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Well hydraulics is a discipline to understand the process of flow to the well in an aquifer which is
regarded as a source of groundwater. A variety of analytical and numerical models have been developed
over the last few decades to provide a framework for understanding and quantifying the flow behavior in
aquifer systems. In this review, we first briefly introduce the background of the theory of well hydraulics
and the concepts, methodologies, and applications of analytical, semi-analytical, numerical and approx-
imate methods in solving the well-hydraulic problems. We then address the subjects of current interests
such as the incorporation of effects of finite well radius, wellbore storage, well partial penetration, and
the presence of skin into various practical problems of groundwater flow. Furthermore, we also summa-
rize recent developments of flow modeling such as the flow in aquifers with horizontal wells or collector
wells, the capture zone delineation, and the non-Darcian flow in porous media and fractured formations.
Finally, we present a comprehensive review on the numerical calculations for five well functions fre-
quently appearing in well-hydraulic literature and suggest some topics in groundwater flow for future

research.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background

Groundwater is an important alternative resource to surface
water for agriculture, industry and domestic use. Studies in
groundwater hydrology are therefore devoted to evaluate the
occurrence, availability and quality of groundwater. Two inherent
characteristics of the aquifer, referred to as the specific storage
and hydraulic conductivity, generally provide the fundamental
bases for the quantitative studies on groundwater hydrology/
hydraulics. These two parameters are commonly determined from
the field data of aquifer tests. Many analytical solutions have been
developed rapidly and steadily since Theis published the solution
of transient flow equation, a milestone in well hydraulics, in
1935 [1]. Some analytical solutions were used to develop the type
curves so that the hydraulic parameters can be determined by the
graphical fitting of the observed data to the type curves [2]. The
analytical solutions are however restricted to the ideal cases,
which should be under the conditions of simple aquifer boundary
and homogeneous formation properties. Yet, the real-world
well-hydraulic problems are often with complicated boundary
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and/or heterogeneous aquifer properties. Under these circum-
stances, numerical approaches such as finite-difference methods,
finite element methods, or boundary element methods are then
employed to develop the numerical solutions. Numerical ap-
proaches have been extensively used in studying groundwater
problems since the mid-1960s [3]. Often, newly developed numer-
ical models are verified with analytical models to check their
correctness or accuracy. Analytical models are often developed
for better modeling the aquifer systems in different subjects by
accounting for the effects of wellbore storage, skin zone, and well
partial penetration on the groundwater flow. In last two decades,
many analytical solutions arisen from various types of aquifer tests
with considering those effects have been developed. Some ground-
water issues, such as pollution and water resources management,
also attract considerable concern of scientists and engineers. Many
analytical models for describing groundwater flow induced by hor-
izontal and collecting wells and for delineating the capture zone in
a contaminated site are then developed in accordance with these
issues. Many of the analytical solutions are in terms of complicated
forms which may contain integrals of some special functions, e.g.,
Bessel functions or trigonometric functions, and these integrals are
difficult to compute accurately because of the oscillatory nature
and slow convergence in computing the integrand. Therefore, var-
ious techniques are proposed to numerically calculate the solu-
tions with high accuracy.

In this review, we address the subjects of current interests in re-
gard to modeling groundwater flow behavior in well hydraulics.
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For each of these subjects, we provide a brief and historical over-
view, summarize the recent developments, and suggest some top-
ics for future research as well. In this chapter, we first present the
groundwater flow equation and its associated boundary conditions
in well hydraulics, then introduce the definitions of different types
of aquifers, and finally review various aquifer tests in some detail.

1.2. Basic principle, flow equations and initial and boundary conditions

1.2.1. Darcian flow

Darcian flow, which obeys Darcy’s law and describes laminar
flow behavior in a porous medium, can be expressed as q = -Ki in
which q is the discharge velocity or Darcy velocity, K is the hydrau-
lic conductivity, h is the hydraulic head, and i = dh/dl is the hydrau-
lic gradient. Instead of describing the flow state within individual
pores, Darcy’s law represents the statistical macroscopic equiva-
lent of the Navier-Stokes equations for viscous flow in porous
media.

1.2.2. Three dimensional groundwater flow equation

Based on Darcy’s law, a three-dimensional (3-D) equation in
Cartesian coordinates for groundwater flow in a heterogeneous
and anisotropic aquifer can be written as
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where K, K, and K, are the main components of the hydraulic con-
ductivity tensor, Ss is the specific storage, R is a recharge term which
is positive and defined as the volume of inflow to the flow system
per unit volume of aquifer per unit of time, and t is the time from
the start of test.

1.2.3. Radial flow equation

Radial flow toward the well or from the well occurs when a ver-
tical extraction or injection is performed at the well in the aquifer.
The differential equation for flow in aquifers in cylindrical coordi-
nates can be written as
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where r is the radial distance from the center of the pumping well.

1.2.4. Initial and boundary conditions

The initial condition should be specified when solving transient
flow problems in which the hydraulic head changes with time. The
mathematical expression for initial condition is denoted as

h=f(xy,20) 3)

It is important to select appropriate boundary conditions in devel-
oping a mathematical model for an aquifer flow system. Boundary
conditions for groundwater flow problems are of three types, i.e.,
the first-type (Dirichlet), the second-type (Neumann), and the
third-type (Robin) boundary conditions.

A constant hydraulic head is the first-type boundary which can
be mathematically expressed as

h(x,y,z,t)|r = fix,y,z,t) (4)

where f is a known function. Physically, a surface water body, e.g.,
river, lake, or reservoir could be treated as a constant head bound-
ary if they hydraulically connect with the aquifer.

The mathematical expression of the water flux at the boundary
I'is

qn(xvyvzvt)‘l" :fz(xvyvzvt) (5)

where g, is a flux component normal to the boundary surface. An
example of the second-type boundary can be selected at the top
of an aquifer where there is recharge or discharge. The no-flow
boundary (g, =0) is a special case of the second-type boundary
condition.

The third-type boundary condition is a linear combination of
Dirichlet and Neumann boundary conditions, which relates
hydraulic head to the flux and can be mathematically expressed as

ah(X:yvz= t)|r+an(X’Y»Z, t)'l" :g(xvyvzvt)»(xvyvz) C F (6)

In well hydraulics, an example of this kind of boundary is the case
when taking into account of the skin effect in the wellbore as men-
tioned in Section 3.2.

It is worthy to mention that the mixed boundary value problem
arise when a boundary condition of different types specified on dif-
ferent subsets of the boundary I'. If I' is divided into two subsets
I'; and I, this mixed kind of boundary condition may be written
as

h(xvyvzvt)ll"] :gl(xvyvzvt) (7)
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The mixed boundary value problem is commonly encountered in
the physical problems of fluid dynamics, electricity, heat flow, and
others. In well hydraulics, it may appear in the case of constant
head pumping in a well under partial penetration condition. Some
issues relative to the mixed boundary value problem can refer to
Section 3.3.

1.2.5. Aquifer of finite or infinite extent in horizontal direction

Analytical solutions can be used to predict the temporal or spa-
tial drawdown distribution or to determine aquifer parameters. For
instance, the most well-known transient and steady-state draw-
down solutions for pumping with a constant rate conducted in
confined aquifers are Theis and Thiem solutions, respectively. As
indicated in Wang and Yeh [4], it is inappropriate to apply Theis
equation to the case where an aquifer has a horizontally finite
boundary or the pumping time tends to infinity. Most of existing
analytical solutions in the well-hydraulic literature are developed
by assuming that the aquifer is of infinite extent in horizontal
direction. Studies on the groundwater problems in an aquifer with
a horizontally finite boundary are very limited [5].

It is very common to consider that the aquifer is of finite extent
in vertical direction in modeling groundwater problems. Some
studies however treated the aquifer thickness as infinite because
the aquifer thickness is relatively large when compared with the
screen depth of the well [6].

The analytical solutions may be developed for flow in finite
aquifers with a regular shape such as rectangular and wedge-
shaped configuration or irregular shape such as step change
configuration. Several studies provided analytical solutions for
groundwater flow problems in aquifers whose plan views are rect-
angular [7-9], wedge-shaped [10-15] and triangular [16], and in
aquifers whose cross sectional views are step-like [17,18].

1.3. Types of aquifer

An aquifer is a geological formation that is sufficiently perme-
able to store and transmit groundwater. Related terminologies in-
clude aquitard (also called as semipervious layer), defined as a
geologic unit that has relatively low permeability compared with
aquifers, and aquiclude, which is a formation not capable of trans-
mitting a significant amount of groundwater. A groundwater flow
system can be composed of different types of aquifers.
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A confined aquifer, also known as an artesian or a pressure aqui-
fer, is bounded both at the top and bottom by impervious or
semipervious strata and thus hydraulically isolated from other
geological formations. A piezometer or observation well installed
in the confined aquifer has a hydrostatic pressure level which
forms an imaginary surface called a piezometric surface. Generally,
water in the piezometer or well rises above the top of the aquifer.

An unconfined aquifer is also called as a water table or phreatic
aquifer. The upper boundary of the unconfined aquifer is a free sur-
face called the water table.

An aquifer that loses or gains significant water through the
overlain, underlain, or both semipermeable strata is called leaky
aquifers. It is common that an aquifer hydraulically connects with
other formations in nature. A system of multilayered aquifers (or
multiple aquifers) is composed by a series of aquifers separated
from each other by semipervious layers. The mechanics of fluid
flow through a multiple aquifer system becomes complicated be-
cause of the hydraulic connection between individual aquifers.
For groundwater flow associated with leaky and multilayered aqui-
fers, the reader is referred to Section 3.8.

1.4. Aquifer tests

Two different types of pumping test are commonly used in the
field for estimating aquifer and well characteristics; they are aqui-
fer test and well test [19]. The aquifer test is used to determine the
aquifer hydraulic parameters. On the other hand, the well test is
utilized to provide the information about the specific capacity or
the discharge-drawdown ratio of the well [20]. The aquifer test
generally needs at least one observation well or piezometer to re-
cord the water level response to the pumping, while the well test
may require only the analysis of pumped well data. Kruseman
and de Ridder [20] presented comprehensive discussion on the
general set-up regarding the selection of test site, the design and
construction of discharging well, and the performance including
the water level and discharge rate measurements of the aquifer
test. In addition, Driscoll’s book [21] provides a good reference
on some practical well-hydraulic issues as well as some aspects
involving well design, drilling, construction, maintenance and
rehabilitation. In the petroleum literature, Gringarten [22] and oth-
ers [23-25] gave the review of the evolution of aquifer test analysis
over the past half century. The aquifer test may be further divided
into four groups: constant rate test, constant head test, slug test,
and recovery test.

1.4.1. Constant rate test

The constant rate test (CRT) (or constant discharge test) is the
most common form of aquifer test in which a test well is pumped
at a constant rate over a certain period of time. At the same time,
the drawdown is measured in one or more nearby observation
wells [19]. The flow rate to the well is general assumed constant
and equal to the average value of the pumping rates which indeed
vary with time and are difficult to maintain constant in the field
tests. In the early stage of development for flow induced by pump-
ing in confined aquifers, there are two classic articles devoted to
that in well hydraulic literature. Thiem [26] was the first to derive
a steady-state expression for a fully penetrating well with a con-
stant rate pumping in a confined aquifer. Theis [1] analyzed the
groundwater flow in a homogeneous, isotropic and infinitely radial
extent confined aquifer with a fully penetrating well pumped at a
constant rate. The diameter of the pumping well is infinitesimal
and the well storage is negligible. In recent years, Yeh et al. [27]
presented a mathematical model for an aquifer having a fully pene-
trating well with a finite-thickness skin and constant pumping
rate. Later, Yang et al. [28] developed an analytical solution for
transient flow in a confined aquifer with a partially penetrating

well pumped at a constant rate. For unconfined aquifers, Jacob
[29] adopted the Dupuit assumption of no vertical flow to derive
the steady-state drawdown in CRT. Boulton [30] introduced the
drawdown equation of the water table near a pumped well based
on the delayed response concept of unconfined aquifers. Neuman
[31] obtained a transient drawdown solution by shifting the
boundary condition from the free surface to the horizontal plane
at a fixed position. Moench [32] developed a semianalytical solu-
tion by combining the Boulton and Neuman models for flow to a
partially penetrating well in unconfined aquifers. Tartakovsky
and Neuman [33] presented an analytical expression for draw-
down in an unconfined aquifer caused by the pumping at a con-
stant rate from a partially penetrating well. Pasandi et al. [34]
provided an analytical model for CRT conducted at a partially pene-
trating well with a finite thickness skin in an unconfined aquifer.
For leaky and multilayered aquifers, for instance, Hantush and Ja-
cob [35] developed a mathematical model for aquifer dynamics un-
der a transient CRT by assuming that the confined aquifer is
overlain everywhere by a semipervious layer which has constant
vertical hydraulic conductivity and a constant thickness. Moench
[36] took into account the effect of large-diameter well and devel-
oped mathematical models for flow in an aquifer system, where
semipervious layers are located above and below the main pumped
aquifer. In addition, there are some other studies associated with
the CRT in confined aquifers [17,37-40], in unconfined aquifers
[41,42], and in leaky and multilayered aquifers [39,43-46].

1.4.2. Constant head test

For a constant head test (CHT), a constant water level in the test
well is maintained, while the discharge from the wellbore is mon-
itored throughout the time. The CHT is commonly adopted to per-
form in low permeability aquifers [47]. Advantage of CHT over CRT
is that the effect of wellbore storage at the test well is minimized
[47]. Note that the articles on CHT mentioned below are associated
with the transient flow because the drawdown solutions tend to be
identical in both CHT and CRT at sufficiently large time [48].

The literature on the solutions of CHT performed in confined
aquifers is given in the following. Jacob and Lohman [48] consid-
ered a radial flow problem in a confined aquifer during the CHT
and gave the solution of transient flux across the wellbore. Han-
tush [2] presented a transient drawdown solution in response to
a fully penetrating well extracting groundwater from confined
aquifers. Cassiani et al. [6] proposed a semianalytical expression
for a flowing partially penetrating well with infinitesimal skin sit-
uated in an anisotropic confined aquifer. Other researches with re-
gard to CHT conducted in confined aquifers can also be found in
literatures [5,49,50]. For unconfined aquifers, for example, Chen
and Chang [51] considered the skin effect and developed a well-
hydraulic theory for CHT in unconfined aquifers. Chang et al.
[52,53] gave hydraulic head solutions for CHT performed at a par-
tially penetrating well in unconfined aquifers. The review of the re-
cent development in the literature shows that there are a limited
number of researches on the CHT in leaky and multilayered aqui-
fers. Hantush [54] gave the transient solutions of drawdown and
flux from the wellbore for leaky aquifers. Wen et al. [55] consid-
ered the effect of finite-thickness skin and presented a mathemat-
ical model for radial groundwater flow to a pumping well in a leaky
aquifer during CHT.

