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I. INTRODUCTION

The idea of 1-bit analog-to-digital-conversion

(ADC) has been investigated and widely implemented

in software-defined receivers and in low power

satellite communications due to efficient bitwise

processing and avoidance of automatic gain control

[1—6]. For carrier recovery an arctangent phase

discriminator (APD) is traditionally used since it

maximizes the output signal-to-noise ratio (SNR) in

analog cases with an additive-white-Gaussian-noise

channel [7]. However due to significant 1-bit ADC

quantization loss, i.e., degradation ¸ 1:96 dB [4—5],
traditional APD may not be a good choice for

some applications that require a high accuracy

carrier phase, such as attitude determination,

radio occultation monitoring, geodesy, and other

applications [8—11]. Chang and Kao propose a novel

phase discriminator, called digital phase discriminator

(DPD), which utilizes the polarity information

provided by 1-bit ADC to estimate signal phase

in order to avoid the significant 1-bit quantization

loss [12]. It has been shown that DPD achieves

much higher accuracy than the traditional APD

in noiseless or high SNR environments. However

DPD does not perform well in noisy environments

because of its sensitivity to environmental noise

[12, Fig. 5, 13].

In this paper we propose a modified DPD,

called noise-balanced digital phase discriminator

(NB-DPD), that works well in both noiseless and

noisy environments. The collaborative use of APD and

NB-DPD is also investigated in order to achieve high

accuracy phase estimation in either high SNR cases

or low SNR cases. The most relevant prior research

is Host-Madsen and Handel’s work [14—15]. The

frequency estimation problem of 1-bit sampling on

a single sinusoid is investigated. Under the assumption

of independence between quantized samples, the joint

probability density function is derived by the product

of the probability functions of each sample. Then the

associated Cramer-Rao lower bound can be derived,

and the effects of 1-bit sampling and quantization

are discussed accordingly. The approach adopted in

our work targets phase estimation and considers the

dependence between neighboring quantized samples.

Moreover a novel phase discriminator NB-DPD is

developed, and the associated asymptotic performance

is investigated in order to achieve high accuracy phase

estimation. In addition, as we consider a limiter as a

binary quantizer with infinite samples, several results

in the field of limiter phase detector [16—17] can be

used to verify the asymptotic results of our work. This

becomes clear later.

This paper is organized as follows. First the

traditional inphase-quadrature (I-Q) structure APD

that uses a 1-bit ADC is investigated, and the
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Fig. 1. Phase detection of a 1-bit processing receiver.

stochastic characteristics of each channel correlator

output are provided. Then the effects of sampling

and 1-bit quantization, as well as asymptotic

performance of the APD, are derived. Next a novel

phase-discriminator NB-DPD is proposed to attain

high accuracy requirements in high SNR cases. The

performance of NB-DPD is also provided, and the

convergence issue is discussed. The discussion and the

conclusion follows.

II. PROBLEM DESCRIPTION OF TRADITIONAL APD

In a 1-bit processing receiver, the traditional

approach adopts a APD in the quadrature structure,

as shown in Fig. 1. First consider the received signal

given by

r(t) = sin(2¼fct+ μ) + u(t) (1)

where fc is the carrier frequency, μ is an unknown

phase, and u(t) is the environmental noise. After

sampling with 1-bit quantization, the output is

represented by

rn = sgn[sin(2¼fcnTs+ μ)+ un] (2)

= sin(2¼fcnTs+ μ)+ un+ qn (3)

where un = u[nTs], sgn(¢) denotes the polarity function,
and qn denotes the quantization loss of the nth sample.

Next the local reference signals in Fig. 1 are

given by

LOI[n] = sgn[sin2¼fLOnTs] (4)

LOQ[n] = sgn[cos2¼fLOnTs] (5)

where fLO is the local carrier frequency. Since the

phase estimate is of interest, the local reference

frequency fLO is assumed to be equal to the incoming

carrier frequency fc. Then we have

In = sgn[sin(Án+ μ) +un] ¢ sgn[sinÁn] (6)

Qn = sgn[sin(Án+ μ) +un] ¢ sgn[cosÁn] (7)

where Án = 2¼fcnTs. The traditional APD is an

arctangent function of the quadrature integration

to the inphase integration. Due to quantization loss

an asymptotic estimation deviation exists even if

SNR!1, and an infinite number of measurement

samples are obtained, as shown in Fig. 2. Note

that qn may depend on input signal, and thus the

neighboring samples rns may be correlated even if

noise components uns are mutually independent.

