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The fuzzy measure can highlight important information in analyzing component features, patterns, and
trends. However, fuzzy densities and interaction effects are usually unknown or uncertain for implica-
tions thus making the fuzzy measure limited in applications. This research proposes an extended fuzzy
measure to derive the conditional fuzzy densities from dominance-based rough set approach (DRSA),
multiply preferences and the derived densities into utilities, fulfill fuzzy measure identification, and
empower the fuzzy measure to aggregate utilities. For illustration, the extended fuzzy measure is applied
on World Competitiveness Yearbook 2011 to imply policy-making information for Greece, Italy, Portugal,
and Spain.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction dent. The sub-additive interaction, however, yields some substitu-
National competitiveness plays an important role as an aggre-
gation power of a nation to enhance its people’s lives and cope
with worldwide challenges [1–3]. The fuzzy measure can highlight
component information in analyzing features [4,5], patterns [6,7],
and multi-criteria decision making (MCDM) [8–11]. However,
applying the fuzzy measure to analyze competitiveness has diffi-
culties. First, the fuzzy densities based on outcome probabilities
are not designed for ‘if. . .then. . .’ implications [12,13]. Substituting
the fuzzy densities by conditional probabilities makes the fuzzy
measure identification hard because the aggregation boundaries
for the conditional probabilities and the outcome probabilities
might be different. Second, the fuzzy measure cannot identify the
interaction effects of compound components, composed of prefer-
ences and densities [14–16]. There are two reasons for this identi-
fication problem. One is that the fuzzy measure is designed for a
single type of components. The other is because the interaction ef-
fects might have mixed types and cause ambiguity in estimating
the competitiveness. The three typical interaction types are addi-
tive, sub-additive, and super-additive effects. The additive type is
that interaction effect is similar to the expected effects. It is desired
by users due to ease of assuming the components to be indepen-
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ent of Technology, National
Taiwan.
m@iwate-pu.ac.jp (H. Fujita),
.H. Tzeng).
tion effects and reduces the expectation of components
independence, while the super-additive interaction yields addi-
tional effects than the expected effects.

With the aforementioned problems, key challenges for analyz-
ing competitiveness are summarized as the followings:

� World Competitiveness Yearbook (WCY) is the most well-known
annual report of national competitiveness [2]. It presents pref-
erences for national performance with criteria values. However,
it neither assumes criteria weights for grouping nations nor
provides competitiveness features for decision making.
� Dominance-based rough set approach (DRSA) can provide pref-

erence features however it cannot handle analysis on compo-
nents aggregation. Contrarily, the fuzzy measure can
aggregate densities while it cannot identify densities for
‘if. . .then’ implications.

To overcome the above challenges, an Extended Fuzzy Measure
(EFM), as shown in Fig. 1, is designed. It makes the fuzzy measure-
ments possible in the information system of DRSA. Firstly, EFM
associates criteria to a given class by DRSA to derive the Condi-
tional Fuzzy Densities (CFD) for ‘if. . .then’ implications. CFDs are
used to replace the fuzzy densities of the fuzzy measure and sub-
stitute the weights of the utility functions. The integration between
the fuzzy measure and utility theory thus becomes possible. Sec-
ondly, EFM multiplies a preference and a CFD into a utility and
aggregate utilities into a multiplicative utility function [17,18]. In
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Fig. 1. The design of the extended fuzzy measure (EFM).
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this research the multiplicative utility function is proved to per-
form aggregation as well as the fuzzy measure. Thirdly, EFM fulfills
fuzzy measure identification on the aggregated utilities and
chooses a resulted k to provide competitiveness values. Finally,
EFM analyzes correlations of the competitiveness values among
four factors. Users can easily read and understand relationship
among economic performance, government efficiency, business
efficiency, and infrastructure. The terms in Fig. 1 alternatively in-
cludes a dominating class and preference orders to generate CFD.

This paper has two main parts. The first is the implementation
of EFM. The second is a case study about the application of EFM
which focuses on Greece, Italy, Portugal, and Spain. The remainder
of this paper is organized as follows: Section 2 reviews DRSA and
fuzzy measure, Section 3 presents EFM by the multiplicative utility
function, Section 4 addresses results of an EFM application, Sec-
tion 5 presents discussions on EFM and the case study, and finally
concluding remarks are stated to close the paper.