1.4.3. Slug test

A slug test is a particular type of aquifer test in which a small
amount of water in the control well is instantaneously added/
removed to/from the well and the response in drawdown is mon-
itored through time in the control well or the surrounding observa-
tion wells. The slug test has become popular in groundwater
investigations because of its logistical and economic advantages
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over other aquifer tests. The advantages include that the cost of
test is low, the procedure is relatively simple and rapid, little or
no water needs to be handled during the test, and the test provides
information on local hydraulic properties [56]. The disadvantages
include that the aquifer properties obtained from this test repre-
sent the formation only near the test wellbore and the result of
the test may be influenced by gravel or sand pack material in the
borehole adjacent to the well screen.

The slug test is usually performed in confined or unconfined
aquifers for most engineering practices. A number of mathematical
models for analyzing slug test data have been published. For con-
fined aquifers, for example, Cooper et al. [57] assumed the well
diameter is finite and provided an analytical solution for the anal-
ysis of slug tests conducted in fully penetrating wells. Faust and
Mercer [58] simulated four slug test runs with a well skin hydrau-
lic conductivity of 0.01, 0.1, 1.0, and 10 times the hydraulic con-
ductivity of the formation. According to their calculation, the
skin with a much lower permeability than that of the surrounding
formation can lead to an incorrect estimate of the true hydraulic
conductivity. Yeh et al. [59] presented a semi-analytical solution
for a slug test performed at a partially penetrating well in a con-
fined aquifer, accounting for the effect of finite-thickness skin.
Other researches on the slug test conducted in confined aquifers
can also be found in literatures [60-62]. For unconfined aquifers,
Bouwer and Rice [63] proposed a procedure for calculating the
hydraulic conductivity of aquifers with partially or completely pe-
netrating wells. Dagan [64] presented simple numerical schemes
for determining the hydraulic conductivity of unconfined forma-
tions from the analysis of recovery, packer, and slug test data. But-
ler et al. [65] presented a procedure for analyzing data from slug
tests performed at partially penetrating wells in highly permeable
formations which could be confined or unconfined. For multilay-
ered aquifers, Butler et al. [66] employed a numerical model to
evaluate the capability of multilevel slug tests in providing infor-
mation about vertical variation in hydraulic conductivity in multi-
layered aquifers.

1.4.4. Recovery test

At the end of a pumping/injection test, the water levels in the
test and observation wells begin to increase/decrease. The process
involved in the change in water levels are referred to as recovery,
and the observed drawdown remaining during the recovery peri-
od is named as the residual drawdown. The equations describing
the residual drawdown in a piezometer [67] and an observation
well [67] during the recovery period after constantly pumping
at a partially penetration well in a homogeneous confined aquifer
have also been developed. The analysis of residual drawdown
data can estimate the transmissivity and provide an independent
check on the hydrogeological parameters found from the previous
drawdown data analysis. There are many studies associated with
the data analyses of water level recovery after a pumping at a
constant rate in confined aquifers with neglecting well radius
[68,69] or considering well radius [70], leaky aquifers [71],
unconfined aquifers [72], as well as for head recovery after a
packer test in unsaturated fractured media [73]. Shapiro et al.
[74] presented a model based on the solutions of Papadopulos
and Cooper [75] and Cooper et al. [57] to determine the early-
time recovering water level following the shut down of a constant
pumping in wells with turbulent head losses. Recently, Samani
et al. [76] used derivative analysis of pumping and recovery test
data to estimate the parameters of Shiraz aquifer in Fars province,
Iran. Yeh and Wang [77] developed a mathematical model to de-
scribe the residual drawdown with consideration of the wellbore
storage effect and the drawdown distribution occurring at the end
of a previous CHT.

2. Solution methodology

A partial differential equation for describing groundwater flow
can be solved either analytically or numerically. In this section,
we summarize the methodologies and application of analytical,
semi-analytical, numerical and approximate approaches which
are often made in the groundwater area.

2.1. Analytical methods

As mentioned in Section 1, the phenomena of groundwater flow
can be mathematically described by a partial differential equation
(PDE) or a system of several PDEs, with associated boundary and
initial conditions. Analytical methods or numerical techniques
can be used to solve the flow equations for problems arisen in well
hydraulics. In this section, we introduce some mathematical ap-
proaches commonly used in solving the groundwater problems
analytically, including Laplace transform, Hankel transform, Fou-
rier transform, Mellin transform, Green’s function, dual integral/
series equation method, and Boltzmann transform. Basically, the
first four methods can be considered as different types of integral
transform, which offers an easy and effective way in solving a vari-
ety of problems arising in engineering and physical science [78].
The concept of integral transform is somewhat analogous to that
of logarithmic transform. Their main aim is to transform the given
problem into one with reduced number of dimensions. By taking
an integral transform, a PDE can be reduced to an ordinary differ-
ential equation (ODE) in the transformed domain. The solution can
then be obtained by solving the ODE along with the associated ini-
tial or boundary conditions.

2.1.1. Laplace transform

Laplace transform F(s) of a function f(t) can reduce initial value
problems with certain types of ODEs to the algebraic solutions. It
can also be used to transform initial boundary value problems with
certain classes of PDEs to ODEs [79]. Generally, Laplace transform
is proved to be most useful in reducing the “time-like” variables.
Note that a necessary condition for the existence of the Laplace
transform is that the value e*'f vanishes when t — oo, otherwise
the integral defined as the Laplace transform does not converge.
In well hydraulics, Laplace transform is a powerful method to deal
with transient groundwater problems when a first-order time
derivative of function, i.e., the drawdown or hydraulic head, is in-
volved. After taking Laplace transform with respect to the time var-
iable, the original governing equation describing the transient
groundwater flow becomes a boundary value problem. Notice that
the transform procedure needs the information of the function va-
lue at the initial stage, i.e., the initial condition. Plenty of researches
were conducted using Laplace transform for problems in the well
hydraulic literature [55,60,80-83].

2.1.2. Fourier transform

The existence of the exponential Fourier transform F(w) of a
function f{x) presumes that f{x) vanishes when |x| is infinity. Nor-
mally, such condition at either end of an infinite interval occurs
when x is a “space-like” variable [79]. Hence, the exponential Fou-
rier transform turns out to be helpful in reducing the “space-like”
variables and it can be used to solve the boundary value problems
for PDEs which describe groundwater flow problems with infinite
boundaries. On the other hand, the Fourier sine (or cosine) trans-
forms are well suited for solving flow problem of a semi-infinite
domain represented by a second-order PDE when the function va-
lue f (or its derivative f,) is known at the origin and the function
and its derivatives are required to vanish as x — co [79]. Moreover,
the finite Fourier sine and cosine transforms are particularly useful
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in solving the problem of a finite domain. The Fourier transforms
and finite Fourier transforms are appropriate in solving the
problems involved the Dirichlet or Neumann boundary conditions.
Generally, the governing equation describing the transient ground-
water flow after taking the Fourier transforms reduces to an initial
value problem. Applications of these transforms can be found, for
example, in Tsou et al. [84] who used exponential Fourier, Fourier
sine, and finite Fourier cosine transforms to solve a 3-D groundwa-
ter flow problem for a confined aquifer with a slanted well near a
stream, in Huang et al. [85] who applied exponential Fourier, Fou-
rier sine, and Laplace transforms to obtain an analytical solution
for describing the head distribution in an unconfined aquifer with
a single pumping horizontal well parallel to a fully penetrating
stream, and in other literatures [10,86] employing the finite Fou-
rier sine or cosine or both finite Fourier sine and cosine transforms
to solve a variety of groundwater flow problems.

2.1.3. Hankel transform

The Hankel transform F(p) of a function f(r) has been found to
be the most appropriate for problems formulated with equations
expressed in polar and cylindrical coordinates. In applying the
Hankel transform to such equations involving the radial variable
ranging from zero to infinity, it is required that the value of f and
fr are bounded at the origin and /rf and /rf, vanish at r — oo
[87]. Yeh and Chang [10] presented analytical solutions, developed
via finite Fourier sine transform and Hankel transform, for describ-
ing hydraulic head due to pumping in a wedge-shaped aquifer with
an infinite radius. With the aid of Hankel transform and Laplace
transform, Malama et al. [46] presented a semi-analytical solution
for the transient streaming potential response of an unconfined
aquifer to the continuous pumping at a constant rate.

2.1.4. Mellin transform

The Mellin transform is closely related to the Fourier transform.
Morse and Feshbach [88] demonstrated an example on the relation
between the Mellin transform and Fourier transform, and men-
tioned that the theorems given for the Fourier transform theory
can be rewritten and applied to Mellin transforms. Sneddon [89]
showed that the Mellin transform can be expressed in a natural
manner in the solution of boundary value problems regarding an
infinite wedge. Chan et al. [90] used Mellin transform to find the
solution for steady-state drawdown due to a single well pumping
at a constant rate from a wedge-shaped confined aquifer. Craster
[91] solved several free boundary conditions encountered in
groundwater flow problem by the use of Mellin transform.

2.1.5. Green’s function

Instead of infinite series or eigenfunction expansions, solutions
of ODEs and PDEs can be expressed in terms of an integral with a
fundamental function. The fundamental function, usually named
as Green'’s function, is a part of a closed-form solution for linear
models and represents the solution as the result of the influences
of a system to a unit point load or source. The total responses are
the linear superposition throughout the system; hence, the total
solution can be obtained by adding the responses of influences in
all parts of the domain [92]. Indelman and Zlotnik [93] used the
mean Green function to develop a mathematical model of average
nonuniform flow in heterogeneous stratified media. Using pertur-
bation methods coupled with Green'’s function techniques, Axness
and Carrera [94] presented a second-order analytical solution for
the steady hydraulic head flow in a two-dimensional (2-D) con-
fined heterogeneous aquifer. Asadi-Aghbolaghi and Seyyedian
[16] developed Green’s function solution for groundwater flow to
a vertical well in a triangle-shaped aquifer using image well theory
and double Fourier series.

2.1.6. Dual integral/series equation

A boundary value problem under a mixed boundary condition
can be converted to dual integral/series equations using integral
or finite transforms. The resulting dual equations are in the form
of integral or series depending on whether the problem is infinite
or finite. Once the dual integral/series equations are solved, the
solutions of the mixed boundary value problems are obtained.
More detailed development of the theory of dual integral/series
equations is provided in Sneddon [95]. Cassiani and Kabala [96]
used the method of dual integral equations to develop semi-ana-
lytical solutions for describing the well response to the pumping
test and slug test performed at a partially penetrating well in a
confined aquifer of semi-infinite vertical extent. Their solution is
applicable for aquifers of a semi-infinite vertical extent or the sit-
uations where the bottom boundary of the aquifer is far enough
from the tested area. Since the thickness of aquifer is generally fi-
nite in real world, Chang and Yeh [97] used the method of dual ser-
ies equations to obtain a drawdown solution to the CHT performed
at a partially penetrating well in an aquifer with a finite thickness.
Chang and Yeh [98] further extended the work of Chang and Yeh
[97] to more general problems that the screen of a partially pene-
trating well is allowed to install at varied depth of the aquifer. The
way they solved the problem was to employ the method of triple
series equations, which bears the similar concept to the method
of dual series equations.

2.1.7. Boltzmann transform

The Boltzmann transform is a special case of a general method
named similarity method. One can transfer a nonlinear diffusion
equation into an ordinary differential equation by introducing a
similarity variable, i.e., x///t, which is a combination of indepen-
dent variables. In the well hydraulics, Boltzmann transform is com-
monly used in solving two kinds of problems, i.e., Boussinesq
equation for unconfined aquifers and non-Darcian flow problem.
In solving the Boussinesq equation of unconfined aquifer, Boltz-
mann transform was employed, for example, in Wang and Zhan
[99] who presented a solution for transient confined-unconfined
flow due to a well of infinitesimal radius at a constant rate pump-
ing. Among the published works in using Boltzmann transform to
solve non-Darcian flow problems we may mention as follows.
Sen [100,101] solved non-Darcian radial flow with and without
considering the effect of wellbore storage. Wen et al. [102] derived
the solutions for non-Darcian flows in a single vertical fracture to a
well on the basis of Izbash power-law and Wen et al. [103] inves-
tigated non-Darcian flow toward a finite-diameter pumping well
with and without considering the wellbore storage and derived
the solutions of non-Darcian well functions at the wellbore.

2.2. Semi-analytical methods (Laplace inversion)

The transient groundwater flow equation, Eq. (1), is a diffusion
type of PDEs with a first order differential in time. In most ground-
water problems, Laplace transform is suitable to apply to Eq. (1) for
removing the time variable t and transform PDEs into ODEs in La-
place domain. The Laplace-domain solutions may be obtained after
solving the resulting ODEs with associated Laplace-domain bound-
ary conditions. To acquire the inverse Laplace transform, one may
use tables [104,105] together with rules or methods such as the
shift theorem, partial fractions, and convolution theorem. The
time-domain solutions (i.e., exact solutions or analytical solutions)
can also be obtained by complex variable theory referred to as
complex inversion integral or Bromwich’s integral [106], occasion-
ally along with the residue theorem and/or Jordan’s lemma. How-
ever, the inversion of Laplace transform is generally rather
complicated and may not be tractable in some groundwater flow
problems. Moreover, the time-domain solutions are usually in
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terms of improper integrals with limits of integration from zero to
infinity and theirs integrands comprise singularity at the origin
[27]. The integrands of those time-domain solutions are in terms
of oscillatory functions comprised of terms of the product of the
Bessel functions of the first and second kinds of zero and first or-
ders. The numerical calculations for those solutions are therefore
time-consuming and very difficult to perform accurately. There-
fore, numerous methods have been devoted to the numerical
inversion of the Laplace transform. For comprehensive bibliogra-
phies, the reader may refer to [107,108]. In the following we pres-
ent a brief introduction to three inversion methods, namely
Stehfest, Crump, and modified Crump methods, which are the most
widely used approaches for numerical Laplace inversion in well
hydraulic problems. Detailed algorithms of each can be found in
Cheng [109] and de Hoog et al. [110].