This feature and the nonlinearity of the sinusoidal

function make the derivation of the distribution of μ̂

intractable. In the following we propose an approach

that derives the asymptotic deviation of an APD even

when considering that the neighboring quantized

samples are correlated.

III. DERIVATION OF E[I] AND E[Q]

First let fs = 1=Ts be the sampling rate and

fc
fs
= L+

R

P
(8)

where L is the largest integer less than or equal

to fc=fs while P > R, and they are relative prime

integers. It has been proved that (Á0,Á1 : : :ÁP¡1) are
distributed uniformly over [0,2¼) and that fÁng are
periodic with a period of P, i.e., Áj = ÁiP+j , where

i,j 2 (0,1, : : :P¡ 1) [12]. These properties are critical
in the following derivation. Now we focus on these

beginning P samples and define the normalized

correlator outputs, given by

I=
1

P

P¡1X
n=0

In (9)

Q=
1

P

P¡1X
n=0

Qn: (10)

Assuming that noise components u0,u1 : : :up¡1 are
identical, Gaussian, random variables and considering

Án 2 [0,¼) in I-channel because sinÁn > 0, we have
the conditional probabilities given by

Pr(In = 1 j Án) = Pr(sin(Án+ μ) +un ¸ 0 j Án)

= 1¡G
μ
sin(Án+ μ)

¾

¶
(11)

Pr(In =¡1 j Án) = Pr(sin(Án+ μ) +un < 0 j Án)

= G

μ
sin(Án+ μ)

¾

¶
(12)
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Fig. 2. Asymptotic bias error of APD in 1-bit processing receiver as SNR!1.

where ¾ is the standard deviation of un and where the
G-function is defined by

G(z) =
1p
2¼

Z 1

z

e¡x
2=2dx: (13)

Note that u0,u1 : : :uP¡1 may be dependent in our
approach. On the other hand for Án 2 [¼,2¼), since
sinÁn · 0, the corresponding conditional probabilities
are given by

Pr(In = 1 j Án) = Pr(sin(Án+ μ) +un · 0 j Án)

= G

μ
sin(Án+ μ)

¾

¶
(14)

Pr(In =¡1 j Án) = Pr(sin(Án+ μ) +un > 0 j Án)

= 1¡G
μ
sin(Án+ μ)

¾

¶
: (15)

Since (Á0,Á1 : : :ÁP¡1) are deterministic phases and the
distributed uniformly over [0,2¼), the expected value
of I is given by

E[I] =
1

P

P¡1X
n=0

E[In]

=
1

P
¢
8<: X
Án2[0,¼)

1¡ 2G
μ
sin(Án+ μ)

¾

¶

+
X

Án2[¼,2¼)
2G

μ
sin(Án+ μ)

¾

¶
¡ 1
9=; :

(16)

Let ¢Á= 2¼=p. When P is sufficiently large, ¢Á! 0,

and (16) can be rewritten as

E[I] =
1

P
¢ 1
¢Á

¢
( X
Án2[0,¼)

·
1¡ 2G

μ
sin(Án+ μ)

¾

¶¸
¢¢Á

+
X

Án2[¼,2¼)

·
2G

μ
sin(Án+ μ)

¾

¶
¡ 1
¸
¢¢Á

)

¼ 1

2¼
¢
½Z ¼

0

·
1¡ 2G

μ
sin(Á+ μ)

¾

¶¸
¢ dÁ

+

Z 2¼

¼

·
2G

μ
sin(Á+ μ)

¾

¶
¡ 1
¸
¢ dÁ
¾

=
1

¼
¢
½Z 2¼

¼

G

μ
sin(Á+ μ)

¾

¶
dÁ

¡
Z ¼

0

G

μ
sin(Á+ μ)

¾

¶
dÁ

¾
: (17)

From (1) the SNR of received signal is given by

SNR=
1

2¾2
: (18)

Let ° =
p
2SNR. Then (17) can be simplified as

E[I] =
1

¼
¢
(Z 2¼

¼

G(° sin(Á+ μ))dÁ

¡
Z ¼

0

G(° sin(Á+ μ))dÁ

)
: (19)
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Fig. 3. Expected value of inphase correlator output when SNR=¡30 dB, ¡20 dB: : :30 dB.

