Wang and Hsu, 2009). The effects of
variations of Lame’s coefficients are therefore neglected
in this analysis.
Express P and K as the sum of an ensemble and a zero-

mean perturbation, respectively:

P X; tð Þ=gw ¼ Φ X; tð Þ þ f X; tð Þ (6)

lnK Xð Þ ¼ F þ f Xð Þ (7)

Upon insertion of Equations (6) and (7), the mean
equation which corresponding to Equation (5) is
Copyright © 2011 John Wiley & Sons, Ltd.
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and the first-order mean removed equation for the pressure
head perturbation is
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where D= eF /Ss.
The approach followed is to solve the perturbation

Equation (9) to characterize the variability of pressure
head. Consider that the flow is only in the horizontal
direction and thus Equation (9) can be simplified to the one-
dimensional case. The one-dimensional results can provide
a clear insight of the impact of natural heterogeneity on the
variability of pressure head.

First-order mean pressure head and pressure
head perturbations

To solve Equation (9), the mean Equation (8) must be
solved first in order to know the space and time derivatives
of the mean pressure head in Equation (9). The boundary
conditions needed in the solution of Equation (8) in the
case of bounded one-dimensional flow are

Φ 0; tð Þ ¼ Φ1 (10a)

Φ L; tð Þ ¼ Φ2 (10b)

where L is the bounded domain size. The initial condition
used by Ohno et al. (2006) for the mean diffusion model is

Φ X; 0ð Þ ¼ Φ0 cos
pX
L

� �
(10c)

The boundary of prescribed pressure head (Equations 10(a)
or 10(b)), known as the Dirichlet boundary condition or the
first-type boundary condition, occurs when the aquifer flow
domain is in contact with a surfacewater body (such as a lake,
river, or reservoir etc.). It is assumed that one of the
boundaries is a recharge boundary, and the other is a
discharge boundary. Suppose that at time t=0, the mean
pressure head in the aquifer fluctuates (as in response to the
passage of seismic waves) according to Equation 10(c).
Note that the boundary conditions are assumed to be

deterministic and the only source of uncertainty is the
variability of log conductivity. The solution is found by
the method of eigenfunction expansions (e.g. Farlow,
1993; Haberman, 1998) to be
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where J= (Φ1 - Φ2)/L, t = Dt/L2, and x = X/L.
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From Equation (11), we immediately have
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We find that for t >> 1/p2, corresponding to ranges
of eF, Ss, and L likely to be interest (e.g. Freeze and
Cherry, 1979), the transient terms in Equations (12) and
(13) become negligibly small. To simplify the analysis,
we assume that sufficient time has elapsed since the initial
condition. As such, Equation (13) leaves only the steady
component and the pressure head perturbation. Equation (9)
in the case of one-dimensional flow reduces to
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with boundary and initial conditions

f 0; tð Þ ¼ 0 (15a)

f L; tð Þ ¼ 0 (15b)

f X; 0ð Þ ¼ 0 (15c)

The solution to Equations (14) and (15) can be
determined using Fourier-Stieltjes representations for the
perturbed quantities (Bakr et al., 1978; Gelhar and
Axness, 1983; Li and McLaughlin, 1991). By using this
approach, the lnK perturbation field f is assumed to be a
second-order stationary random field and represented by
the following wave number integral:

f Xð Þ ¼
Z1

�1
eiRXdZf Rð Þ (16)

where dZf(R) is the complex Fourier amplitude of lnK
process and R is the wave number. However, due to the
effect of a finite bounded flow domain, the pressure head
perturbed quantities in Equation (14) is presented using
the nonstationary spectral representation (Li and
McLaughlin, 1991) as

f X; tð Þ ¼
Z1

�1
Ypf X; t;Rð ÞdZf Rð Þ (17)

where Ypf(X, t, R) is a transfer function to be given.
Based on Equations (16) and (17), the perturbation

Equation (14) can be expressed in spectral space as
Copyright © 2011 John Wiley & Sons, Ltd.
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with
Ypf 0; tð Þ ¼ 0 (19a)