2. Literature review

To date, the International Institute for Management Develop-
ment (IMD) annually publishes the most well-known report, World
Competitiveness Yearbook (WCY), which ranks and analyzes how a
nation’s environment can create and develop sustainable enter-
prises. Its reports are used as the competitiveness data in this re-
search. To get inside of the competitiveness features DRSA is
applied, which is reviewed below.

DRSA is a powerful technique of relational structure and has
been successfully applied in many fields [19–29]. In classification
application, it can be used to induce objects assigned to ClPt (the
upward union of classes which includes objects ranked at least
tth) or to Cl<t (the downward union of classes which includes ob-
jects ranked less than tth), where Cl is a cluster set containing pref-
erence-ordered classes Clt, t 2 T and T = {1, 2, . . . , n}. The
formulations for the above statement can be expressed as
Cl = {Cl1, . . . , Clt, . . . , Cln}, Cl1 = {y 2 U:y is ranked in the top posi-
tion}, Cl2 = {y 2 U:y is ranked in the second position}, . . . , and
Cln = {y 2 U:y is ranked in the bottom position} where U is a set
with decision makers’ preference orders and n is the number of
preference-ordered classes. For all s, t 2 T and s P t (rank of
s P rank of t), every object in Cls is preferred to be at least as good
as any of object in Clt. The upward union is constructed as
ClPt ¼ [sPtCls for s P t; inversely, the downward union as
Cl<t ¼ [s<tCls for s < t.

A representation of the upward union, called the dominating
set, can rely on a set of criteria, P. It follows the dominance princi-
ple of requiring each chosen object at least as good as object x in all
considered criteria of P. The granules of a dominating set based on
P can be viewed as the granular cones in the criteria value space.
Vice versa the dominated set for the downward union follows
the dominance principle and has the granules in the opposite
direction. These cones are named as P-dominating and P-domi-
nated sets [26], respectively. It is said that object y P-dominates
object x with respect to a criteria set P (denotation yDPx). Given
x, y 2 U and P, the dominance sets are formulated as.

P-dominating set: DþP ðxÞ ¼ fy 2 U; yDPxg
P-dominated set: D�P ðxÞ ¼ fy 2 U; xDPyg.

where x, y 2 Cl, y%qx for DþP ðxÞ; x%qy for D�P ðxÞ, and all q 2 P. The
assignment of objects into P-dominating set and ClPt has two types
of consistency. One is called consistent assignment, i.e., objects can
be properly assigned into DþP ðxÞ and ClPt . The other is inconsistent
assignment, i.e., objects assigned in ClPt possibly violate the domi-
nance principle of DþP ðxÞ. According to the dominance consistency,
there are two approximations available.

P ClPt
� �

¼ x 2 U : DþP ðxÞ# ClPt
� �

;

P ClPt
� �

¼
[

x2ClPt

DþP ðxÞ;Bnp ClPt
� �

¼ P ClPt
� �

� P ClPt
� �

P Cl<t
� �

¼ x 2 U;D�P ðxÞ# Cl<t
� �

;

P Cl<t
� �

¼
[

x2Cl<t

D�P ðxÞ;Bnp Cl<t
� �

¼ P Cl<t
� �

� P Cl<t
� �

where t ¼ 1; . . . ;n; Bnp ClPt
� �

and Bnp Cl<t
� �

are P-doubtful regions.
Objects in P-doubtful regions are inconsistent. In a simple word,
P ClPt
� �

requires that the largest union of P-dominating sets should
be properly included in ClPt . P ClPt

� �
requires that the smallest union

of P-dominating sets should contain all elements of ClPt while allow
some inconsistent objects.

The proper assignments can be expressed with the coverage
rate defined by Pawlak [30,31] and Greco et al. [22]. There are
two typical coverage rates (CR) for the upward unions ClPt and
the downward union Cl<t , which are formulated as follows:

CR ClPt
� �

¼
P ClPt
� ��� ��
jClPt j

; CR Cl<t
� �

¼
P Cl<t
� ��� ��
jCl<t j

The symbol CR is used to express ‘‘the probability of objects in the P-
lower approximation relatively belonging to the corresponding un-
ion of decision classes.’’ Alternatively, the accuracy rate presents the
ratio of the proper assignment to the possible assignment. Two typ-
ical accuracy rates (a) are listed as:

a ClPt
� �

¼
jP ClPt
� �

j
jP ClPt
� �

j
¼

jP ClPt
� �

j
jUj � jP Cl<t�1

� �
j
;

a Cl<t
� �

¼
jP Cl<t
� �

j
jP Cl<t
� �

j
¼

jP Cl<t
� �

j
jUj � jP ClPtþ1

� �
j

The symbol a is used to present ‘‘a ratio of the cardinalities of P-
lower approximation to those of P-upper approximation, i.e., the
degree of the properly classified approximation relative to the pos-
sibly classified approximation.’’ The relative importance of criteria
in mathematics is reviewed next.