By interchanging variables by Ã = Á+ μ, (19)

becomes

E[I] =
1

¼
¢
(Z 2¼+μ

¼+μ

G(° sinÃ)dÃ¡
Z ¼+μ

μ

G(° sinÃ)dÃ

)
:

(20)

From (20) we can derive the expected value of the

inphase output for a given μ and SNR. By utilizing

(20) we explore the useful properties of E[I] in the
following.

First since G(a)>G(b) if a < b, in (20), the

maximum of the first term and the minimum of the

second term occur when μ = 0 and vice versa when

μ = ¼. Hence the maximum of E[I] occurs at μ = 0,
given by

E[I]max =
1

¼
¢
(Z 2¼

¼

G(° sinÃ)dÃ¡
Z ¼

0

G(° sinÃ)dÃ

)
(21)

and the minimum occurs at μ = ¼, given by

E[I]min =
1

¼
¢
(Z ¼

0

G(° sinÃ)dÃ¡
Z 2¼

¼

G(° sinÃ)dÃ

)
=¡E[I]max: (22)

For (21) as μ = 0, the desired signal component and

the local replica are completely inphased, and hence

the maximum is achieved since the polarization

inverse of the noise effect is reduced. On the other

hand due to the symmetry property of sinusoids, the

minimum is achieved as μ = ¼, with the equivalent

value and the opposite sign of the maximum, as

shown in (22). Note that from (20), E[I] = 0 when

μ = ¼=2. Figure 3 shows E[I] with respect to μ

for different SNRs. From Fig. 3 when SNR!1,
i.e., a noiseless environment, E[I] approaches a

polynomial of degree 1 regarding μ with E[I]max = 1

and E[I]min =¡1. In a noisy environment when
the SNR becomes extremely low, E[I]max! 0 and

E[I]min! 0. Hence the curve of E[I] approximates the

horizontal line. Note that it is sufficient to plot E[I]

over μ 2 [0,¼) since it is symmetric about μ = 0.
From (7) following the same reasoning as the

I-channel, we have

E[Q] =
1

¼
¢
½Z (3¼=2)+μ

(¼=2)+μ

G(° sinÃ)dÃ¡
Z (¼=2)+μ

(¡¼=2)+μ
G(° sinÃ)dÃ

¾
:

(23)

Similar to E[I] in (20), we can utilize (23) to explore

useful properties of E[Q]. Figure 4 shows E[Q] with

respect to μ for different SNRs using (23). Similar

to E[I] the curve of E[Q] regarding μ approaches a

polynomial of degree 1, while the maximum of E[Q]

occurs at μ = ¼=2 and while the minimum occurs at

μ =¡¼=2. Now we are ready to derive the asymptotic
performance of the APD.

IV. ASYMPTOTIC DEVIATION OF APD

The traditional APD is given by

μ̂APD = tan
¡1 Q
I

(24)

where tan¡1(¢) denotes the arctangent function. In
order to derive the asymptotic performance of the

APD, suppose that N = P£M sufficient samples are
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Fig. 4. Expected value of quadrature correlator output when SNR=¡30 dB, ¡20 dB: : :30 dB.

obtained, where M is an integer. When
PN¡1

n=0 In 6= 0
the asymptotic deviation of the APD is given by

lim
N!1

μ̂APD = tan
¡1
limN!1

1

N

PN¡1
n=0 Qn

limN!1
1

N

PN¡1
n=0 In

(25)

= tan¡1
limM!1

1

PM

PP¡1
k=0

PM¡1
m=0 QmP+k

limM!1
1

PM

PP¡1
k=0

PM¡1
m=0 ImP+k

(26)