2.2.1. Stehfest method

Since the complex analysis in Laplace inversion is difficult to
implement, Stehfest [111] proposed a series to approximate the La-
place transform of a real-valued function f{(t) using the following
formula

f(e)~ 102 icﬁ(” 1“2) 9)
=1

t ; t

where
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The numbers of terms N in the series must be even. According to
Stehfest [111], the accuracy can be improved by increasing N terms.
However, round off error limits the value of N. The value of N is sug-
gested to be in the range 6 < N < 20 for most of engineering pur-
pose [109].

2.2.2. Crump method
Based on the trapezoidal rule, Crump [112] approximated the
Laplace inversion by the following equation

o~ (G Erelrlo ) (5)
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A parameter ¢ is introduced as

InE
¢=(P*27Tp (12)

where E is the error tolerance, ¢ is the real part of the leading pole
of the function F(p), and T, is a periodic function to approximate f(t).
The default value of ¢ equals zero for functions without poles.
Crump [112] used the epsilon-algorithm of Wynn [113] (also called
the Shanks method) to accelerate the convergence of the sequence
in Eq. (9). The Shanks method developed by Shanks [114] is a non-
linear sequence-to-sequence transformation. This transform is
effective in accelerating the convergence of slowly convergent se-
quences and inducing convergence in divergent sequences.

2.2.3. Modified Crump method

A significant improvement over the Crump method is developed
by de Hoog et al. [110]. They applied the Pade approximations to
improve the acceleration procedure for approximating the trans-
form of the sequence in Eq. (9). The Pade approximation can be ex-
pressed by the quotient of two polynomials as [115]
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where the parameters ag,ay, .. .,a, and by, b,, . .., by, are available for
the approximation of f{t), by Ry(t). This method is designed to re-
duce truncation error that always occurs due to the fact that the
Fourier series is not an infinite series. A useful Fortran routine INLAP
of IMSL [116] developed according to the work of de Hoog et al.
[110] is available for Laplace inversion.

It has been realized by researchers that it is impossible to devise
a universal algorithm that performs accurately for all types of func-
tions. Neither Stehfest method nor Crump method can perfectly
implement in problems of well hydraulics. Each of them has their
merit or defect in some particular problems. The execution time is
less in Stehfest method, while the result from Crump might be
more accurate if more terms are given. It can be easily found from
the literatures that used Stehfest method [11-13,34,36,53,117],
Crump method [118], and modified Crump method [59,115,119]
to numerically inverse the Laplace-domain solution into time-
domain.

2.3. Numerical methods

In many practical problems of groundwater flow, analytical
solutions are not possible due to the facts that the shapes of the
boundaries might be irregular, the coefficients appearing in the
governing equations and in the boundaries conditions might be
space-variant, the dependent variables in the initial conditions
might be non-uniformly distributed, and the source/sink term
might be in nonanalytic forms. To deal with realistic situations,
numerical techniques provide convenient, flexible, and powerful
tools for solving groundwater flow problems in complex field situ-
ations as discussed above. Four widely used numerical methods in
well hydraulics are the finite difference, finite element, boundary
element and analytic element methods addressed below.

2.3.1. Finite difference method

The finite difference method is probably the first numerical ap-
proach used to solve PDEs. A PDE describing the head or drawdown
distribution can be approximated by a single difference equation
over a time interval or a system of algebraic difference equations
over one or two time intervals at predetermined, finite number
of discrete grid nodes in the problem domain. Forward, backward,
and central difference schemes are commonly used for the finite
difference approximation. The monographs of applications of finite
difference methods to the problems in well hydraulics have been
published and the interested reader may be referred to the book
by Wang and Anderson [120] or Remson et al. [121] for the techni-
cal details.

2.3.2. Finite element method

Another powerful numerical technique, known as the finite ele-
ment method, has been widely applied to numerous groundwater
flow problems as well. While the finite difference method is usu-
ally implemented with rectangular cells, the finite element method
is regarded as a flexible approach which can handle almost any
shape of flow boundary and any combination of boundary condi-
tions, inhomogeneous and anisotropic media, moving boundaries,
free surfaces and interfaces, and multiphase flows [122]. For a con-
cise yet comprehensive discussion of the application of finite ele-
ment method in groundwater hydrology, the reader may be
referred to Huyakorn and Pinder [123] or Lee [124]. The book by
Yeh [125] is an advanced treatise on computational subsurface
hydrology.
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2.3.3. Boundary element method

The boundary element method or the boundary integral equa-
tion method consists of formulating boundary value problems in
terms of an integral equation. The solution of the integral equation
can be obtained by approximating the boundary as a series of
straight lines or elementary curves with the simplified assump-
tions to the behavior of the solution along the boundary segments
[126]. In other words, the solution exactly satisfies the governing
differential equation, but approximately meets the boundary con-
ditions. Application of the boundary integral equation method in
groundwater flow is discussed in detail by Liggett and Liu [127].

2.3.4. Analytic element method

The analytic element method is usually applied to the aquifers
of an infinite extent and uses superposition to generate the analyt-
ical solution of a certain problem, expressed as a sum of basic solu-
tions, each with a number of possibly unknown parameters. These
parameters are then determined from the boundary conditions.
One of the primary distinctions between analytic and boundary
element methods is that the boundary elements are always given
in the form of integrals, which are often calculated numerically
in boundary element method and analytically in analytic element
method. The book associated with the analytic element method
by Strack [126] provided a basic theoretical framework for the
understanding of the analytic element method and the detailed
mathematical descriptions of the analytic elements and their
numerical implementation.

2.4. Approximate methods

The analytical solutions obtained from groundwater flow prob-
lems are often in the form of infinite series for aquifers of a finite
domain [4] or integrals for aquifers of an infinite domain [128].
Those solutions in terms of infinite series may converge slowly
and are not suitable for numerical computation for very small val-
ues of time [129]. On the other hand, the solutions are in the form
of an integral mostly with the integration limits from zero to infin-
ity and with the integration variable in the denominator of the
integrand, posing the problem of singularity at the origin of the
integration [50]. Due to the presence of singular point, the numer-
ical calculation of those solutions is generally very time-consuming
and rather difficult to achieve accurate results. Therefore, for solv-
ing the problems in well hydraulics there is a need to develop
approximate solutions which have simpler forms than the analyt-
ical solutions and are much easier in describing the transient
behavior of groundwater flow with desired accuracy. Without the
aid of the numerical techniques such as finite difference methods
and finite element methods, the approaches in the development
of approximate solutions may be divided to three different catego-
ries. The first is to solve the flow equation slightly different from
the original one for finding the approximate solution. The second
is to derive the approximate solution based on the Laplace domain
solution along with the relationship of large p (Laplace variable)
versus small t (hereinafter referred to as LPST) or small p versus
large t (hereinafter referred to as SPLT). The last is to apply various
types of approximate techniques into the time domain solution.

2.4.1. Approximation in governing equation

In the first category, the perturbation method is commonly used
to find an approximate solution to nonlinear equations with vari-
able coefficients or an irregular domain which cannot be solved
exactly. By adding a “small” parameter to the mathematical
description of the problem, perturbation method decomposes a
tough problem into an infinite number of relatively easy ones.
Hence, the perturbation method is most useful when the few
first-order perturbation terms reveal the important features of

the solution and the remaining ones give small corrections of the
approximation. The researchers who used the perturbation meth-
od to solve the problems in well hydraulics are, for example, Batu
and van Genuchten [130] and Moutsopoulos and Tsihrintzis [131].
The former adopted a singular perturbation method to solve the
Boussinesq equation for the problem of a constant injection into
a radial aquifer while the latter derived approximate analytical
solutions for transient state, nonlinear flows through porous media
based on the perturbation method. The other approach used to de-
velop an approximate solution of the diffusion equation was pre-
sented by Fang et al. [132] for a problem in electrochemical.
They extended the solution of the diffusion equation of steady-
state process to the non-steady-state solution. Perrochet [133]
used a similar concept to develop an approximation solution,
which is exactly the same as that given in Fang et al. [132], for tran-
sient wellbore flux to a well subject to a constant drawdown. The
approximate solution obtained from this approach is generally
applicable for all values of the time.

2.4.2. Approximation in Laplace domain solution

The Laplace domain solutions of groundwater flow equation for
describing flow in unbounded aquifers may be in a form with a
quotient of the modified Bessel functions of the second kind of or-
der zero or one [28]. For example, the Laplace domain solution for a
CHT in aquifers of an infinite extent can be expressed, in our nota-
tion, as h(r,p) = h,Ko(nr)/[pKo(nrw)] [49] in which r,, is the well ra-
dius, p is the Laplace variable, h,, is the hydraulic head at the
wellbore, 7 = \/p/D, D is the hydraulic diffusivity, and Ko(-) is the
modified Bessel function of the second kind of order zero. Gener-
ally speaking, the approximate time domain solutions can be ob-
tained by first using series expansion of the Bessel functions and
then inverting the quotients associated with polynomials in p
based on the methods of partial fractions and table of Laplace
transforms given in, for example, Spiegel [106]. Carslaw and Jaeger
[129] gave a systematic discussion of the methods in finding solu-
tions useful for small or large values of the time. They mentioned
that the method of Heaviside’s series expansion can be used to ex-
pand the Laplace domain solution denoted as x(p) in a series of
power of (1/p), and with this the corresponding time domain solu-
tion x(t) can then be obtained as a power series in t. Additionally,
they also pointed out that some Laplace domain solutions after
taking the asymptotic expansions may result in a series of negative
exponentials and these results generally lead to the solutions use-
ful for relatively small values of the time. Carslaw and Jaeger [134]
presented the analytical solutions to describe the temperature dis-
tributions for a wide variety of heat flow problems. Their solutions
can be applied to groundwater flow problems based on physical
analogy. For the CHT, they obtained a drawdown solution for small
values of time and both small-time and large-time solutions of
wellbore flux as well by using asymptotic expansions of the Bessel
functions. Furthermore, they also gave a large-time solution for
drawdown distribution due to CRT at a pumping well. van Everdin-
gen and Hurst [135] introduced the concept of symbolic relation
between the derivative operator of time, i.e., d/dt, and p and in-
ferred that p must be small if t is large, or inversely, p should be
large if t is small. Accordingly, one might obtain a small time or a
large time solution based on the LPST or SPLT relationship, respec-
tively, to the Laplace domain solution. Yeh and Wang [136] pre-
sented a short review on the application of LPST [137], SPLT [38],
and both [138,139] to groundwater flow problems for obtaining
the approximate solutions. In addition to those articles, a few
works have been carried out to develop the approximate solutions
in the groundwater literature. For example, among the published
works on applying the relationships of LPST and SPLT we may men-
tion the following. Chen and Chang [51] developed the early- and
late-time solutions for a CHT in a homogeneous and anisotropic
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unconfined aquifer with the skin effect. Hunt and Scott [140] pre-
sented two approximate solutions for flow to a well in a leaky con-
fined aquifer overlain by two layers; one is an unconfined aquifer
on the top and the other is an aquitard in between. Pasandi et al.
[34] also provided early time and late time drawdown solutions
in addition to the Laplace domain solution for CRTs at a partially
penetrating well in a phreatic aquifer with considering the effects
of wellbore storage and finite thickness skin. Tsai and Yeh [141]
developed a large time solution for the wellbore flow rate induced
by a constant-head test in two-zone finite confined aquifers by
employing the relationship of SPLT and L'Hospital’s rule. It is of
interest to mention that some approximate solutions had been
developed in other areas such as the solute transport problems
based on the relationships of LPST [142] and SPLT [143] and the
dual-porosity media problem using the relationships of both LPST
and SPLT [144]. Note that care must be taken when applying the
relationship of SPLT to derive the large time approximation to
the Laplace domain solution. The large time solution of the well-
bore flux for the constant-head test in a homogenous confined
aquifer can be written as Q(rw,p) ~ 1/[pIn(p/4)] [49] where
J.=4T/(e*'r2S) and 7y = 0.57722... is Euler’s constant. This approx-
imate solution introduces a pole at Re p =/ which is artificial and
must be excluded [136,145].

2.4.3. Approximation in time domain solution

A large amount of methods had been proposed to develop the
approximation of the time domain solutions for various problems
in well hydraulics. Tseng and Lee [146] reviewed six approximate
methods used to estimate Theis well function and gave a concise
introduction to each method. Those six methods are series expan-
sion, asymptotic expansion, continued fraction, polynomial, ra-
tional and Chebyshev polynomial approximations, recurrence
relations, numerical quadrature and inverse Laplace transform
techniques. The application of each of the first four methods to a
time domain solution yields an explicit mathematical expression,
while that of the last two methods will give a procedure for the
numerical computation of the time domain solution. Among those
four methods, the first two, series expansion and asymptotic
expansion may be the most widely used techniques to find approx-
imate solutions in groundwater problems. The Cooper-Jacob equa-
tion [147] is a good example of the application of the series
expansion. This equation results from truncating the high order
terms in the infinite series obtained after applying the series
expansion to the Theis solution [1]. Some studies can be found in
the well hydraulic literature that adopts the method of series
expansion [148] or asymptotic expansion [149] to develop the
approximate solutions. Interestingly, Barry et al. [150] presented
an analytical expression for the Theis well function based on the
interpolation between the series expansion of small u and the
asymptotic expansion of large u.

3. Subjects in modeling groundwater flow

Due to the increasing needs of irrigation, industrial, urban and
suburban expansion, various subjects concerning groundwater
flow attract scientists and engineers’ attentions. In this section,
we first address topics of current interests regarding the effects
of finite well radius, wellbore storage, well partial penetration,
and the presence of skin zone on the groundwater flow problems.
We then introduce the recent developments concerning the flow in
aquifers with horizontal wells or collector wells, the capture zone
delineation, and the non-Darcian flow in porous media and frac-
tured formations. Finally, we give a critical synthesis of the body
of work on numerical computations for five well functions often
presented in the well-hydraulic literature.