Saaty (2001) proposed that pair-wise comparisons and induc-
tions can be formulated as ratios, and then transformed into the pri-
ority of criteria, or the criteria weights [32]. He also mentioned that
the ratios represent how much more or less a criterion is as com-
pared to another, and that its application can determine how close
the criteria are. Also, he emphasized that ratio operations are inde-
pendent from irrelevant alternatives. Thus the ratio scales derived
from different (criteria) scales can be implemented mathematically
to generate a characteristic ratio with invariance. Based on these
theories, a multiplication of two ratios, the coverage and the accu-
racy rates, can be used to express an accuracy of the conditional
probability. The fuzzy measure about the new ratio is reviewed next.

Sugeno presented the theories of fuzzy measures and fuzzy
integrals as means of expressing fuzzy systems in 1974 [12]. The
reviewing of the Sugeno’s definitions is described below with a
set, Q, a set function g(�) called a fuzzy measure for all subsets,b(Q),
of Q [33–37].



Table 1
Four factors and twenty criteria of national competitiveness by WCY 2011.

Economic performance Business efficiency
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Property 1. Boundaries of the fuzzy measure
g:b(Q) ? [0,1], g(£) = 0, and g(Q) = 1 where g is a fuzzy measure
function; g(;) and g(Q) present boundaries of the fuzzy measurement.
q1 Domestic economy q11 Productivity and efficiency
q2 International trade q12 Labor market
q3 International investment q13 Finance
q4 Employment q14 Management practices
Property 2. Monotonicity of the fuzzy measure
"A, B 2 b(Q), if A # B, then g(A) 6 g(B) where monotonicity holds for
the fuzzy measure function g.
q5 Prices q15 Attitudes and values

Government efficiency Infrastructure

q6 Public finance q16 Basic infrastructure
q7 Fiscal policy q17 Technological infrastructure
Property 3. Continuity of the fuzzy measure
If Ai 2 b(Q), 1 6 i <1, and the sequence {Ai} is monotonic, then
limi?+1g(Ai) = g(limi?+1Ai).
q8 Institutional framework q18 Scientific infrastructure
q9 Business legislation q19 Health and environment
q10 Societal framework q20 Education
Property 4. k-fuzzy measure If "A, B 2 b(Q), A \ B = £, and k 2 (�1,
+1) then g(A [ B) = g(A) + g(B) + kg(A)g(B), which is used to illustrate
the interaction for disjoint sets. k-fuzzy measure can present three
types of interactions: (i) supper-additive with k > 0, (ii) additive with
k = 0, (iii) sub-additive with k < 0. Let Q = {q1,q2, . . . , qm}. With Q being
a finite set, the fuzzy measure with criteria is identified in Property 5.
Property 5. k-fuzzy measure with m criteria

gkðfq1; q2; . . . ; qmgÞ ¼
Xm

j¼1

gj þ k
Xm�1

j1¼1

Xm

j2¼j1þ1

gj1gj2 þ � � � þ kn�1g1g2 . . . gm

¼ 1
k

Ym
j¼1

ð1þ kgjÞ � 1

" #

where �1 < k <1, j = 1, . . . , m, and gj = gk({qj}) is defined as the fuzzy
density with respect to qj.
3. The extended fuzzy measure for competitiveness features

EFM aims to multiply CFDs and preferences into utilities and
then empower the fuzzy measurement to aggregate utilities for
competitiveness components. Followings are their descriptions.
Section 3.1 is about the dataset. As the new proposals, Section 3.2
is the information system for EFM, and Section 3.3 is the derivation
of the conditional fuzzy densities. Section 3.4 proves that the mul-
tiplicative utility function can perform as well as the fuzzy measure.
Section 3.5 is about identifying the range of the interaction effects.

3.1. WCY data set

Four consolidated factors and twenty criteria are included in Ta-
ble 1. A total of 58 nations are included in 2011 WCY. These four
factors are focuses of our correlation analysis. The twenty criteria
will be used to derive the conditional fuzzy densities.

3.2. The Extended Fuzzy Measure (EFM)

This section has eight propositions. Propositions 1 and 2 are
about the information system and preference expressions. Proposi-
tions 3 and 4 include an induction rule, qP

j;t ! ClPt , by DRSA and the
conditional fuzzy density. Propositions 5, 6, 8 are about extension
of the fuzzy measure.