= tan¡1
1

P

PP¡1
k=0 limM!1

1

M

PM¡1
m=0 QmP+k

1

P

PP¡1
k=0 limM!1

1

M

PM¡1
m=0 ImP+k

:

(27)

Assume that environmental noise components un
and un+j are independent when j ¸ P, where n and
j are nonnegative integers. Because ÁiP+k = ÁjP+k for

i 6= j, every P samples must have the identical phase
ÁmP+k + μ, even though μ is unknown, where m=

0,1,2 : : :M ¡ 1. These sample ImP+ks are independently
and identically distributed (IID). This also applies

to QmP+ks. According to the law of large numbers

(LLN), we have

lim
M!1

1

M

M¡1X
m=0

ImP+k! E[Ik] (28)

lim
M!1

1

M

M¡1X
m=0

QmP+k! E[Qk]: (29)

Next since (Á0,Á1 : : :ÁP¡1) are distributed uniformly
over [0,2¼) so are (Á0 + μ,Á1 + μ : : :ÁP¡1 + μ). When P

is sufficiently large

1

P

P¡1X
k=0

E[Ik]! E[I] (30)

1

P

P¡1X
k=0

E[Qk]! E[Q] (31)

where E[I] and E[Q] are given by (20) and (23),

respectively. Thus (27) becomes

μ̂APD! tan¡1
E[Q]

E[I]
(32)

as N!1. Notice that the convergence holds even
when neighboring quantized samples are dependent.

From (20), (23), and (32), the asymptotic deviation

of the APD can be derived numerically, as shown in

Fig. 5, when ¡30 dB· SNR· 30 dB. From Fig. 5

the asymptotic deviation is a function of μ and the

SNR. It exhibits periodic property along μ since the

incoming sinusoidal wave is periodic. As SNR!1
the maximum estimation error occurs at 21:5±, 68:5±,
111:5±, and 158:5±, while the minimum occurs at

0±, 45±, 90±, and 135±. The maximum deviation is

about §4:1±, and the minimum deviation is zero. The

analysis of searching local extrema and the associated

positions are provided in Appendix I. Note that the

positions of local extrema depend on the SNR and

may slightly vary in high SNR cases. Figure 5 also

implies that no matter how large the SNR is, the

deviation exists even if the sampling count N!1.
This is illustrated when fc = 15:42 MHz and when
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Fig. 5. Asymptotic deviation μ̂APD¡ μ.

Fig. 6. Phase estimation standard deviation error of APD when N = 1024 (dashed line), 4096 (dash-dotted line) and theoretical value

when N!1 (solid line) as SNR= 20 dB, using 100 Monte Carlo simulation trials.

fs = 4:096 MHz, as shown in Fig. 6. In low SNR

cases the deviation reduces if N is sufficiently large,

as illustrated in Fig. 7. This is consistent with the

result of the noise effect on the periodic phase

detector characteristic when the SNR is sufficiently

low [16, 17, Sect. 6.5]. Hence for applications in low

SNR cases, high accuracy carrier phase estimation

can be achieved by using a 1-bit APD with sufficient

samples. However for high SNR cases, significant

deviation exists. In the next section a novel 1-bit

phase discriminator is proposed to achieve high

accuracy phase estimation in high SNR cases.
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Fig. 7. Phase estimation standard deviation error of APD when N = 20480 (solid line), 81920 (dashed line), and 409600 (dash-dotted

line) when SNR=¡20 dB using 100 Monte Carlo simulation trials.

Fig. 8. Expected values E[I] (solid line) and E[Q] (dashed line) in noiseless cases.

V. NOISE-BALANCED DIGITAL PHASE
DISCRIMINATOR

First, the noiseless case of E[I] and of E[Q] are

considered, as shown in Fig. 8. The linear curve of

E[I] is given by

E[I] = E[I]max

μ
1¡ 2

¼
¢ jμj
¶
: (33)

Since E[I]max = 1, we can derive μ from (33) given

by

jμj= ¼
2
¢ (1¡E[I]): (34)

From Fig. 8 we further find

sgn(μ) = sgn(E[Q]): (35)
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Fig. 9. Expected values of (a) E[I] (solid line), its linear approximations (dashed line), and (b) E[Q] when SNR=¡30 dB,
¡20 dB: : :30 dB.