3.1. Effects of finite well radius and wellbore storage

For small-diameter wells with radius varies between 0.05 m
and 0.25 m, the groundwater flow is often modeled by neglecting
the effect of well radius. In reality, large-diameter wells with ra-
dius ranges from 0.5 m to 2 m are commonly installed in many
countries to meet a large demand for domestic and irrigation water
uses. The behavior of drawdown solution in wells with a finite well
radius is different from that in wells with an infinitesimal radius
because of the effect of well radius and the contribution of well-
bore storage. Papadopulos and Cooper [75] presented an exact
solution for the drawdown due to pumping in a large-diameter
well. Their solution took into account the effects of finite well ra-
dius and the water stored inside the wellbore, which were ne-
glected in the Theis equation. Theoretical models are developed
for incorporating the effect of finite well radius [151,152] and both
effects of finite well radius and wellbore storage into models
[34,153]. Other issues of large-diameter wells such as seepage face,
an application of discrete kernel approach and well function
approximations are widely discussed in the literatures. For exam-
ple, Ojha and Gopal [154] proposed a model based on flow velocity
to describe the seepage face variation for large-diameter wells in
an unconfined aquifer. Sakthivadivel and Rushton [155] considered
the dynamic seepage face and gave a methodology to determinate
the aquifer parameters from pumping tests with large-diameter
wells. Mishra and Chachadi [156] extended the discrete kernel the-
ory for analyzing flow behavior toward a large-diameter well dur-
ing the recovery phase. Chachadi and Mishra [157] used discrete
kernel approach to analyze the unsteady flow toward a large-
diameter well in a confined aquifer while determining well loss
component. Since the well function for large-diameter wells pro-
posed by Papadopulos and Cooper [75] is an integral function of
transmissivity and storativity, it is difficult to explicitly determine
those two aquifer parameters from pumping test data. The devel-
opment of well function approximation for large-diameter wells
has been the subject of many studies [158].

3.2. Skin effect

The drawdown induced by pumping conducted in aquifers may
be influenced by a region near the well referred to as the skin zone,
or simply the skin. This zone has a lower or higher permeability
than the adjacent formation. The skin is introduced during the well
installation process including the drilling, construction, and instal-
lation of annular fill of the pumping well. Two types of the well
skins are classified by their permeability. If the permeability of
the skin zone is less than that of the formation zone, this kind of
skin will be called a positive skin. On the contrary, if the permeabil-
ity of the skin zone is larger than that of the formation zone, the
skin will be a negative skin. The approaches of quantifying the skin
effect in the well hydraulic modeling by researchers may be
grouped into two ways; one assumes the skin to be infinitesimally
thin, while the other considers it to be of finite thickness.

3.2.1. Infinitesimal skin

Studies of infinitesimal skin have been widely investigated in
the areas of petroleum industry and well hydraulics. The skin effect
is regarded as an additional pressure drop near the wellbore and
proportional to the wellbore flow rate. Under this consideration,
both the skin thickness and storativity are neglected in the skin
zone. As such, a skin factor is introduced to represent the lumped
properties of the skin and used as an energy loss term at the well-
bore for mathematical convenience. The published works assum-
ing the skin to be infinitesimal are, for example, Cassiani et al.
[6], Park and Zhan [159], Moench [160], and Chen and Chang [51].
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3.2.2. Finite thickness of skin

Novakowski [161] mentioned that the thickness of the skin
zone may range from a few millimeters to several meters. The ap-
proaches of developing the solutions by taking into account the
skin thickness can be further divided into two categories. The first
category assumes that the skin thickness is a parameter associated
with the skin factor. The other treats the skin as another formation,
and therefore one should handle a two-zone flow system for such
an aquifer.

In an aquifer system subject to a pumping at a constant rate,
Hawekins [162] took into account the skin thickness and developed
a formula for the additional pressure drop to quantify its effect.
Based on the pressure drop equation proposed by van Everdingen
[163], Hawkins defined the formula of skin factor as

Sp = [(K/Kskin) — 1] In(Tsin/Tw) (14)

where g, denotes the skin radius, K and Ky, are the hydraulic con-
ductivities of the formation and skin, respectively. The productivity
ratio of a well defined by Hawkin is In(r./r,)/[In(re/ry) + s7 with
drainage radius r.. Thus the well productivity ratio becomes very
small when Ky, tends zero and it depends only on drainage, well-
bore and skin radius when Kg;, tends to be a large value. Hawkin'’s
skin factor has been adopted in CHTs, CRTs and slug tests by, for
example, Faust and Mercer [58] and Chen and Chang [164].

Moench and Hsieh [165] considered an equation for describing
the flow in skin zone with negligible storativity and provided a
hydraulic head solution for the slug test. They defined the skin fac-
tor as

Sf = [(K/Kskin)] IN(Tskin/Tw) (15)

For CRTs, Moench [160] considered the flow toward a partially
penetrating well in a slightly compressible water table aquifer
and assumed that the storage capacity of the skin is negligible.
He assumed that the flow rate through the skin zone is equal to
that along the wellbore and gave another skin factor as

Sf = (de/Ksk,-an) (16)

where d; is the skin thickness.

A finite skin region, however, has its storage capacity in nature.
The newly introduced mathematical model is thus required for the
aquifer system representing by two regions of radial flow and each
of it with individual transmissivity, storativity, and thickness. A
two-zone aquifer may be named as a patchy aquifer [166,167]
and such an aquifer system may be referred to as a composite sys-
tem [161] or a two-layered system [27]. By also considering the
skin storativity, Moench and Hsieh [168] further extended their
solution in Moehch and Hsieh [165] to solve the flow equations
in both skin and formation zones and developed the head distribu-
tions for slug tests. Many other recent studies have modeled the
two-zone aquifer system for CHTs [5,50,167], for CRTs [34,37,38,
161,169,170], and for slug tests [167,171]. In addition, Perina and
Lee [153] further derived a generalized solution which is applicable
to CHT, CRT, and slug test in the two-zone aquifer system.

3.3. Effect of well partial penetration

If the length of a well screen is less than the entire thickness of
an aquifer, the well is called a partially penetrating well [172]. The
well of partial penetration is often adapted for hydrogeological site
investigation to characterize groundwater pollution problems. For
example, the contaminant of light nonaqueous phase liquids gen-
erally forms a pool on the top of water table in the subsurface.
Under this circumstance, the screen of the well is only open at
the upper part of aquifer. On the other hand, the well is usually
screened at the lower part of aquifer if the contaminant is dense

nonaqueous phase liquid. The hydraulic head distribution in re-
sponse to an aquifer test at a partially penetrating well will be
influenced by the screen length and its location in the aquifer.
The equation describing the groundwater flow should include the
vertical flow component induced by pumping at a partially pene-
trating well. In this section, mathematical approaches for dealing
with the effect of well partial penetration in both CHT and CRT
are discussed.

3.3.1. Effect of partial penetration in constant rate test

The theory of a partially penetrating well pumped at a constant
rate was first published in 1957 by Hantush for leaky aquifers
[172]. In his solution, the discharge is assumed to be uniformly dis-
tributed over the well screen and the flow in the zone below the
screen is neglected. The solution for leaky flow can be further sim-
plified to the case in a non-leaky confined flow by making the
hydraulic conductivity of the confining layer which overlays the
confined aquifer equals zero. For the case that the screen does
not install from the top of the aquifer, the solution can be found
in Hantush [2]. The assumption of uniform discharge can also be
applied to the case of unconfined aquifers. Neuman [173] devel-
oped a solution of drawdown distribution in an unconfined aquifer
by considering the effect of well partial penetration on drawdown
during CRT. Yang et al. [28] took into account the radius of the
pumping well and derived an analytical solution of drawdown in
a confined aquifer with a partially penetrating well for the CRT.
More references on the issues of partially penetrating effect during
CRT can be found in the well hydraulic literature [34,39,44].

3.3.2. Effect of partial penetration in constant head test

In the well hydraulic modeling, the well water lever is main-
tained constant at a CHT and the constant head is appropriate to
specify at the screen section. If the aquifer is fully penetrated, the
mathematical model describing the groundwater flow can gener-
ally be solved by the conventional integral transform techniques
[2]. If the aquifer is partially penetrated and the effect of well skin
is negligible, the constant head condition will be used for the
screen part and the no flow (or zero flux) will be specified at the
casing. The flow problem induced by the partially penetrating well
therefore becomes a mixed boundary value problem [98]. Some
analytical approaches had been used to deal with the mixed
boundary value problems happen in CHTs in the well hydraulic lit-
erature. Those approaches may be classified into following five
categories:

The first approach is to replace the constant head along the well
screen by a uniform radial flux [151] which will transform the
mixed boundary into a homogeneous Newman boundary and re-
sults in an approximate solution.

The second approach is the well screen discretization method
which was adopted by Chang and Chen [174] and Perina and Lee
[153]. Along the screen, the flux is assumed constant in the first ap-
proach and considered to be non-uniform in the second approach.

The third is the domain decomposition method which divides
the flow domain into two or several sub-regions and each region
has its own flow equation and associated initial and boundary con-
ditions [5,52,53]. The flow equations are then solved simulta-
neously via the continuity conditions for the hydraulic head and
flow rate at the interfaces of the sub-regions.

The fourth is to use the method of dual integral equation and di-
rectly solve the mixed boundary value problems (MBVPs) for aqui-
fers of infinite vertical extent and the screen installed at the top of
the aquifer [6,96]. For aquifers of finite vertical extent, Chang and
Yeh [97] solved the MBVPs by the method of dual series equations
in conjunction with perturbation method.

For cases of screen is not placed at the upper part of the aquifer,
the previous approach becomes inapplicable. The use of triple inte-



36 H.-D. Yeh, Y.-C. Chang/Advances in Water Resources 51 (2013) 27-51

gral equation method, i.e., the last approach, can solve the prob-
lems with a well screen arbitrarily located at any portion of the
aquifer of finite vertical extent [98].

3.4. Unconfined flow problem

The modeling unconfined flow may be classified into five differ-
ent approaches. The first approach is to use the confined flow equa-
tion to model the unconfined flow problems. The second approach
neglects the vertical flow and uses the Boussinesq equation to rep-
resent the unconfined flow. The third is based on the radial con-
fined flow equation embedded with a delayed yield term. The
fourth employs Eq. (1) and adopts a free surface equation to repre-
sent the top boundary condition. The last is to solve the unconfined
flow equation by accounting for unsaturated flow above the water
table.

3.4.1. Confined flow equation

In some field or practical problems, the changes in water table
due to pumping or recharge is very small and thus the confined
flow model becomes applicable to simulate the water table or
drawdown distribution [45].

3.4.2. Boussinesq equation

Based on the approach of mass balance and the Dupuit assump-
tion of neglecting the vertical flow [122], the Boussinesq equation,
which describes the 2-D unconfined flow, can be developed and
written as

0 oh\ @ oh oh
- <I<Xha> +@<Kyha—y> =55 R (17)

where S, is the specific yield. Eq. (17) is nonlinear because it con-
tains the products of h and oh/ox. Therefore, the analytical solution
for the Boussinesq equation is rather difficult to obtain. In the past,
this equation has been employed in modeling and analyzing head
distributions in many aspects of unconfined aquifer flow. Bear
[122] mentioned two methods of linearization to facilitate the
development for the solution of Eq. (17). The first method is to re-
place the variable thickness, h, in Eq. (17) with an average aquifer
thickness, b, if the change of h due to pumping or recharge is very
small compared with the saturated thickness. Then Eq. (17) be-
comes a linear equation with the same form as the confined flow
equation when replacing Kih and K h by Ty and T,, respectively.
The second method is to rewrite the first term on the right-hand
side (RHS) of Eq. (17) as (S,/b)a(h?/2)/at. Eq. (17) then becomes a lin-
ear equation in h?. The published works associated with the first
method are, for example, Verhoest and Troch [175], Bansal and
Das [176], Parlange et al. [177], Li et al. [178] and with the second
method, for example, Hantush [179], Yeh and Chang [180], Ilias
et al. [181]. Different from those two methods given in Bear [122],
Pulido-Velazquez et al. [182] also provided a linearization method
to solve the Boussinesq equation based on the technique of change
of variables.

In the past, some studies were also devoted to developing
the analytical solutions from non-linear steady-state or transient
Boussinesq equation without using the linearization method men-
tioned above [183-187]. The literature on steady-state solutions
for the Boussinesq equation is, for example, given in the following.
Basha and Maalouf [188] discussed two particular cases of the ana-
lytical solutions for surface and groundwater flows and compared
these two nonlinear cases with the solutions derived from the lin-
earized Boussinesq equation using the Green’s function solution.
Based on the Boussinesq equation, Batu and van Genuchten [130]
utilized a singular perturbation method to solve the transient flow
induced by a constant injection into a radial aquifer. Lockington

et al. [189] applied similarity transform to solve the problem of
unconfined flow with a boundary condition in terms of a power
of time. Semi-analytical approaches based on the Boltzmann trans-
form have also been developed to solve problems involved the
Boussinesq equation. For example, Guo [190] solved the Bous-
sinesq equation for transient groundwater flow between a reser-
voir and an unconfined aquifer of semi-infinite extent using the
Boltzmann transform and Newton-Raphson method. Wang and
Zhan [99] also developed a solution based on the Boltzmann trans-
form along with the Runge-Kutta method for transient confined-
unconfined flow driven by a pumping well of infinitesimal radius
with a constant rate of pumping. Their paper also presented a short
literature review on the issue of confined-unconfined conversion
due to pumping using analytical and numerical approaches.

The Boussinesq equation is often used to model the hydrologi-
cal problems such as the flow due to surface recharge and/or
evapotranspiration in horizontal aquifer [179,181] or in sloping
aquifers [175,188], hillslope flow [191,192], coastal aquifer
hydraulics [193,194], designing drainage systems [195], the flow
caused by a flood event [196]; and the hydraulics of the stream-
aquifer interaction [176,197]. In the review paper by Winter
[198], he addressed the studies of the interaction of groundwater
and surface water focusing on different landscapes from alpine to
coastal.

Since Eq. (17) is nonlinear, numerical approaches such as finite-
difference methods, finite-element methods, or hybrid numerical
method are inevitable for solving the equation. Anderson and
Woessner [199] mentioned that a few investigators in the 1970s
had solved Eq. (17) with numerical techniques specifically de-
signed to handle the problem of nonlinearity. Kim et al. [200]
developed a transient, mixed analytical and finite difference mod-
els to simulate hydrological behavior for investigating the patterns
of infiltration, evaporation, recharge and lateral flow across hill-
slope. Stagnitti et al. [201] developed an explicit finite difference
scheme for the solution of the nonlinear Boussinesq equation to
examine the profiles of the water table height in a shallow sloping
aquifer.