Proposition 1. Information system EFM ¼ U;Q ; f ;V ;ClPt
� �

where
U = {kjk represents a nation}, Q ¼ fq1; q2; . . . ; qmg; f : U�
Q ! V ;VQ ¼ ðVq1;Vq2; . . . ;VqmÞ;ClPt is a dominating union having
nations at least not less than t, and t is a rank place like 29th. This
proposition transforms mathematical sets into an information system.
Proposition 2. Preference orders rzj%rxj () f ðz; qjÞP f ðx; qjÞ;8z;
x 2 U where f is a function that maps a criterion to a preference value
for a nation. For instance, rxj and rzj are preference values of nation x
and z with respect to qj.
Proposition 3. An induction rule qP
j;t ! ClPt where qP

j;t is a set of
nations within the top t positions with respect to qj. This rule associ-
ates a dominating set to an upward union. It is independent to addi-
tion or removal of other criteria.
Proposition 4. CFD of an induction rule g0j ¼ g0 qP
j;t ! ClPt

� �
where g0j

is the conditional fuzzy density for qP
j;t ! ClPt which is a unique value

to present the degree that qj supports nations to compete the top t
positions. Technically, it is an accurate coverage rate, 0 6 g0j 6 1. Its
derivation is described in Model I.
Proposition 5. Multiplying a CFD and a preference into a utility
ukðqjÞ ¼ g0jrkj where rkj represents a preference for nation k with
respect to qj, 0 6 rkj 6 100, and uk(qj) is a function.
Proposition 6. Boundaries of competitiveness values (aggregated
utilities) uk(;) = 0 and uk(Q) 6 100 are assumed by WCY-IMD.
Proposition 7. k-fuzzy measure of EFM uk(qj, qi) = uk(qj) + uk(qi) + -
i) = uk(qj) + uk(qi) + kuk(qj)uk(qi) where j – i, "qj, qi 2 Q, k is an inter-
action degree when utilities are aggregated in the extended fuzzy
measure, k P �1; and k 2 R.
Proposition 8. EFM function with m criteria ukðQÞ ¼ ukðq1; q2; . . . ;

qmÞ ¼ 1
k

Qm
j¼1½1þ kukðqjÞ� � 1

� �
¼ 1

k

Qm
j¼1½1þ kg0jrkj�

�
�1Þ is an

extended fuzzy measure function for nation k by considering Proposi-
tion 5. This is derived in Section 3.4.
3.3. Deriving the Conditional Fuzzy Densities (CFD)

In our design CFD plays one role as a CFD in Proposition 4 and
the other role as a weight in Proposition 5. Its dual roles can inte-
grate the fuzzy measure and the utility functions. Fig. 2 presents

the concept of Proposition 4, g0j ¼ g0 qP
j;t ! ClPt

� �
, where qP

j;t is a

dominating set, qP
j;t ¼

S
sPtqj;s

� �
, containing nations ranked in at

least tth with respect to criterion qj. g0j is the optimal production

of the coverage, CR ClPt
� �

, and the accuracy rates, aðClPt Þ. To solve
g0j, the boundaries of the lower and upper approximations are de-

fined. The object x is defined for the boundary of P ClPt
� �

which con-
tains objects at least as good as x with respect to criterion qj. The
object z is defined for the boundary of P ClPt

� �
which contains ob-

jects at least as good as z with respect to criterion qj. These two
boundary objects are presented as slash lines in the middle part
of Fig. 2. For implementation, the optimization technique could
be used to search the optimal CFD and find out the positions of x
and z.

The derivation of Proposition 4 is implemented mathematically
in Model I.



Fig. 2. The DRSA model.
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Model I: Deriving g0j

MAX g0j ¼ CR ClPt
� �

� a ClPt
� �

s:t: P ClPt
� �

¼DþP ðxÞ; P ClPt
� �

¼DþP ðzÞ;P¼qj

rank of x with respect to P P rank of z with respect to P P rank of t

CR ClPt
� �

¼jP ClPtð Þj
jClPt j

; a ClPt
� �

¼jP ClPtð Þj
jP ClPtð Þj

where x and z are boundaries of Fig. 2, and CR and a are the coverage
and accuracy rates. This model has been successfully programmed
in Lingo 12.