Hence the polarity ambiguity of μ in (34) can be

resolved, and thus

μ = sgn(E[Q]) ¢ ¼
2
¢ (1¡E[I]): (36)

Equation (36) tells us that μ can be derived by using

E[I] and E[Q] under noiseless environments.

In noisy cases we can still utilize (33) to

approximate E[I] (dashed line) with modified E[I]max
in (21), as shown in Fig. 9(a). Hence the phase can be

approximated using (33), given by

jμj ¼ ¼
2
¢
μ
1¡ E[I]

E[I]max

¶
: (37)

From Fig. 9(b) the polarity ambiguity of the phase

estimate can also be resolved using the sign of E[Q].

Hence the estimate of μ is given by

μ ¼ sgn(E[Q]) ¢ ¼
2
¢
μ
1¡ E[I]

E[I]max

¶
: (38)

Next, from (21), E[I]max is a function of the SNR,

which is unknown in many realistic situations. Here

we propose an approximation for E[I]max in the

following.

When SNR!1, from Fig. 8, we find that

jE[I]j+ jE[Q]j= E[I]max for μ 2 [¡¼,¼):
(39)

Hence we make the linear approximation for high
SNR cases as

E[I]max ¼ jE[I]j+ jE[Q]j for μ 2 [¡¼,¼):
(40)

In order to verify this, we plot jE[I]j+ jE[Q]j, as
shown in Fig. 10. From Fig. 10 the approximation
also holds well in low-SNR cases.
Finally, by inserting (40) into (38), we attain a

phase discriminator independent of the SNR, given by

μ ¼ sgn(E[Q]) ¢ ¼
2
¢
μ
1¡ E[I]

jE[I]j+ jE[Q]j
¶
: (41)

In practice, as we have enough samples, i.e., N!1,
from the definitions of I and Q, we have I! E[I]
and Q! E[Q], respectively. Hence the phase can be
estimated by

μ̂NBDPD = sgn(Q) ¢
¼

2
¢
μ
1¡ I

jIj+ jQj
¶
: (42)

This phase discriminator is called NB-DPD since
the affect of noise is approximately balanced in the
factor jIj+ jQj, which is the key for the NB-DPD to
achieve high accuracy in high-SNR cases. Note that
the NB-DPD does not require knowledge of the SNR
and that the computation is less than the APD.

VI. ASYMPTOTIC DEVIATION OF NB-DPD

A. Noiseless Environments

In noiseless environments, from Fig. 8, we have

jE[I]j+ jE[Q]j= 1: (43)
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Fig. 10. jE[I]j+ jE[Q]j when SNR=¡30 dB, ¡20 dB: : :30 dB.

Fig. 11. Asymptotic deviation μ̂NBDPD¡ μ.

By combining (43) and (41), we have

μ̂NBDPD = sgn[E[Q]] ¢
¼

2
¢ (1¡E[I]) (44)

which is equivalent to the DPD proposed in [12].

Hence the NB-DPD inherits the high-accuracy

properties of the DPD in noiseless or high-SNR cases.

B. Noisy Environments

From (20), (23), (40), and (41), the asymptotic

deviation of the NB-DPD is provided in Fig. 11.

Obviously the NB-DPD achieves high accuracy phase

estimation in high-SNR cases. This is consistent

with the results in Section VI-A. On the other hand

the estimation error gets bigger in low-SNR cases.
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Fig. 12. Phase estimation standard deviation error of NB-DPD when N = 20480 (solid line), 81920 (dashed line), and 409600

(dash-dotted line), with absolute cross-section (bold solid line) of Fig. 11, when SNR=¡20 dB using 100 Monte Carlo simulation
trials, where fc = 15:42 MHz and fs = 4:096 MHz.