Taigbenu [202] developed a simplified Galerkin’s finite element
model to solve the nonlinear Boussinesq equation with the advan-
tages of computing efficiency and requiring less computer storage.
Upadhyaya and Chauhan [203] presented a finite element solution
of nonlinear Boussinesq equation to compare his analytical solu-
tion derived from the linearized equation for the problems of water
table variation in a sloping aquifer caused by the sudden rise or fall
of the water level in a nearby stream. By coupling the Boussinesq
equation with the Richards equation, Hilberts et al. [192] devel-
oped a tetrahedral finite element model to investigate the role of
unsaturated storage in the relationship between rainfall and re-
charge. Tang and Alshawabkeh [204] proposed a semi-analytical
time integration approach for the simulations of 2-D transient
unconfined flow described by the nonlinear Boussinesq equation.

3.4.3. Confined flow equation embedded with a delayed yield term
Boulton [30] extended the theory of transient confined flow to a
pumped well and added the term, the rate of delayed yield, to ac-
count for slow drainage from the unsaturated zone. This term was
expressed as uS' [i e #t"gs/or'dt’ where yu is an empirical con-
stant; S’ is the delayed yield per unit area, per unit drawdown;
and s is the aquifer drawdown. He solved the drawdown equation
by using Laplace transform method and the Faltung theorem. Later,
he presented two approximated solutions based on his previous
delayed-yield solution for unconfined aquifer flow [205]; one is
for the case in which #=(S+5')/S tends to infinity and the other
is for the case that the pumping time is small. In addition, he also
provided delayed yield type curves in the paper for the analyses of
pumping test data. Notice that the mathematical model of using
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Boussinesq equation and Boulton’s model [30,205] do not consider
vertical flow component in the flow equation and therefore cannot
be used for the case of having partially penetration wells or for the
determination of vertical hydraulic conductivity in pumping data
analysis [32].

3.4.4. Flow equation with a free surface boundary

The free surface equation representing the top boundary condi-
tion of homogeneous and isotropic unconfined aquifers was first
proposed by Boulton [206] using a substantial derivative method.
The free surface boundary equation describing the head distribu-
tion of radial flow at the water table, in our notation, is

oh K |(oh\* (oh\* oh 18
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Later, Bear [207] gave a 3-D transient free surface equation with re-
charge for an anisotropic medium. Since Eq. (18) is nonlinear, the
flow equation subject to this top boundary condition is therefore
not readily solved analytically. Boulton [206] developed an
analytical solution of a steady-state radial unconfined flow equation
subject to the top boundary condition under following two assump-
tions: (1) the gradients of h in Eq. (18) are small and thus their
squares are negligible and (2) the simplified free surface equation
neglecting squared terms is then applicable to the case that the
head change occurs at the initial water table position. Neuman
[31] also presented an unconfined flow model similar to Boulton’s
approach [206] but considering a transient flow equation for homo-
geneous and anisotropic aquifers subject to a constant pumping at a
fully penetration well. The time-domain solution of the model
developed using Laplace and Hankel transforms can describe the
delayed water table behavior in response to the pumping. Later,
he extended his previous model to account for the effect of a par-
tially penetrating well under an assumption of uniform flux along
the well screen [173]. By a different approach in handling the water
table boundary, Moench [32] presented an unconfined flow model
with a well of infinitesimal radius and a simplified free surface
equation in which the S,0h/dt term is replaced by the delayed yield
term originally proposed by Boulton [30]. The top boundary equa-
tion with such a delayed yield term is hereinafter referred to as
Moench'’s free surface equation. Later, he gave a Laplace domain
solution for flow to a partially penetrating well with considering
the effect of finite diameter [160] and mentioned that his free sur-
face equation reduces to the simplified free surface equation for the
case of u — oo and becomes no-flow condition for the case of 1t — 0.
In order to examine the aquitard effect on the unconfined aquifer-
aquitard system, Zlotnik and Zhan [208] gave a semi-analytical
drawdown solution based on 3-D groundwater flow equation for
the homogeneous and anisotropic unconfined aquifer and one-
dimensional (1-D) vertical flow for the aquitard. Perina and Lee
[153] developed a general well function for deriving a solution
describing groundwater flow toward a pumping well of finite diam-
eter with non-uniform flux along the screen and finite-thickness
skin, partially penetrating an unconfined aquifer. This general well
function is capable of describing the groundwater flow for CRT,
CHT, or slug test. The top boundary condition that they used in
modeling unconfined flow is the simplified free surface equation.
Their solution is also applicable to the leaky aquifer case if the term
Syoh/at in the top boundary equation is replaced by a drawdown-
dependent boundary flux (i.e., a leakage rate) and the confined aqui-
fer case if S, in the top boundary equation is set zero. Pasandi et al.
[34] presented an analytical model for representing a CRT con-
ducted in an aquifer having a partially penetrating well with a skin
zone of finite thickness. The model has two flow equations along
with two Moench'’s free surface equations to describe the flows in
the skin zone and formation zone, separately. In a study on the dy-

namic response of tidal fluctuations in unconfined aquifers, Yeh and
Kuo [18] examined the effect of neglecting the second-order terms
in Eq. (18) on the accuracy of their analytical solution which is
developed using the simplified free surface equation as the top
boundary condition. They used Eq. (18) as the top boundary condi-
tion and developed an implicit finite difference solution to compare
with the analytical solution. Their numerical results indicate that
neglecting of the second order terms has no significant effect on
the aquifer head distribution. Chang et al. [53] developed a new
model for a constant-head pumping at a partially penetrating well
in an unconfined aquifer without assuming an unknown flux along
the screen for the constant-head boundary. They divided the flow
domain into two regions and solved the model by separation of var-
iable and Laplace transform techniques.

3.4.5. Unconfined flow equation accounting for unsaturated flow

The influence of the unsaturated zone on the drawdown due to
pumping has been neglected for a long period of time [31,173].
Recently, the effect of drainage from the unsaturated zone on the
unconfined flow has been mentioned in the groundwater literature
[209]. To explore the importance of unsaturated zone characteris-
tics in the analyses of unconfined aquifer test, analytical solutions
for flow toward a well in an unconfined aquifer had been reported.
In an early work, Kroszynski and Dagan [210] developed an
approximate solution to describe transient flow toward a partially
penetrating well pumped at a constant discharge in an unconfined
aquifer coupled with a linearized unsaturated flow equation at the
moving free surface. Mathias and Butler [211] extended the
concept of Kroszynski and Dagan [210] by considering the finite
thickness of unsaturated zones, aquifer compressibility, and the
flexibility of having different moisture retention and relative per-
meability functions. In their work, a linear diffusion equation
was used to describe the flow in the saturated zone, while Rich-
ards’ equation was used to delineate the flow in the unsaturated
zone. Because of the nonlinear property of Richards’ equation
and the presence of a moving interface (water table) between sat-
urated and unsaturated zones, the system of equations becomes
highly nonlinear. They selected a small parameter regarding to
the pumping rate and expanded the dependent variable into a per-
turbation series of the small parameter. Ignoring the higher-order
terms of the small parameter, the nonlinear boundary condition at
the free surface can therefore be linearized. They further linearized
Richards’ equation by assuming that moisture content and hydrau-
lic conductivity are in terms of exponential functions of pressure
head and obtained a new drainage function for pumping test anal-
ysis in compressible aquifers Mathias and Butler’s solution [211] is
limited to 1-D vertical flow through the unsaturated zone and
ignores the effect of well partially penetration. Tartakovsky and
Neuman [33] used a similar approach to that of Mathias and Butler
[211] and developed an analytical solution for characterizing flow
to a partially penetrating well in an unconfined aquifer by account-
ing for unsaturated flow above the water table. Their solution con-
sidered both the vertical and horizontal flows in the unsaturated
zone. Mishra and Neuman [212] improved the solution of Tarta-
kovsky and Neuman [33] by introducing four-parameter represen-
tation of the hydraulic conductivity and water content functions
and allowing the unsaturated zone to have a finite thickness. Mish-
ra and Neuman [213] further considered the case of a finite diam-
eter pumping well with storage and explored the effects of
wellbore storage and delayed piezometer response on drawdowns
in the unsaturated-saturated flow system.

The governing Richards’ equation for describing the unsatu-
rated flow is highly nonlinear and complicated; it is therefore dif-
ficult to develop analytical solutions in unsaturated-saturated flow
system without relying on any assumption or simplification to the
governing equations and their associated boundary conditions. The
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numerical methods are regarded as alternative and flexible ways
for solving the transient nature of the unsaturated-saturated flow
problem with complex boundary conditions in heterogeneous geo-
logic formations. Finite difference method and finite element
method are two major approaches capable of solving the unsatu-
rated-saturated flow problems.

In the past, the finite difference was a popular approach used to
approximate the solution for flow in unsaturated-saturated forma-
tions [214]. Based on the finite difference method, Dogan and Motz
[215] developed an unsaturated-saturated model for simulating
the 3-D groundwater flow in response to the recharge and evapo-
transpiration. Since the conventional finite difference discretiza-
tion assumes an orthogonal coordinate system and makes a finite
difference model computationally less efficient than other numer-
ical models that can treat nonorthogonal grids, An et al. [216] used
a coordinate transformation method for handling the geometri-
cally complex flow domain to avoid the disadvantage of using
high-resolution orthogonal grids by conventional finite difference
models. Their finite difference unsaturated-saturated flow model
can fit a curvilinear flow domain. It is worthy of mention that
TOUGH?2, a famous computer program based on the integrated fi-
nite difference method, can be used to simulate the nonisothermal
flows of multicomponent, multiphase fluids in porous and frac-
tured media [217].

Based on the finite element method, the computer models such
as FEFLOW, FEMWATER, HydroGeoSphere, and SUTRA can be em-
ployed to simulate the unsaturated-saturated flow. The FEFLOW
applies finite element analysis to solve the saturated and unsatu-
rated flow equations as well as the governing equations for mass
and heat transports [218]. The 3-D finite element model called
FEMWATER [219], originated from 3DFEMWATER and 3DLEWASTE
models, can also be applied to simulate the unsaturated-saturated,
density driven flow and transport. The HydroGeoSphere simulates
coupled unsaturated-saturated flow and transport by using a 3-D
control volume finite element method [220]. The SUTRA [221]
can simulate the density-dependent saturated or unsaturated
groundwater flow and transport of either energy or dissolved sub-
stances in a subsurface environment. It employs a 2-D hybrid finite
element and integrated finite difference method to approximate
the solutions of the flow and transport governing equations. For
more detailed discussion and review on those and other computer
codes, the readers may be referred to Zheng and Bennett [222] and
Bear and Cheng [223].

3.5. Theory of image well

Most of existing analytical models dealing with the drawdown
induced by pumping from a well assume that the aquifers are of
infinitely lateral extent. However, the aquifer may have a physical
barrier (such as fault or impervious formation) considered as an
impermeable boundary (no-flow condition) or a surface water
body (such as lake, reservoir, stream, or sea) providing a recharge
boundary (constant head condition) near the well. The use of im-
age-well method in well hydraulic problems allows one to remove
the impermeable or recharge boundary and place image wells at
judicious locations to take account for the effect of the boundary.
The drawdown in a test well can then be superposed as the sum
of the individual drawdown due to the real well and the image
wells. The method of image well is applicable when the groundwa-
ter flow equation and its associated boundary conditions are linear
in confined or leaky confined aquifers and the superposition of
drawdown is therefore valid. The mathematical formulation for
estimating the drawdown due to a discharging well in aquifers
bounded by a nearby straight impermeable or recharge boundary
can be found in most of groundwater books [224,225]. For
wedge-shaped aquifers, the wedge angle can be assumed to be

an aliquot part of 360° and the number of the image wells, n, re-
quired in analyzing the flow toward the well is given by
n=360°/0 — 1 where 0 refers to the wedge angle [226]. However,
in applying the image well theory, the angle must be an aliquot
part of 90° for aquifers with boundaries that are either like or un-
like; otherwise, it must be an aliquot part of 180° for aquifers with
like boundaries [226]. This rule has its exception in the case where
the wedge angle is an odd aliquot part of 360°, the test well is on
the bisector of wedge angle, and the boundaries are both imperme-
able [226]. For aquifers with parallel boundaries, two situations are
suitable to use image-well systems [122,226]; one is that the aqui-
fer is in a shape of infinite strip, while the other of semi-infinite
strip. In addition, the image-well method can also be applied to
the case of triangle aquifers [16] and rectangle aquifers [226,
227]. Other applications of image-well method can be found, such
as for flow to a drain near a leaky layer [228], pumping in sloping
fault zone aquifers [229], tunnel water inflow or flow toward
drains [230], pumping near a constant-head linear boundary
[231], quantifying stream depletion in narrow alluvial aquifers
[232], the drawdown in aquifers with irregularly shaped bound-
aries [233], and the drawdown for pumping at a finite-diameter
well in a wedge-shaped aquifer [234].

3.6. Horizontal well

Horizontal wells were first installed in 1927 [235]; however,
they were not widely adopted because of the lack of drilling tech-
niques for horizontal wells. Until 1980s, the interest of horizontal
wells was reignited with the significant advance of techniques in
drilling horizontal wells [236]. Horizontal wells are commonly
constructed in aquifers close to streams or lakes to produce large
amount of water [122] or in a contaminated site for remediation
of contaminated groundwater [237]. The use of horizontal wells of-
fers the following four advantages over vertical wells [236]. First,
horizontal wells can be installed in aquifers where ground surfaces
may have obstructions such as buildings and roads. Second, the use
of horizontal wells yields smaller drawdown near the well than
vertical ones do under the same pumping rate and well length
[84]. Third, a horizontal well can generally extract more water than
a vertical well does in shallow aquifers because the screen of hor-
izontal wells is completely placed in the aquifer. For example, Hoff-
man [238] demonstrated a conceptual design of horizontal wells to
remediate a contaminated groundwater site in a shallow aquifer in
northern Chicago. Instead of installing up to 40 vertical wells, only
two horizontal wells were used via pump-and-treat approach to
remediate the contaminated groundwater. Lastly, Joshi [236] men-
tioned that the operating cost of horizontal wells is about 42-44%
lower than that of vertical wells and fewer horizontal wells are
needed when extracting the same amount of oil as compared to
vertical wells.