3.4. The proof of the extended fuzzy measure function, uk(Q)

The proof of Propositions 7 and 8 is presented here. In the proof
statements the preference value of nation k with respect to qj is
presented as rkj and each criterion is expressed as qj(r1j,
r2j, . . . , rkj, . . . , r58j).

Proof. ukðQÞ ¼ 1
k

Qm
j¼1½1þ kukðqjÞ� � 1

� �
¼ 1

k

Qm
j¼1½1þ kg0jrkj� � 1

� �
where k – 0, k is the interaction degree, and m is the number of

criteria. h

Assumptions:

1. uk(Q) = uk(q1, q2, . . . , qm) is treated as a utility function and an
extended fuzzy measure function for nation k.

2. uk q0
j

� �
¼ 0, where q0

j has the lowest utility with respect to cri-
terion qj.

3. uk q�j
� �

6 100, where q�j has the optimum of utility with respect
to criterion qj.

4. uk q�1; q
�
2; . . . ; q�m

� �
6 100 is limited by the competitiveness scale

of WCY dataset.
5. g0j represents the conditional fuzzy density of qj for ClPt and

0 6 g0j 6 1.
6. ukðqjÞ ¼ uk q0

1; q
0
2; . . . ; q0

j�1; qj; q
0
jþ1; . . . ; q0

m

� �
¼ g0jrkj represents a

utility of nation k with respect to qj. uk(qj) is independent from
other criteria same as qP

j;t ! ClPt independent from the other
rules.

7. �ukðqjÞ ¼ ukðq1; q2; . . . ; qj�1; q0
j ; qjþ1; . . . ; qmÞ ¼ ukð�qjÞ is the com-

plement of uk(qj), where fq1; q2; . . . ; qj�1; q
0
j ; qjþ1; . . . ; qmg ¼ f�qjg.

By following the utility theory in trading preferences, we start
deducing statements as below.

Let i – j, cj(qj) and ci(qi) are scale factors [23].

ukðqj; qiÞ ¼ ukðqjÞ þ cjðqjÞukðqiÞ ð1Þ
¼ ukðqiÞ þ ciðqiÞukðqjÞ ð2Þ

According to (1) and (2), cjðqjÞ�1
ukðqjÞ

¼ ciðqiÞ�1
ukðqiÞ

¼ k can be assumed and the

utility for a criterion can be found in (3).

So; cjðqjÞ ¼ 1þ kukðqjÞ ð3Þ
By substituting (3) into (1) and (2), we obtain Proposition 7 as (4).

ukðqj; qiÞ ¼ ukðqjÞ þ ukðqiÞ þ kukðqjÞukðqiÞ ð4Þ

Furthermore, a utility function with a full range of criteria can be
formulated as (5).

ukðQÞ ¼ ukðq1Þ þ c1ðq1Þukðq2; q3; . . . ; qmÞ
¼ ukðq1Þ þ c1ðq1Þ½ukðq2Þ þ c2ðq2Þukðq3; q4; . . . ; qmÞ�
¼ ukðq1Þ þ c1ðq1Þukðq2Þ þ c1ðq1Þc2ðq2Þukðq3Þ þ � � � þ � � �
þ c1ðq1Þ � � � cm�1ðqm�1ÞukðqmÞ ð5Þ

By substituting (3) into (5), we obtain the extended fuzzy measure
function (6) for all criteria.

ukðQÞ ¼ ukðq1Þ þ
Xm

i¼2

ukðqiÞ
Yi�1

j¼1

½1þ kukðqjÞ� ð6Þ

The expression (6) has two cases below.

Case (i): k = 0
ukðQÞ ¼
Xm

j¼1

ukðqjÞ ¼
Xm

j¼1

g0jrkj ð7Þ

Case (ii): k – 0

1þ kukðQÞ ¼
Ym
j¼1

ð1þ kukðqjÞÞ due to

1þ kukðQÞ ¼ 1þ kukðq1Þ þ
Xm

i¼2

Yi�1

j¼1

½1þ kukðqjÞ�kukðqiÞ

¼ ½1þ kukðq1Þ�½1þ kukðq2Þ� þ
Xm

i¼3

Y2

j¼1

½1þ kukðqjÞ�kukðqiÞ

¼
Y2

j¼1

½1þ kukðqjÞ� þ
Xm

i¼3

Y2

j¼1

½1þ kukðqjÞ�kukðqiÞ

¼
Y3

j¼1

½1þ kukðqjÞ� þ
Xm

i¼4

Y3

j¼1

½1þ kukðqjÞ�kukðqiÞ

¼
Ym
j¼1

½1þ kukðqjÞ� where k – 0 due to ukðqjÞ

¼ uk q0
1; q

0
2; � � � ; q0

j�1; qj; q
0
jþ1; � � � ; q0

m

� �
:

So, the extended fuzzy measure function for Q is reformulated as
(8).