Fig. 13. Phase estimation standard deviation error of NB-DPD when N = 1024 (solid line), 4096 (dashed line), and 40960 (dash-dotted

line), when SNR= 20 dB using 100 Monte Carlo simulation trials, where fc = 15:42 MHz and fs = 4:096 MHz.

As the SNR becomes extremely low, maximum

estimation errors occur at 17:4±, 72:6±, 107:4±, and
162:6±, while the minimum occur at 0±, 45±, 90±,
and 135±. The maximum deviation is about §4±,
and the minimum deviation is zero. The analysis of

searching local extrema and the associated positions

are provided in Appendix II. Note that the positions

of local extrema depend on the SNR and that they

may slightly vary in low-SNR cases. From Fig. 11 the

deviation exists even if the sampling count N!1.
In order to obtain more insight, the estimation

performance with SNR=¡20 dB is provided in
Fig. 12, where a Monte Carlo simulation is used

for 100 trials. From Fig. 12 the simulated results
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Fig. 14. Phase estimation performance transition between NB-DPD and APD.

approach the theoretical estimation deviation error

derived in (41) as N increases. On the other hand

when SNR= 20 dB, the deviation is reduced, as

illustrated in Fig. 13. These results are consistent

with the LLN since I! E[I] and Q! E[Q] when

N!1, as shown in (28)—(31). Hence in high-SNR
cases, a high-accuracy carrier phase estimation can be

achieved by using the NB-DPD. Note that comparing

Fig. 13 with Fig. 12, convergence is achieved by using

many fewer samples in high-SNR cases.

As we compare Fig. 5 with Fig. 11, it is interesting

to see the complementary performance between the

NB-DPD and the APD, which reveals the cooperative

potential for various applications. Furthermore it is

worth comparing the performance difference between

the NB-DPD and the APD in “mid-SNR” (SNR is

neither high nor low) cases. First let ±APD and ±NBDPD
be the asymptotic deviations of APD and NB-DPD

given by

±APD = μ̂APD¡ μ (45)

±NBDPD = μ̂NBDPD¡ μ (46)

when N!1. In (45)—(46), ±APD and ±NBDPD are
functions of the SNR and can be derived from (20),

(23), (24), and (42). Because of the nonlinearity of

the arctangent function and the complexity of the

double integral, the analysis of performance difference

seems intractable when the SNR is neither high nor

low. Using the numerical method, the performance

“boundary” between the NB-DPD and the APD is

provided in Fig. 14, where the pair (μ,SNRboundary)

satisfies that

±NBDPD = ±APD: (47)

Thus when SNR> SNRboundary, the estimation

error of μ̂NBDPD is less than that of μ̂APD. As we take
the averages of ±APD and ±NBDPD over μ 2 [¡¼,¼),
the average absolute estimation error of both cases
is obtained numerically, as shown in Fig. 15. The
intersection point suggests that the threshold SNR can
be set at 2.6 dB and can be used to determine whether
the NB-DPD or the APD should be adopted according
to the respective application. When SNR> 2:6 dB
the NB-DPD should be chosen; otherwise, the APD
should be adopted.

VII. CONVERGENCE OF I AND Q

As we investigate the convergence of the estimates
in (28)—(32), two driving factors are considered: phase
ambiguity determined by P and variance determined
by M.
First for phase ambiguity the resolution is 2¼=P,

and the ambiguity reduces as P increases. Since P is
determined by the carrier frequency and the sampling
rate, as shown in (8), a proper selection of these two
parameters and of the integration time (number of
samples N) is important.
Next for variance reduction the noise and

quantization effects are reduced as M increases. Since
our approach considers the dependence between
neighboring quantized samples, it is not tractable
to derive the probability distribution of the APD or
the NB-DPD directly. However it is obvious that the
convergence is determined by the convergence of I
and Q. Hence we derive the variances of I and Q as
follows. Consider the inphase correlator components
in the noiseless case, given by

Io,n = sgn[sin(Án+ μ)] ¢ sgn[sinÁn] (48)
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Fig. 15. Average asymptotic deviation of APD (solid line) and NB-DPD (dashed line).