3.6.1. Analytical and semi-analytical methods

Many analytical and semi-analytical solutions for horizontal
wells have been presented in the groundwater literature. Typically,
two assumptions involved in describing horizontal well screens are
made to simplify the problem. The first assumption is that the flux
along the well screen is assumed to be uniform. For example, Zhan
et al. [239] derived an analytical solution for describing the draw-
down due to pumping from a horizontal well in an anisotropic
confined aquifer and compared the difference between the hori-
zontal-well type curves and vertical-well type curves. Zhan and
Zlotnik [81] presented a 3-D semi-analytical solution to estimate
the drawdown due to pumping at a horizontal well in an aniso-
tropic unconfined aquifer. Huang et al. [85] provided a general ana-
lytical solution to investigate the drawdown and stream depletion
rate induced by a single horizontal well in an unconfined aquifer
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near a stream. Furthermore, they indicated that their solution can
reduce to that of Zhan and Zlotnik [81] for the aquifer of infinitely
horizontal extent. Most of studies in fact introduce this assumption
to describe the flux to the horizontal well [84,117,240]. The second
assumption for specifying the boundary along the horizontal well
screens is the constant-head condition. For example, Samani
et al. [241] modified the solution for the horizontal uniform-flux
well developed by Zhan and Zlotnik [81] to obtain a Laplace-do-
main solution for horizontal drains in an anisotropic unconfined
aquifer. They also provided the type curves and discharge to a hor-
izontal drain computed by using the Stehfest method to invert the
Laplace-domain solution. The analytical or semi-analytical solu-
tions developed for flow in horizontal wells can also be grouped
according to the type of aquifers, such as confined aquifers [239,
242,243], leaky aquifers [117,244,245], and unconfined aquifers
[81,85,240,241]. Some studies are also concerned with a variety
of problems associated with the flow to horizontal wells such as
gas or vapor flow [246,247].

In reality, the boundary along the screen of horizontal well in
the field problems is rarely subject to the constant flux or constant
head condition. The water flow into well screen is often non-
uniform and the hydraulic head along the well may vary due to
head loss caused by the flow inside the well. Approximate methods
and numerical methods are therefore needed in the simulations for
complicated groundwater flow in horizontal wells.

3.6.2. Approximate methods

There are few studies in regard to the use of approximate meth-
ods in horizontal well problems. Langseth et al. [248], for example,
presented an approach by which the established solutions of verti-
cal wells with constant pumping rate can be applied to horizontal
well pumping problems. Based on the principle of superposition,
the horizontal well is represented by a series of partially penetrat-
ing vertical well with different inflow rates assigned along the axis
of the well. Shedid and Zekri [249] provided six different steady-
state equations of the horizontal wells for problems with a wide
range of well lengths (30-900 m), formation thickness (15-
150 m), and pressure drop (7-140 m) in the petroleum literature.

3.6.3. Numerical methods

There are two ways commonly found in the groundwater liter-
ature to solve the problems using the finite difference methods in
regard to the flow toward a horizontal well. One way is to develop
the finite difference code for some specific problems. For example,
Kawecki and Al-Subaikhy [250] applied a finite difference model to
verify and assess previously proposed equations for flow to a hor-
izontal well in Kawecki [251]. The other way is to adopt the finite-
difference model MODFLOW for the flow simulations. Mohamed
and Rushton [252] presented a finite different model based on
MODFLOW for describing groundwater response in a horizontal
well system at a field test site in Malaysia with considering three
flow regimes: flow within the aquifer, flow from aquifer to the well
screen, and flow through the horizontal well. Haitjema et al. [253]
used MODFLOW and the analytic element model, GFLOW, to sim-
ulate a Dupuit-Forchheimer flow underneath a river or in a con-
fined aquifer with a Cauchy boundary along a horizontal well in
shallow aquifers.

A series of studies for flow induced by a horizontal well using
the analytic element method have been done by Steward and his
coauthors. Steward [254] first built a 3-D steady-state groundwa-
ter flow model using the analytic element method to delineate a
capture zone caused by a horizontal well in a contaminated site
in an infinite aquifer. The model was then used to quantify the los-
ing sections where water exits through the horizontal well [255],
to model the drawdown and capture zone topology for nonvertical

wells [256], and to examine the impact of well design on the head
distribution with a horizontal well [257].

3.7. Collector well

Practically, the collector well can be regarded as a special type
of horizontal wells. The collector wells are commonly designed
and installed adjacent to streams or other surface water bodies
to take advantage of induced riverbank filtration for supplying
the public-drinking water. A radial collector well generally com-
prises two main components: the central concrete caisson and lat-
eral well screens or, simply named as laterals. Moore et al. [258]
mentioned that the laterals may be constructed in many configura-
tions and the use of the configuration influences well performance
and filtering water quality. They also provided five lateral geomet-
ric design alternatives. The choice of the design may depend on the
local setting and desired well yield.

3.7.1. Analytical methods

At the present time, there are few analytical solutions available
for some simplified cases in the groundwater literature. Hantush
and Papadopulos [259] was the first to develop analytical solutions
via superposition principle for describing drawdown distribution
in confined and unconfined aquifers with a uniform flow along line
sinks reflecting the effects of the laterals. Strack [126] gave a solu-
tion of complex potential which can be used to describe the flow
pattern or head distribution for a fully penetrating radial collector
well in a steady and uniform flow field. Similar to the approach ta-
ken by Hantush and Papadopulos [259], Hunt [244] developed an
analytical solution for the drawdown distribution in a homoge-
neous, anisotropic leaky confined aquifer due to pumping at a hor-
izontal well or radial collector well.

3.7.2. Numerical methods

In predicting the head or drawdown distribution in aquifers in-
duced by water extraction at collector wells, the numerical meth-
ods were commonly used because of their advantages in handling
spatial variation of aquifer properties and accommodating complex
geometry of aquifer boundaries or well configurations. In addition,
numerical modeling can also be used for the design of collector
wells or the determination of well field capacity. Several different
numerical approaches were used for the simulation of flow in-
duced by radial collector wells in the past; for example, finite dif-
ference method [260], finite element method [261,262], analytic
element method [258,262,263], and boundary element method
[264].

In regard to the use of finite difference method, Schafer [265]
used MODFLOW to simulate the pumping test at a collector well
adjacent to the Ohio River in Louisville, Kentucky to evaluate the
aquifer/river hydraulics. Wang and Zhang [260] developed a 3-D fi-
nite difference model to simulate a complicated collector well sys-
tem consisting of an interconnected caisson, galleries, chambers,
and small-diameter radiating laterals. Su et al. [261] adopted the
TOUGH?2 to study the development of unsaturated region beneath
a perennial river due to the pumping at two radial collector wells
near the streams. Zhang et al. [262] also used the TOUGH2 to
investigate crucial factors such as riverbed permeability, dam oper-
ation and river velocity influencing aquifer recharge, maximum
pumping capacity, and development of an unsaturated zone be-
neath the riverbed. Xu et al. [266] developed a model based on
Multi-Node Well package of MODFLOW to assess the effect of
chemical clogging occurring around the caisson on the groundwa-
ter level.

Ophori and Farvolden [267] used a Galerkin’s finite element
model to simulate the drawdown distribution due to pumping at
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a collector well for preventing groundwater contamination due to
a nearby waste disposal site.

Bakker et al. [268] presented an analytic element method by
treating the laterals as multi-aquifer line sinks to simulate ground-
water flow to radial collector wells. For the hydraulic design of col-
lector wells, Moore et al. [258] developed a model based on the
analytic element method to discuss the challenges and compari-
sons associated with alternate designs. Similarly, Patel et al.
[263] also developed a model based on the analytic element meth-
od to simulate the steady-state discharge-drawdown relation for a
radial collector well in an unconfined riverbed aquifer. In addition,
the model is used to investigate the effects such as different lateral
configurations, hydraulic conductivity of aquifer, and conductance
of laterals on the well discharge and resulting drawdown.

3.8. Flow in leaky and multilayered aquifers

The solution of radial flow due to the pumping in a single-layer
aquifer bounded between two impervious layers is provided by
Theis [1], where the hydraulic head was assumed not to be influ-
enced by adjacent aquifers. His solution will not be valid if the
bounding formations are semi-permeable, and there is flow ex-
change within the aquitards and aquifers. The flow exchange is
generally known as “leakage”. In this section, the “leaky aquifer”
is referred to the aquifer system that has only one aquifer while
the aquifer system has more than one aquifer denotes as a multi-
layered aquifer or simply multiaquifer. Intensive review on the
studies of multilayered aquifers in last decade can be found in
Cheng and Morohunfola [269] and Cheng [270].

Approaches for solving the leaky and multilayered aquifer sys-
tems may be divided into three categories. In the first category,
the flow in aquifers is assumed completely horizontal and the
flow in aquitards is ignored. The second one is to solve the hori-
zontal flow equations in aquifers coupled with the vertical flow
equations in aquitards. The third considers both horizontal and
vertical flows in aquifers and aquitards. Here we introduce some
typical solutions for the models belonging to these three
categories.

3.8.1. Consider the horizontal flow in aquifer but ignore flow in
aquitard

Without considering the flow in aquitard, the hydraulic gradi-
ent through the aquitard changes instantaneously in accordance
with the change in hydraulic gradient in the confined aquifer. This
change in hydraulic gradient causes a leakage flux from the aqui-
tard and the leakage can be regarded as a source or sink term
embedded in the governing equation [19]. The solution of transient
drawdown due to a constant rate pumping at a well which fully
penetrates a leaky aquifer is attributed to Hantush and Jacob
[35]. The flow in Hantush and Jacob’s model can be described by
the following equation:
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where S is the aquifer storativity, T is the transmissivity of the aqui-
fer, B=(Tb’/K')"/? is the leaky factor and K’ and b’ are the hydraulic
conductivity and the thickness of the aquitard, respectively. The
zero drawdown condition at the remote boundary and wellbore
boundary condition for the system of one aquifer and one aquitard
are, respectively,

s=0, r— oo (20
and

. 0s Q

i o = ~ 2T 21)

Under the initial condition that drawdown is zero at t =0, the
solution is given as

Q r Q [>1 r?
S(r,6) = TnTW(”’E) = 4T A y P (y - 432y> ay (22)

When the u > 2r/B, the Hantush well function W(u,2r/B) can be
approximated by W(u) which is expressed as —0.5772 — Inu.

The steady-state drawdown solution in the leaky aquifer intro-
duced by Jacob [271] can be derived by eliminating the term os/ot
on the right-hand side of Eq. (19) and it is in the form of

s= %Ko (g) (23)

In Eq. (23), Ko(r/B) can be approximated by -[0.5772 + In(r/2B)] and
\/7B/2r(1 — B/8r) exp(—r/B) for r/B < 0.05 and r/B > 5, respectively.

Related research on flow in leaky aquifers that treated the leak-
age from aquitard as a sink or source term contained in the govern-
ing flow equation of aquifer can be found in the groundwater
literature [272,273].

Many studies were also devoted to the development of the ana-
lytical solutions for multilayered aquifers with considering only
the horizontal flow in aquifers. For example, Hantush [274] devel-
oped an analytical expression for the two aquifer and one aquitard
system that produces horizontal flow in two aquifers with an inter-
vening aquitard. Hunt and Scott [140] further treated the top
aquifer as unconfined with a specific yield S, and obtained an
approximate solution for the two aquifers and one aquitard sys-
tem. Hunt [272] gave a semianalytical stream depletion solution
for a two aquifer and one aquitard system in which a pumped
unconfined aquifer is underlain by an aquitard and an unpumped
aquifer.

3.8.2. Consider horizontal flow in aquifer and vertical flow in aquitard
In many cases, the drawdown in an aquitard has significant
influence on the flow in an adjacent aquifer. Under this circum-
stance, the predicted drawdown from the solution based on the
assumption of ignoring the flow in an aquitard will result in large
errors. Hantush [138] investigated the problem in which the verti-
cal flow in aquitards is taken into consideration. The leaky aquifer
system is composed of an aquifer overlain and underlain by aqui-
tards. Three cases with different boundary conditions in aquitards
were studies by Hantush [138]. In the following content, symbols
with subscripts 0, 1, and 2 denote the parameters or variables of
the main aquifer, upper, and lower aquitards, respectively.
Without considering the horizontal flow in aquitard, the flow
equations for the upper and lower aquitards are
8251' Si 0s; .
o2 Kb ot =12 (24)
In addition, considering only the horizontal flow in aquifer, the flow
in the main aquifer can be described using the following equation:

8250 10sg Ky 0s1 (r, bz + bo, t) B KJ QSQ(T, bz, t) - So %
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The initial drawdowns in the main aquifer and aquitards are as-
sumed to be zero. The hydraulic heads are distributed continuously
at the interfaces between the upper aquitard and the main aquifer
and between the lower aquitard and the main aquifer. In addition,
the drawdown remains zero at infinite distance in the main aquifer
and the flux along the wellbore can also be expressed as Eq. (21).

By sequentially applying the Laplace and Hankel transforms to
the governing equation, initial and boundary conditions, the draw-
down solution in Laplace domain for the main aquifer in case 1 can
be found in Hantush [138]. Hantush also gave the approximate

(25)
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solution for small and large values of time as shown in Hantush
[138].

Recently, Moench and Barlow [275] addressed the issue of
pumping in a system of one aquifer and one aquitard interacting
with perennial stream. Wen et al. [55] presented a mathematical
model for the CHT at a well with a finite-thickness skin in a system
of one aquifer and two aquitard.

Some works modeled the flows in multilayered aquifer systems
based on the second approach. For example, Neuman and Wither-
spoon [276] developed a theory for flow in a two aquifer and one
aquitard system. Chen and Jiao [277] also used the second ap-
proach to investigate the flow behavior caused by pumping in mul-
tilayered aquifer system with non-Darcian vertical flow in the
wellbore. Similarly, Butler et al. [278] utilized this approach to de-
velop an analytical solution for flow in a multilayered aquifer sys-
tem and explored the impact of groundwater pumping on a nearby
stream.

3.8.3. Consider both horizontal and vertical flow in aquifers and
aquitard

In nature, flow in aquifer and aquitard may occur in both verti-
cal and horizontal directions. Hantush and Jacob [279] considered
a pumping well in an aquifer overlain by an aquitard and solved a
3-D steady-state flow system without relying on the assumption
that the permeability in aquifer must be much greater than that
in aquitard made in Jacob [271]. The solution was obtained by
simultaneously solving the flow equations of aquifer and aquitard.
Coupling of flows in aquifer and aquitard was accomplished
through acquiring the continuity conditions of drawdown and nor-
mal flux imposed at their interface.

Malama et al. [45] solved a transient problem that an uncon-
fined aquifer bounded below by an aquitard is pumped continu-
ously at a constant rate from a well of infinitesimal radius. They
also treated the flows in aquifer and aquitard as both horizontal
and vertical. By considering the horizontal and vertical flows in
aquifers, Malama et al. [44] solved the flow problem in a two aqui-
fer and one aquitard system in which the top unconfined aquifer is
pumped at a partially penetrating well.