1þ kukðQÞ ¼
Ym
j¼1

½1þ kukðqjÞ� () ukðQÞ

¼ 1
k

Ym
j¼1

½1þ kukðqjÞ� � 1

 !
ð8Þ
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3.5. Identifying the range of interaction degree

k of Proposition (8) should exist in the range of Proposition 6.
Fig. 3 gives an illustration.

By accepting the CFDs derived from Model I, Model II can back-
wardly find out the maximum boundary of k where the top score in
WCY 2011 is 100 from US. Model III can backwardly find out the
minimum boundary of k where the bottom score is 35.25 from
Venezuela.

Model II: MAX k

ukðQÞ 6 100;max k ¼ k; ukðQÞ ¼
1
k

Ym
j¼1

½1þ kg0jrkj� � 1

 !

Model III: MIN k

ukðQÞP 35:25;min k ¼ k; ukðQÞ ¼
1
k

Ym
j¼1

½1þ kg0jrkj� � 1

 !

Model IV is designed to aggregate utilities with a resulted k for na-
tions’ factors. Its k choice focuses on the smallest interaction, i.e.,
max_k and leaves the biggest interaction among factors as possible.
The significant correlation between each two factors thus can be
caught.

Model IV:

ukðQ economyÞ;Q economy ¼ fq1; q2; . . . ; q5g; k ¼max k

ukðQ governmentÞ;Q government ¼ fq6; q7; . . . ; q10g; k ¼max k

ukðQ businessÞ;Q business ¼ fq11; q12; . . . ; q15g; k ¼max k

ukðQ infrastructureÞ;Q infrastructure ¼ fq16; q17; . . . ; q20g; k ¼max k

Two points make EFM different from Sugeno’s. First, summation of
CFD might not be restricted to one. This arises from the difference
between conditional probabilities and outcome probabilities. Sec-
ond, EFM has a closed interval for the interaction degree, min_-
k 6 k 6max_k, while the traditional fuzzy measure does not.
4. Results

The conditional fuzzy densities of Proposition 4 for the upper
half nations of WCY 2011 are calculated by Model I and summa-
rized in the left part of Table 2. The results reveal some disclosures.
First, none of the conditional fuzzy densities equals to 1, which
Table 2
The resulted CFD and k of the extended fuzzy measure for WCY 2011.

Conditional fuzzy densities

E G B I

g01 0.65 g06 0.49 g011 0.74 g016

g02 0.51 g07 0.31 g012 0.52 g017

g03 0.57 g08 0.87 g013 0.77 g018

g04 0.52 g09 0.74 g014 0.83 g019

g05 0.34 g010 0.68 g015 0.63 g020

Note: E: Economic, G: Government, B: Business, I: Infrastructure.
means none of criteria can completely classify dominance classes.
Second, the resulted k, �0.0286 k 6 �0.010, has min_k = �0.028
and max_k = �0.010. Obviously, only a single type of interaction
exists for the aggregation. This makes EFM reliable in analysis.
Third, institutional framework (q8) plays a leading criterion in sup-
porting nations to achieve the upper half positions with the condi-
tional fuzzy density 0.87. Fourth, the government and business
efficiencies have correlation coefficient up to 0.85 by choosing
k = �0.01, presented in the right part of Table 2. They are obtained
from the fuzzily measured factors uk(E), uk(G), uk(B), and uk(I)
where E = {q1, q2, q3, q4, q5}, G = {q6, q7, q8, q9, q10}, B = {q11, q12,
q13, q14, q15}, and I = {q16, q17, q18, q19, q20}.

In a summary, this research has achieved three merits. First, the
fuzzy measure was successfully extended on ‘if. . .,then. . .’ implica-
tions. Second, the compound components (preferences and impli-
cation probabilities) were successfully multiplied into utilities for
fuzzy measurements. Third, the fuzzy measure identification was
successfully fulfilled for WCY 2011. These findings are further dis-
cussed in Section 5 and a case study on Greece, Italy, Portugal, and
Spain is also presented.