where n= 0,1 : : :P¡ 1. From (11)—(15) we have

Pr(In = Io,n) = 1¡®n
Pr(In =¡Io,n) = ®n

where
®n =G(°jsin(Án+ μ)j): (49)

Thus the variance of In is given by

¾2n = E[I
2
n]¡E[In]2

= (1¡®n)I2o,n+®n(¡Io,n)2¡ [(1¡®n)Io,n¡®nIo,n]2

= 4®n(1¡®n) (50)

since I2o,n = 1. Hence for each group of IID samples

Ik,Ik+P : : :Ik+(M¡1)P , the group average in (28)
approaches its ensemble average with variance

4®n(1¡®n)=M, which vanishes as M!1. From (29)

it applies to quadrature-channel as well.

From above, increasing P and M can reduce the

phase ambiguity and the variance, respectively. The

price is the computation and the complexity. Hence it

is critical to select proper P and M in order to achieve

the desired high accuracy efficiently.

VIII. DISCUSSION AND CONCLUSIONS

Asymptotic deviation of the traditional APD

is provided in (20), (23), and (32), as shown in

Fig. 5, for 1-bit processing receivers. As sufficient

samples are obtained (N is sufficiently large), the

APD can attain high accuracy in low-SNR cases.

However in high-SNR cases, the APD may have

an estimation deviation up to 4:1±, and thus a novel

phase discriminator NB-DPD is proposed in (42). The

NB-DPD is developed using linear approximation and

provides a better estimate than APD does in high-SNR

cases, as shown in Fig. 11. The extrema of asymptotic

deviation for the APD in high-SNR cases and the

NB-DPD in low-SNR cases are derived analytically

in Appendix I and in Appendix II, respectively.

In addition the threshold SNR 2.6 dB is derived

numerically, as shown in Fig. 15, to select either the

NB-DPD or the APD accordingly.

It is worth mentioning that the proposed approach

that derives the asymptotic deviation in Section III

and Section IV works even though the neighboring

quantized samples are dependent (the proof is

provided in Appendix III). This dependence may

be caused by the dependence of neighboring

environmental noise components or by the dependence

of quantization noise on signal. In our approach we

only require the very general condition that a noise

component sample un is independent of un+j if j ¸ P
since P is typically large. Note that the non-Gaussian

noise can be incorporated in our approach and that,

in (13) the G-function can be replaced by the tail

probability of the noise distribution.

Finally, for data-free applications such as pilot

channel, the proposed algorithm can be readily used.

For data-bearing channels, the algorithm is adopted

in tracking loop after data is removed. In the future

it will be interesting to further explore the effects

of sampling, quantization, and noise and signal

waveform (separately and jointly) on asymptotic
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performance of carrier phase discriminators. This

would be our next step.

APPENDIX I

First consider noiseless cases, i.e., SNR!1, and
for simplicity, assume 0· μ < ¼=2. From Fig. 8 E[I]

and E[Q] are given by

E[I] = 1¡ 2μ
¼

(51)

E[Q] =
2μ

¼
: (52)

Hence the deviation of the APD is given by

±APD = μ̂APD¡ μ

= tan¡1
2μ

¼

1¡ 2μ
¼

¡ μ

= tan¡1
2μ

¼¡ 2μ ¡ μ: (53)

The extrema can be derived by taking the derivative of

(53), given by

max
μ
±APD)

d±APD
dμ

= 0:

Then we have

2(¼¡2μ) +4μ
(¼¡2μ)2 ¢ 1μ

2μ

¼¡ 2μ
¶2
+1

¡ 1 = 0

) 8μ2¡ 4¼μ+¼2¡2¼ = 0

) μ =
¼§p4¼¡¼2

4

= 0:375 rad (21:5±) or 1:196 rad (68:5±):

(54)

By inserting (54) into (53), we obtain the extreme

deviations §4:1±. Note that, from (53), ±APD = 0 when

μ = 0± or 45±. Similarly we can obtain the location of
extreme values when ¼=2· μ < ¼: 111:5± and 158:5±,
and ±APD = 0 when μ = 90± or 135±.