Ypf L; tð Þ ¼ 0 (19b)

Ypf X; 0ð Þ ¼ 0 (19c)

Equations (18) and (19) admit the following solution
(e.g. Farlow, 1993; Haberman, 1998):
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In the case when t is large (p2t >> 1) (e.g. Haberman,
1998),
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Variances of pressure head and volume strain

By virtue of Equations (17) and (21), we obtain
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Taking the expected value of the product of Equation
(22) and its complex conjugate and making use of the
spectral representation theorem gives the variance of
pressure head as
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Note that from Equation (3), the variance of solid’s
strain can be related to that of pressure head by

s2eb ¼
gw

lþ 2m

� �2

s2f ¼ a2g2ws
2
f (24)

To proceed with the development of the variances of
pressure head Equation (23) and solid’s volume strain
Equation (24), one must select the form of the lnK
spectrum. The random lnK perturbation field f under
consideration is characterized by the following spectral
Hydrol. Process. 27, 319–323 (2013)
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density function (Bakr et al., 1978)

Sff Rð Þ ¼ 2�3R2

p 1þ �2R2ð Þ2
sf
2

(25)

where � is the correlation length of lnK and sf
2 is the

variance of lnK.
Substituting Equation (25) into Equation (23) leads to

the following result for the variance of pressure head
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where ‘= �/L. The variance of solid’s volume strain results
from Equations (24) and (26) as follows:
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Note that based on Equations (3) and (11), the mean
solid’s volume strain and its large-time solution take the
forms, respectively, as
eb
� X; tð Þ ¼ agw
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The linear relationship between the variation of the
solid’s volume strain and sf

2 in Equation (27) suggests
Figure 1. Dimensionless variance of solid’s volume strain versus
dimensionless time for various correlation scale of lnK, where Λ = agw

Copyright © 2011 John Wiley & Sons, Ltd.
that the variation of the solid’s volume strain increases
linearly with the heterogeneity of the medium. The result
of Equation (27) is presented graphically in Figure 1,
which shows the increase in the variance of solid’s
volume strain with time. It also indicates that the variance
of the solid’s volume strain increases with the correlation
length of lnK �. An increase in � produces more
persistence of volume strain fluctuation around the mean,
which, in turn, leads to larger deviations from the mean
solid’s volume strain. This behavior is due to the impact
of � on the variance of pressure head (Equations (24) and
(26)). A larger � results in an increase in the variation of
pressure head and, consequently, results in higher
variation of the volume strain. The pressure head profile
with a smaller correlation length � will be rougher, while
that with a larger � will be smoother. This implies that the
pressure head fluctuations are either consistently above or
below the mean pressure head for a larger � and thus
leads to larger deviations of the pressure head from the
mean pressure head level. This result of the increase in the
head variance with the correlation length of lnK is similar
to those reported by Bakr et al. (1978) and Mizell et al.
(1982) for the case of groundwater flow in a heteroge-
neous non-deforming medium. Figure 2 depicts the
behavior of the dimensionless solid’s volume strain as a
function of dimensionless position for various values of t.
Figure 2. Dimensionless variance of solid’s volume strain versus
dimensionless position for various values of t, where Λ = agw

Hydrol. Process. 27, 319–323 (2013)
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CONCLUSION

This paper addresses the problem of the variability of
poroelastic response (namely, the changes in fluid
pressure head and solid’s volume strain) to the passage
of seismic waves from distant earthquakes. The closed-
form expressions for the means and variances of pressure
head and solid’s volume strain, and the mean specific
discharge, which are expressed in terms of the statistical
properties of the log hydraulic conductivity field, are
reported in a bounded one-dimensional heterogeneous
medium. These expressions are developed directly from
the nonstationary representation for head perturbation
(Li and McLaughlin, 1991). It is found that the
heterogeneity of the medium and the correlation length
of the log hydraulic conductivity are important in
enhancing the variability of pressure head and solid’s
volume strain. It is hoped that our findings will be useful
in stimulating further research in this area.
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