5. Discussions and implications

This research uses EFM instead of Choquet’s integral to aggre-
gate utilities. There are two reasons for this choice. Firstly, a huge
number of additions up to n(2m � 1) times have to be considered
by Choquet’s integral when involving m criteria and n nations. Sec-
ondly, the corresponding preferences to the conditional fuzzy den-
sities are hard to get for Choquet’s integral. In our empirical
experiments, EFM processes computation as easy as a utility
function.

According to Section 4, the resulted k belongs to the interaction
type (iii) below. This satisfies the requirement ‘only one type of
interaction effect exists for competitiveness utilities’. Three math-
ematical formulae related to k are illustrated below.

(i) k > 0 : 1
k

Qm
j¼1ð1þ kukðqjÞ � 1

h i
>
Pm

j¼1ukðqjÞ. The aggregated

utility has additional effects than the expected.

(ii) k ¼ 0 : 1
k

Qm
j¼1ð1þ kukðqjÞ � 1

h i
¼
Pm

j¼1ukðqjÞ. The aggregated

utilities just fit. Neither overlapping nor additional effect

than the expected.
Factors correlation

E G B I

0.77 E 1 0.67 0.74 0.49
0.77 G 1 0.85 0.73
0.74 B 1 0.62
0.65 I 1
0.59 Chosen k = �0.01



Table 3
Interaction effects of EFM and LD.
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Fig. 4. The dominance pattern and correlation feature of government and business
factors.

Table 4
Merits of related techniques.

LD DRSA Utility theory Fuzzy measure EFM

Driving implication probabilities (densities) Y Y N N Y
Non-additive aggregation N N Y Y Y
Identifying interaction type N N Y N Y
Total merits 1 1 2 1 3
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(iii) k < 0 : 1
k

Qm
j¼1ð1þ kukðqjÞ � 1

h i
<
Pm

j¼1ukðqjÞ. The aggregated
utility has overlapping thus makes competitiveness less
than the expected of independent utilities.

The maximum and minimum boundaries of k can be used to
verify the quality of the conditional fuzzy densities. To give a clear
illustration about this merit, an experiment is designed to compare
EFM and the linear discriminant method (LD) [38] in the mixed
interaction and weighting problems. These two methods respec-
tively use the dataset of WCY 2011 to generate a set of fuzzy den-
sities and a set of regression weights for the upper half nations. The
regression weights are lists with gray background in Table A1 of
Appendix A, which is processed by a complete classification. Both
adopt Model II and III to find out their intervals of k which is pre-
sented in slash area of Table 3.

The comparison results show that EFM does not have mixed
interaction problems while LD has difficulty in determining an
interaction type. Moreover, LD has many weights equal to zero,
which opposes the WCY’s assertion that each criterion has its
own influence in the competitiveness. For instance, four criteria
weights of business efficiency equal to zero.

To compare merits among related techniques for aggregation
analysis, driving implication probabilities (CFD or weights), non-
additive aggregation, and identifying interaction type are used as
comparative items in Table 4.

As we can see, EFM has all the merits. The fuzzy measure nei-
ther provides implication probabilities nor identifies interaction
type. The linear discriminant method can generate regression
weights however can neither identify interaction effect nor
aggregate non-additively. DRSA can drive implication probabilities
however cannot handle utilities aggregation and identify interac-
tion effects. The utility theory might non-additively aggregate
and identify interactions while requiring decision makers’ knowl-
edge to provide weights. EFM combines merits from DRSA, utility
theory, and the fuzzy measure to highlight important information
in components analysis.

Here a case study of applying EFM on WCY 2011 is conducted to
highlight competitiveness features, patterns, and trends for Greece,
Italy, Portugal, and Spain. A correlation feature between the gov-
ernment and business efficiencies is presented in Fig. 4 in which
the vertical axis is scaled by uk(G), the horizontal axis is scaled
by uk(B), the interaction degree is chosen k = �0.01, and the gov-
ernment efficiency goes up with the increase of the business effi-
ciency. Alternatively, Fig. 4 has two dominance patterns which
are visually formed by a dashed line for classification. The upper
half nations belong to the dominating (right) side and the bottom
half nations belong to the dominated (left) side. Only two nations
violate this rule. The scale of this pattern highlights that Spain has
a bigger potential to approach the dominating positions while
Greece stays away from the classification line.