Different from those three approaches mentioned above, some
studies can also be seen in the well hydraulic literature for flow
in leaky aquifer systems [117,280,281] and for flow in multilayered
aquifer systems [169,282,283]. Numerical solutions for flow in the
leaky and multilayered aquifer systems have been accomplished
by finite element methods [284,285], finite difference methods
[285,286], and boundary element methods [269].

3.9. Capture zone delineation

An equation in terms of pumping rates, Darcy velocity, and
aquifer thickness to stipple separating streamline was given by
Muskat [287] which may be the earliest work associated with
the capture zone delineation. A capture zone is defined as a portion
of aquifer in which water is removed by one or more extraction
wells under steady-state or transient flow condition. Generally,
the shape of the capture zone depends on the groundwater flow
velocity, the extraction rate, the aquifer boundaries and the
hydraulic properties of the aquifer. The study of capture zone is
very useful in solving problems involved in, for example,
groundwater rights, wellhead protection program, groundwater
remedial design, as well as study of surface water and groundwater
interaction.

3.9.1. Analytical methods

Complex potential theory (also named as stream function meth-
ods or complex velocity potential) is usually applied to solve the
problems of 2-D, planar, steady state flow in homogeneous forma-

tions [288]. It is the most widely used method to delineate the cap-
ture zone for one or more extraction wells in aquifers in an infinite
domain [289-292].

By combing the velocity potential for flow to the well with that
for the regional flow field, the potential theory can also be applied
to determine 3-D capture zone for steady state flow toward a par-
tially penetrating well in confined aquifers [293,294]. Additionally,
some approaches were used to delineate 3-D capture zone under
different flow conditions, such as flow in unconfined aquifers
[295], the presence of multiple sinks and sources [296], or flow
around horizontal drains and vertical wells in anisotropic aquifer
in a uniform flow field [297]. Moreover, with the aid of image well
theory, the potential theory can also be applied to determine the
capture zone of a well either near a stream [298], located between
two parallel streams [299], or in an infinite strip aquifer bounded
by two constant head boundaries or by one constant head and
one impermeable bound boundary [300].

Analytical approach to delineate capture areas induced by
pumping involves the use of the Theis solutions for confined aqui-
fers [301] and Hantush-Jacob equation for leaky confined aquifers
[302]. Moreover, Huang and Goltz [303] developed a 3-D steady
state model and solved it by using the Fourier cosine transform
to calculate the interflow circulating between a pair of recirculat-
ing wells in a homogeneous, anisotropic aquifer. Moreover, the
articles by Cunningham et al. [304] and Luo and Kitanidis [305]
also deal with the recirculation zone around a pair of recirculating
wells.

3.9.2. Numerical methods

Numerical simulations can take into account the effects of com-
plex boundary conditions as well as heterogeneity, recharge/dis-
charge, etc., and are therefore broadly used for studying vertical
well capture zones [306,307]. Shafer [308] adopted a finite-
difference groundwater flow model to simulate 2-D steady state
head distribution and used a fourth-order Runge-Kutta scheme
to determine the flow pathlines for a time-related capture zone
around extraction wells. Townley and Davidson [309] used a
boundary integral approach to define a capture zone for shallow
water table lakes in a 2-D regional flow system. Taylor and Person
[310] developed a finite element model to solve a coupled system
of flow through the fresh water and salt water zones and used an
approach of reverse particle tracking to generate fluid pathlines
for determining the time-related capture zone. The analytic ele-
ment method uses the superposition of appropriate potential func-
tions and applied normally to the case of an aquifer of an infinite
extent [126]. The analytic element method can be used to deter-
mine the shape of capture zone due to pumping for problems of
3-D flow induced by horizontal flow [255,256]. In capture zone
delineation, this methods may be used with other approaches such
as the locations of stagnation points in a flow field to describe the
streamline [311] or the separation of variables and theory for mul-
ti-aquifer flow [312].

Most commonly used numerical approaches in the capture zone
literature are to use MODFLOW model [313] along with a 3-D par-
ticle tracking program such as MODPATH [302,314] developed by
Pollock [315] or PATH3D [316] developed by Zheng et al. [296],
or with a 2-D particle tracking program such as GWPATH [317].
Few studies in the groundwater literature have addressed the top-
ics of the capture zone produced by a horizontal well [242,243].

3.9.3. Optimization and uncertainty

The method of optimization can be employed in the capture
zone analysis to find the best solution for determining the pump-
ing rates and well locations [318,319], the minimum number of
wells [320], or the number of wells and total pumping rates
[307]. In addition, the optimization approaches can also be used
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in the analysis of capture zone delineation to examine the
effectiveness of various single-well pumping scheme [321] or the
most cost-effective strategies for hydraulic control of groundwater
contamination [322,323]. Some studies have devoted to the assess-
ment of the uncertainty about the delineation of well capture
zones in heterogeneous aquifers. The stochastic approach based
on the Monte Carlo simulations is widely adopted for characteriz-
ing the uncertainty about the capture zone delineation [324-327].
Instead of Monte Carlo simulations, Esling et al. [328] attempted to
reduce the capture zone uncertainty based on a systematic sensi-
tivity analysis.

3.10. Non-Darcian flow

Darcy’s law describes a linear relationship between the hydrau-
lic gradient (i) and specific discharge (q). For flow through granular
media, there are indications that the linear relationship is not valid
in two situations. One is associated with flow through low perme-
ability materials under very low gradients and the other is large
flow through very high permeability media. Bear [122] mentioned
that Darcy’s law is applicable if the Reynolds number (Ng) based on
average grain diameter falls in the range from 1 to 10. Within this
range, the flow is classified as laminar and known as Darcian flow,
and otherwise called as non-Darcian flow. In addition, the flow is
turbulent when Ny is high (say, Nk > 100), while the flow between
laminar and turbulent regimes is considered in the transition state.
For flow near the extraction wells, the hydraulic gradients are usu-
ally very high and the flow velocities are enhanced due to the con-
vergence of flow lines [329]. Consequently, the flow may become
turbulent near the wells. Many formulae have been proposed to
describe the relationship between i and q for non-Darcian flow
[100,330]. Among them, the Forchheimer equation [331] and Iz-
bash equation [332] (also called as power law function) are most
commonly used. The Forchheimer equation can be expressed as
i=aq + bq? where a and b are empirical coefficients whereas the Iz-
bash equation may be written as i =cq™ in which c is a constant
and the parameter m ranges between one and two [333]. Notably,
some studies indicated that the Izbash equation is better than the
Forchheimer equation in describing the relationship between i and
g under some circumstances [334]. In addition, Izbash equation is
in continuity with Darcy’s law which corresponds to the case m =1
[333].

3.10.1. Forchheimer flow in porous media

Based on the Forchheimer equation, the analytical solutions for
non-Darcian flow are provided by Bear [122] and Ewing et al. [335]
for steady state groundwater flow toward a well. The analytical
solutions for transient non-Darcian flow developed based on the
Forchheimer equation and Boltzmann transform was first pre-
sented by Sen [336,337] for an infinitesimal well and later by
Sen [101] for large-diameter wells in confined aquifers. However,
Camacho-V. and Vasquez-C. [338] questioned the validity of using
Boltzmann transform in solving the non-Darcian flow problems
and considered those solutions as approximate solutions rather
than analytical solutions. Based on the volumetric approach, Birp-
inar and Sen [339] developed an analytical solution for radial
Forchheimer flow toward a fully penetrating and infinitesimally
small diameter well in leaky aquifers. Mathias et al. [329] devel-
oped a large time solution for describing the Forchheimer flow to-
ward a well using the method of matched asymptotic expansion
and compared the predicted heads with those from the finite dif-
ference model. Moutsopoulos and Tsihrintzis [131] presented an
approximate solution from the perturbation analysis of 1-D tran-
sient Forchheimer flow between two rivers.

Ewing et al. [335] developed a mixed numerical model for
describing single phase Forchheimer flow in a hydrocarbon reser-

voir using the cell-centered finite differences, Galerkin’s finite
element, and mixed finite element techniques. Later, Ewing and
Lin [340] extended the work of Ewing et al. [335] to simulate a
steady state non-Darcian flow in porous media with the
application of three different finite volume models. Mathias et al.
[329] presented a finite difference model for describing the Forch-
heimer non-Darcian flow toward a pumping well in porous media
and compared the predicted heads with those from three different
approximate solutions. Wu [341] approximated the multiphase
Forchheimer flow equations for a porous medium and fractured
reservoir using an integral finite difference or control-volume finite
element scheme.

3.10.2. Izbash flow in porous media

Sen [100] used the Boltzmann transform to derive a transient
drawdown solution for Izbash flow toward a fully penetrating,
infinitesimal well in a confined aquifer. Later, he used the principle
of volumetric approach to develop a solution for investigating the
transient Izbash flow behavior in leaky aquifers [342]. Some
approximate solutions for describing the transient radial Izbash
flow were proposed by Wen et al. [343] and Mathias et al. [329]
in a confined aquifer using Laplace transform and the linearization
approximation and also by Wen et al. [344] in an aquifer-aquitard
system and Wen et al. [345] in a two-region flow system using lin-
earization procedures.

The finite difference models were often used to simulate Izbash
flow for various types of problems and the results were compared
with those predicted by the approximate solution for validation
purposes [329,345].

3.10.3. Forchheimer flow in fractured formations

Non-Darcian flow also occurs in fractures [346,347]. Some re-
search has been devoted to the issue of non-Darcian flow in frac-
tured formations with the use of the Forchheimer equation in
hydrologic literature [341,348,349]. For example, Wu [349] devel-
oped a steady state solution for 1-D finite, radial Forchheimer flow
toward an extraction well in a fracture system. Kohl et al. [346]
developed a 3-D finite element model for the Forchheimer flow
in a hot dry fractured rock to evaluate transient pressure responses
for two flow tests at a wellbore. In addition, Kolditz [350] used the
finite element method and Forchheimer equation to study non-
Darcian flow behavior induced by the pumping tests in fractured
rocks.

3.104. Izbash flow in fractured formations

Very few studies focused on the use of Izbash equation to devel-
op non-Darcian flow in fractured media. Teh and Nie [351] devel-
oped a finite element model for describing non-Darcian flow based
on the Izbash equation and coupled consolidation theory. Based on
the Izbash equation, Wen et al. [352] presented a finite difference
solution and two approximate solutions obtained by using the lin-
earization method and the Boltzmann transform, respectively, for
the non-Darcian flow toward an extended well.

3.11. Well function evaluation

The analytical solution arisen from solving various types of
problems of aquifer tests in the well hydraulics is often given in
terms of an improper integral. For example, Theis [1] presented a
solution for a constant pumping from a fully penetrating well of
infinitesimal diameter in a homogeneous, isotropic, and non-leaky
confined aquifer of infinite extent. His solution describing the spa-
tial and temporal distribution of aquifer drawdown due to pump-
ing can be expressed in terms of an exponential integral which is
also called the Theis well function. Hantush and Jacob [35] intro-
duced a solution describing the drawdown in a leaky confined
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aquifer due to the pumping at a fully penetration well. Their
solution contains an improper integral called the Hantush well
function, also called as Hantush-Jacob well function or leaky aqui-
fer function. Later, Hantush [67] gave a solution for the unsteady
drawdown due to a constant discharge at a partially penetrating
well in a confined aquifer of uniform thickness and uniform
hydraulic properties. This solution also includes an improper inte-
gral often called as Hantush M function. In addition, he provided a
solution for describing the rise and decay of the water table in re-
sponse to an areal uniform recharge in rectangular or circular type
of shape [353] and another solution for estimating the stream
depletion rate induced by a nearby pumping [179]. Both solutions
contain different forms of improper integrals; the former is called
as Hantush M function, while the latter is named as Hantush
M* function. In fact, the latter can be changed into a form with
the variable of integration appearing in the denominator as dem-
onstrated in Trefry [148]. Jaeger [354] presented an equation for
the heat flow at the inner boundary of a solid. This equation is ex-
pressed in terms of an improper integral commonly called as Jaeger
function or Jaeger integral. Interestingly, the Jaeger function also
appears in a formula describing the flow rate across the wellbore
obtained from solving the radial groundwater flow equation sub-
ject to the constant-head boundary condition at the wellbore
[128]. The lower limit of above-mentioned functions is zero or a
variable which may be very close to zero in some cases. In those
functions, their variable of integration also appears in the denom-
inator of the integrand. Such a problem causes the functions having
singularity at or near the origin and therefore results in great diffi-
culty to accurately compute those functions. This section thus
reviews the numerical computations for those five functions men-
tioned above.

3.11.1. Theis well function
The Theis well function W(u) is defined in the following
drawdown equation as

® -y
s(r,t):%W(u):%/n %dy (26)

where u is a dimensionless variable defined as r?S/4Tt and y is a
dummy variable. The integral in Eq. (26) is a function of the lower
integration limit u and denoted as W(u). This function tends to be
infinity and therefore fails to be defined when u approaches zero.
The integral in Eq. (26) can be expanded in a convergent series given
in most groundwater textbooks [224,225]. Cody and Thacher [355]
commented on the approximations to this integral in previous four
articles which had the problems with insufficient accuracy or lack
of efficiency in computing. He also mentioned that the series expres-
sion can be employed without loss of accuracy when u < 1. Further-
more, Tseng and Lee [146] pointed out that the series expression is
suitable for practical applications when u is small (say, less than 4)
and, however, has the problem of slow convergence when u is large.

Prabha and Yadav [356] developed a general polynomial
expression based on rational approximations of the Bickley and
Theis well functions. Interestingly, they also mentioned that both
functions occur in the problem of reactor physics in computing
first flight collision probability. Tseng and Lee [146] reviewed six
approximation methods for calculating Theis well function. In
addition, they also presented an algorithm based on the combina-
tion of a fast-converging series representation for small u and an
easy-implementing Gauss-Laguerre quadrature formula when u
becomes large. They mentioned that their algorithm will provide
a required accuracy for any fixed argument of 0 < u < oo if the num-
ber of quadrature points used in the computation is greater than 8
combined with the series expansion with less than 20 terms. Barry
et al. [150] provided a single analytical approximation constructed

by interpolation between the small and large asymptotes of the
Theis well function. The approximation has the maximum error
less than 0.07% and the result is valid for 0 <u < co. Prodanoff
et al. [357] applied a smoothing procedure by decomposing a finite
part of singular integrals, such as Theis and Hantush well functions,
into two integrals, one of which is smooth and can be computed by
standard integration quadrature, while the other can be easily inte-
grated analytically. The advantage of using this approach is that it
can directly deal with any related functions without further
approximations and users can choose the desired accuracy.