APPENDIX II

Since the error function has Taylor expansion,

given by

erf(x) =
2p
¼

1X
n=0

(¡1)nx2n+1
n!(2n+1)

(55)

the G-function can be approximated by

G(x) =
1

2
¡ 1
2
erf

μ
xp
2

¶
¼ 1
2
¡ xp

2¼
(56)

when x! 0. Hence when SNR¿ 1, (20) can be

approximated by

E[I]¼ 1

¼
¢
½Z 2¼+μ

¼+μ

1

2
¡ ° sinÃp

2¼
dÃ¡

Z ¼+μ

μ

1

2
¡ ° sinÃp

2¼
dÃ

¾
=
2
p
2°

¼3=2
cosμ

= hcosμ (57)

where h= 2
p
2°=¼3=2. Similarly (23) can be

approximated by

E[Q]¼ hsinμ (58)

when SNR¿ 1. Now consider the deviation of the

NB-DPD when 0· μ < ¼=2, given by

±NBDPD = μ̂NBDPD¡ μ

= sgn(E[Q]) ¢ ¼
2
¢
μ
1¡ E[I]

jE[I]j+ jE[Q]j
¶
¡ μ

=
¼

2

μ
1¡ cosμ

cosμ+sinμ

¶
¡ μ: (59)

The extrema can be derived by taking the derivative of

(59) given by

max
μ
±NBDPD)

d±NBDPD
dμ

= 0:

Then we have

¼

2
¢ sinμ(cosμ+sinμ) +cosμ(cosμ¡ sinμ)

(cosμ+sinμ)2
¡1 = 0

) (cosμ+sinμ)2 =
¼

2

) μ =
1

2
sin¡1

³¼
2
¡1
´
or
¼

2
¡ 1
2
sin¡1

³¼
2
¡ 1
´

) μ = 0:3037 rad (17:4±) or 1:2671 rad (72:6±):

(60)

By inserting (60) into (59), we obtain the extreme

deviations §4±. Note that, from (59), ±NBDPD = 0 when

μ = 0± or 45±. Similarly we can obtain the location
of the extreme values when ¼=2· μ < ¼: 107:4± and
162:6±, and ±APD = 0 when μ = 90± or 135±.

APPENDIX III

Without loss of generality we consider two

beginning consecutive data in each group of P

samples. First from the assumption in Section IV,

noise components un and un+j are independent when

j ¸ P. Hence I0,IPI2P : : :IMP are IID Gaussian random
variables, and I1,IP+1I2P+1 : : :IMP+1 are IID Gaussian

random variables.

Suppose that the consecutive data are

correlated, i.e.,

E[ImPImP+1] = E[ImP]E[ImP+1]+Am (61)
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where Am 6= 0. We want to prove that when M!1,
X and Y are independent, where

X=
1

M

M¡1X
m=0

ImP

Y=
1

M

M¡1X
m=0

ImP+1:

Next the cross-correlation between X and Y is

given by

E[XY] = E

"
1

M

M¡1X
m=0

ImP ¢
1

M

M¡1X
n=0

InP+1

#

=
1

M2
E

"
M¡1X
m=0

M¡1X
n=0

ImPInP+1

#

=
1

M2

M¡1X
m=0

E[ImPImP+1]+
1

M2

M¡1X
m=0

M¡1X
n=0,n 6=m

E[ImPInP+1]

=
1

M2

M¡1X
m=0

E[ImP]E[ImP+1]+
1

M2

M¡1X
m=0

Am

+
1

M2

M¡1X
m=0

M¡1X
n=0,n 6=m

E[ImP]E[InP+1] (62)

since ImP and InP+1 are reasonably assumed to be

uncorrelated when m 6= n. In addition the 2nd term
of (62) vanishes as M!1. Hence (62) can be
rewritten as

E[XY] =
1

M2

M¡1X
m=0

E[ImP]E[ImP+1]

+
1

M2

M¡1X
m=0

M¡1X
n=0,n 6=m

E[ImP]E[InP+1]

= E[X]E[Y]:

Since X and Y are Gaussian, the uncorrelation implies

independence. Thus the proposed approach deriving

asymptotic deviation in Section III and Section IV

works even though the neighboring quantized samples

are dependent.
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