Model V is designed to find out the competitiveness character-
istics for the pattern based on (uk(B), uk(G)). It solves the minimum
square distance from cguk(G) + cbuk(B) + h = 0 (k is a nation) in
which the characteristics of the pattern is presented as the solid
line v, c is a coefficient vector (cg, cb) for (uk(B), uk(G)), and c and
v perpendicular each other. The resulted values of v is (0.70,
0.71) which gives the change rates between government and busi-
ness efficiencies. Currently, Greece, Italy, Portugal, and Spain have
the same problem in debts. They stand close to the solid line v, sig-
nifying their government and business has tight relationship. If a
proposal can lead a nation to move along the solid line v then it
can help these four nations.

Model V:

MIN ¼ ðcgukðGÞ þ cbukðBÞ þ hÞ2k : an index for nations
s:t: cg þ cb ¼ 1 where cg and cb represent coefficients
for ukðGÞ and ukðBÞ; respectively:

v � c ¼ 0 where v ¼ ðvg ;vbÞ and c ¼ ðcg ; cbÞ

The historical trends of government and business efficiencies
in WCY 1997–2011 are presented as Fig. 5 with correlation



Fig. 5. The trends of government and business efficiencies, WCY 1997 � 2011.

Table A1
The conditional fuzzy densities of EFM and weights of LD for WCY 2011.
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coefficients, Greece (0.76), Ireland (0.91), Italy (0.82), Portugal
(0.61), and Spain (0.94). The vertical axis is the performance scale
from 0 to 100 for government or business efficiencies. The horizon-
tal axis extends years from 1997 to 2011. The solid lines represent
the historical tracks of government efficiency and the dashed lines
for the business efficiency. These historical correlations verify the
effectiveness of EFM.

Usually people assume government should lead business devel-
opment. For these six nations, Greece, Italy, Ireland, Portugal, and
Spain were different from Sweden which has been getting better
in government and business efficiencies. Further, Ireland ever per-
formed well before the financial crisis in 2008. Her competitive-
ness behavior is different from the rest four nations. In order to
get details inside of Greece, Italy, Portugal, and Spain the govern-
ment efficiency in 2011 is analyzed in Model VI by approximating
the minimum square distance to a hyper plane.
Model VI:
MIN ¼ ðc6rk6 þ c7rk7 þ c8rk8 þ c9rk9 þ c10rk10 þ hÞ2

k 2 Greece; Italy; Portugal; Spain
s:t: c6 þ c7 þ c8 þ c9 þ c10 ¼ 1; cj represents a coefficient for qj;

j ¼ 6; . . . ;10
v � c ¼ 0; c ¼ ðc6; c7; c8; c9; c10Þ and v ¼ ðv6;v7; v8;v9; v10Þ

Model VI discloses that public finance (q6), fiscal policy (q7),
institutional framework (q8), business legislation (q9), and societal
framework (q10) of these four nations with v = (0.27,0.28,
0.26,0.86,�0.22). Its values imply that the improvement of socie-
tal framework might scarify public finance, fiscal policy, institu-
tional framework, and business legislation, or vice versa. If an
improving proposal in societal framework need not sacrifice pub-



Y.C. Ko et al. / Knowledge-Based Systems 37 (2013) 86–93 93
lic finance, fiscal policy, institutional framework, and business
legislation then these four nations will have a chance to improve
competitiveness.

In the future work, the multi-objective programming might
play an important role to discover a MCDM proposal for Greece,
Italy, Portugal, and Spain. Alternatively, national happiness might
give another thinking to enhance people’s life. Applying the happi-
ness and competitiveness together to overcome debt crisis is a
good issue in the future, too.

6. Concluding remarks

This research has achieved some merits: Successfully extending
the fuzzy measure on ‘if. . .,then. . .’ implications, empowering the
fuzzy measure to aggregate utilities, fulfilling the fuzzy measure
identification for the aggregated utilities, implying correlations to
highlight competitiveness features, and estimating characteristics
of government efficiency for Greece, Italy, Portugal, and Spain. Fur-
thermore, the case study on WCY 2011 provides some disclosures
of intelligent analysis. A competitiveness feature discloses that
government and business efficiencies are highly correlated. A dom-
inance pattern shows Greece, Italy, Portugal, and Spain belong to a
less competitiveness class while Spain has a bigger potential to
achieve the upper half positions. The historical trends during
1997–2011 reveal Sweden successfully overcame the global finan-
cial crisis in 2008 due to government and business efficiencies get-
ting better. Conversely, Greece, Italy, Portugal, and Spain have been
keeping their government efficiencies in the lower performance. In
the future a proposal improving societal framework without sacri-
ficing public finance, fiscal policy, institutional framework, and
business legislation will help these four nations to grow stably.

Appendix A

See Table A1.
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