3.11.2. Hantush well function

The Hantush well function W(u,r/B) is defined in the drawdown
equation, Eq. (22), for pumping in a leaky aquifer. When u=0,
W(0,r/B) is equal to 2Ko(r/B). On the other hand, when r/B=0
(i.e., W(u,0) equals W(u)), the Hantush well function reduces to
the Theis well function. Hunt [358] developed two infinite series
to represent the Hantush well function. Those two series are abso-
lutely convergent and can be used to estimate the Hantush well
function for all possible values of the arguments. As mentioned
above, Prodanoff et al.’s approach [357] can also be applied to
evaluate Eq. (22). Nadarajah [359] commented on the work of
Prodanoff et al. [357] and mentioned that both Theis and Hantush
well functions can be expressed in terms of the modified Bessel
function of the second kind of zero order and the Appell hypergeo-
metric series of the first kind. Harris [360] gave a generalized
formula to the Hantush well function as

M:K A e (27)
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with v a real value but not necessarily an integral and Ky(x,y) the
original Hantush well function and identified as an incomplete Bes-
sel function or a generalized incomplete gamma function. He men-
tioned that the function on the RHS of Eq. (27) appears in different
areas such as hydrology, heat conduction, probability theory, and
electronic structure in periodic systems. He also presented a num-
ber of new expansions which offer efficient computation over a
broad range of all three parameters (#,x,y) in the incomplete Bessel
function. Temme [361] also discussed the properties of K, and sug-
gested applying the trapezoidal rule to compute Eq. (27) for a wide
range of the parameters. Veling and Mass [362] first reviewed the
works of Hunt [358], Prodanoff et al. [357], and Nadarajah [359],
then presented two analytic expressions based on a generalized
hypergeometric function in two variables, and finally gave a very
efficient approximate formula in terms of the exponential integral
and the modified Bessel function Ky, which may be useful in pro-
gramming. Moreover, Veling [363] expanded the generalized
incomplete gamma function in terms of a sum of the function J;
and the modified Bessel function of the first kind of order j, and gave
numerical techniques to evaluate the function.

3.11.3. Hantush M and M* functions
The Hantush M function was denoted as M(«, ) and written in
terms of an infinite integral defined by the following [2,147,364]

%?wmmw (28)

where y is a dummy variable, o and B are parameters related to
the physical properties of the aquifer, and erf(x) is the error
function. Tabular values of the M(«, 8) function with four significant
figures were given in Hantush [2,67,364] for « from 10~ to 1 and
from 0.1 to 400. Later, Hantush [179,353] defined the M*(a,p)
function as
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Tabular values of the M*(«, 8) function were given in Hantush [179]
for o from 0.1 to oo and g from 0.1 to 5.0 with five decimal figures.

Trefry [148] developed an exact algebraic expression for Eq.
(29) in terms of a power series expansion with the incomplete
gamma function. Furthermore, the expansion is also rearranged
to two independent analytical partial summations. He demon-
strated the numerical values computed by one of his equation
[148] are correct to 9 decimal places for M*(1,1), 10 decimal places
for M*(2,3/2), and 9 decimal places for M*(4/5,7/10). In the com-
ment on Trefry’s article [148], Barry et al. [365] presented an alter-
native series for estimating M*(o,8) for an extended range of
arguments from that presented in Trefry [148]. Moreover, Barry
et al. [366] gave some simple approximations to the M*(«, B) func-
tion for all practical purposes. Mamedov and Ekenoglu [367] devel-
oped a general and simple analytical algorithm, which involves the
incomplete Gamma function based on binomial expansion theo-
rem, for calculating M*(«, B) function with arbitrary accuracy. Yang
and Yeh [368] gave a comment on Mamedov and Ekenoglu’s paper
[367] and provided a simple and efficient numerical approach
using the Gaussian quadrature to calculate M*(«,f) piece-wisely
along the y-axis from (0,a) to (—1,1).

In a note on Hantush M function, Trefry [369] provided alge-
braic approximations to M(«, 8) over the relevant (o, 8) parameter
space by using truncated Maclaurin and asymptotic series. Nadara-
jah [359] mentioned that both M(«, 8) and M*(«, B) functions can be
reduced to the generalized incomplete exponential functions and
demonstrated that the computed values for both functions accu-
rate up to the first ten decimal places for selected values of o in
the range of 0.01-13 and g in the range of 0.01-17.

3.11.4. Jaeger function
The Jaeger function is generally expressed as

e Tu?
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where 7 is dimensionless time, u is a dummy variable, and Jo(-) and
Yo(-) are the Bessel functions of the first and second kinds of order
zero, respectively. This equation might be first given by Jaeger
[354] for the heat flow problem. The values of 1(0,1; ) with three
decimal figures for 7 from 0.01 to 1000 are given in a joint paper
by Jaeger and Clarke [370]. Ingersoll et al. [371,372] adopted and
interpolated the values of 1(0,1;7) of Jaeger and Clarke [370] with
three decimal places for 7 from 0.01 to 25,000.

In an early paper, Smith [373] considered a problem in deep
mining operations and developed solutions for the surface temper-
ature and temperature flux across the wellbore. In his temperature
flux solution, an integral defined as G(t) in our notation can be
written as [373]

G(t) = 4% /Ox ue ™’ {g +tan! (}?&;) }du (31)

Later, Jacob and Lohman [48] studied a problem for the discharge at
a well with constant drawdown in an extensive aquifer. They cited
the solution given by Smith [373] and replaced the integral in Eq.
(31) by a summation and developed a numerical integration ap-
proach similar to the trapezoidal rule to calculate the G(7) function.
They gave computed values of G(t) in a table with three or four sig-
nificant digits for T from 10~ to 10'2.

It is noteworthy that Eqs. (30) and (31) had been shown to be
mathematically equivalent in the paper written by Peng et al.
[128] which mainly focused on the numerical computation of solu-
tions for groundwater flow subject to a constant-head pumping.
They developed an approach including a singularity removal
scheme, Newton’s method, the Gaussian quadrature, and Shanks’
method to evaluate the solutions of head distribution in aquifers

and the flow rate across the wellbore. The computed values of
dimensionless flow rate to five decimal places for 7 from 0.01 to
1000 are given in a table and compared with those of Jaeger and
Clarke [370] and Jacob and Lohman [48] by multiplying a factor
of 2/m. Interestingly, Jaeger function also appears in the area of
contemporary electrochemical techniques such as chronoampe-
rometry and some efforts involved in the computations of this
function have been made. For example, Aoki et al. [374] gave an
approximation of 1(0,1;7) with an error less than 1% for some
ranges of 7, Szabo et al. [375] presented an approximation of
1(0,2; 7) within 1.3% for all values of 7, and Fang et al. [132] also
provided a simple approximation with an accuracy of about 1%
by extending from the steady-state approximation to the transient
one. Moreover, Britz et al. [376] split the integration of Eq. (30) into
a number of integrals and calculated each of the integrals using
Romberg-integration to 6 significant figures for t from 10~ to
10%. Recently, Bieniasz [377] decomposed the Jaeger function in La-
place domain into two terms; the first term, fully responsible for
the singularity, can be easily computed after being inverted to
the time domain, while the second term after taking the inverse La-
place transform is approximated by two finite series depending on
the range of 7. Such an approximate procedure provides the results
with at least 14-15 significant digits over the entire time domain.
More recently, Philips and Mahon [378] presented a paper to
desingularize Eq. (30) by subtracting and then adding a compli-
mentary principal-valued integral, which can be evaluated analyt-
ically over the half-space. The integrand in the desingularized
integral can then be calculated directly using Laguerre-Gauss
quadrature. They provided the estimated results with 10 signifi-
cant figures which agree the appropriate number of decimal places
with those of Peng et al. [128] and Britz et al. [376].

4. Conclusion and future recommendations

In this review, we start with a concise introduction to the types
of aquifers and mathematical formulations associated with the
physical characteristics and configurations of aquifer hydraulics.
Widely used aquifer tests and their related solution methodologies
for solving the mathematical models are then addressed. Further-
more, a wealth of literature associated with the effects of finite
well radius, wellbore storage, well partial penetration, and the
presence of skin zone on the models has been intensively re-
viewed. Finally, recent advances on the subjects of capture zone
delineation, non-Darcian flow, flows in horizontal well and collect-
ing well, and various kinds of well function evaluation involved in
the modeling of well hydraulics is also presented. Some related
topics for future research are suggested as follows.

1. Most of researches on the investigation of the drainage, seep-
age, or recharge problems in unconfined aquifers have used
the analytical approaches in dealing with the flow problems
in sloping aquifers [175,188,192,379]. To the best of our knowl-
edge, there are very few articles to deal with the flow induced
by pumping in a sloping confined aquifer [229] or a confined
aquifer with non-uniform thickness [259]. Antonio and Pacheco
[229] developed an approximate approach applying the Cooper-
Jacob equation and method of image well to describe the
response of a sloping fault zone aquifer to the pumping at a
fully penetration well. Their approximation, which neglects
the effects of the vertical flow in the aquifer and the angle
between the sloping aquifer and the horizontal axis, may result
in poor predicted results. Based on a physical analogy, Hantush
and Papadopulos [259] adopted the analytical solutions of the
head distribution and flow rate for flow in a constant head
pumping in infinite confined aquifers to describe the flow in
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vertical wedge-shaped formations. Such an analogy may yield
acceptable estimation of flow rate if the pumping well in the
wedge-shaped formations is very close to a stream or lake.
Yet, the head distribution predicted based on the solution of a
constant head pumping in confined aquifers may be inaccurate,
especially when the pumping well is located far away from the
stream or lake. Very often, nature aquifer systems have dipping
hydrostratigraphic formations. Thus, there may be a need to
develop analytical models or numerical models to describe
the flow in sloping aquifers in response to various types of aqui-
fer tests.

. During 1970s and 1980s, conceptual models for describing flow
in naturally fractured media in response to a variety of hydrau-
lic tests [380] had been made intensively in the areas of petro-
leum engineering and groundwater hydrology. Three models
are commonly used to represent fractured formation systems
such as equivalent porous medium, discrete fractures, and dual
porosity [199,381]. Note that the subject of non-Darcian flow in
discrete fractures of fractured formations has been covered in
this review. Berkowitz [382] provided an intensive review on
characterizing flow and transport in fractured media. He also
raised many open questions at the end of some sections. One
of the questions is that “How can we best quantify the non-lin-
ear relationship between volumetric fluid flow and hydraulic
gradient ...?” It is of practical interest to evaluate the suitability
or applicability of the use of the Forchheimer equation and
Izbash equation developed in 1901 and 1931, respectively, in
most field of fractured flow problems. If these two equations
can not best quantify that non-linear relationship, then the
development of a new model to simulate the non-Darcian flow
in fracture media will be the task of future research.

. In this review, we have addressed the issue of numerical calcu-
lations for five well functions encountered in the hydrology or
other sciences. Among those functions, three functions includ-
ing Theis well function, Hantush well function, and Hantush
M function have been included in a list given by Hantush [2].
As a matter of fact, Hantush [2] gave a total of 20 functions
often encountered in problems of groundwater flow modeling.
Some of those functions are mathematical functions such as
Bessel functions, error functions, and gamma functions. The
numerical approximations for those functions are, in fact, avail-
able with high accuracy in Abramowitz and Stegun [104]. The
first function A(t, p) given in Hantush [2] is the dimensionless
solution for groundwater flow subject to a constant-head
pumping in a confined aquifer. The tabular values of A(t,p)
for very wide ranges of T and p have three significant digits
[2], while those of A(t,p) estimated by Peng et al. [128] using
their approach including a singularity removal scheme, New-
ton’s method, the Gaussian quadrature, and Shanks’ method
have accuracy to five decimal places. The fourth function
G(t,p), fifth function H(u,p), thirteen function S(z,p), fifteen
function v(t, p), and nineteen function Z(t,p, ) in Hantush’s list
[2] can also be evaluated using the approach of Peng et al. [128]
or others approached suggested by Nadarajah [359], Philips and
Mahon [378], or Veling [363] for high accuracy. Similarly, those
above-mentioned approaches may also be used to evaluate
complicated solutions such as the ones provided by Cooper et
al. [57], Neuman and Witherspoon [276], Papadopulos and
Cooper [75], or others obtained from well-hydraulic problems.
. Very often, the analytical solutions developed for describing the
flow in various groundwater hydrology problems are employed
to generate the type curves which are generally plotted in fig-
ures with the curves of dimensionless hydraulic head (or
dimensionless drawdown) versus dimensionless time (or dis-
tance). The hydraulic parameters are then determined by the
graphical approach via curve-fitting procedure, i.e., to match

the observed data to a type curve. In principle, the graphical
approach is applicable only if the number of unknown parame-
ters of aquifer properties is three or less. In reality, the number
of hydraulic parameters may be up to four or more for the flow
in leaky aquifers or unconfined aquifer systems. For example,
the solution for hydraulic head (or drawdown) includes four
parameters for flow in an aquifer system with one confined
aquifer and one aquiclude [383] or in an unconfined aquifer
[31]. The head solution has five parameters for flow in confined
aquifers with a finite thickness skin subject to a pumping at a
constant discharge [27] or constant head [167] if the skin thick-
ness is considered as an unknown parameter. Moreover, the
head solution contains six parameters for flow in an aquifer sys-
tem with one confined aquifer and two confining layers [138] or
with two confined aquifers and one confining layer [383]. In
those cases that the parameter number is four or more, an alter-
native and feasible way we suggest for identifying the parame-
ters is to develop a numerical approach by combining the
analytical solution with the algorithm of extended Kalman filter
[384] or with an optimization method such as simulated
annealing [385,386] or the nonlinear least-squares [387].

5. In modeling groundwater flow to a partially penetrating well
for a CRT, a uniform flux along the screen portion is commonly
assumed as the boundary condition. Such an assumption makes
the development of the analytical solutions workable, yet intro-
duces some errors in the prediction of flow near the wellbore. A
more appropriate treatment of the boundary condition along
the screen portion is to specify the integrated flux rather than
the uniform flux. Despite the widely application of analytical
models based on the uniform flux assumption, the use of this
assumption needs to be deliberated.
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