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Abstract The Stein-Lovász theorem provides an algorithmic way to deal with the
existence of certain good coverings, and thus offers bounds related to some combi-
natorial structures. An extension of the classical Stein-Lovász theorem for multiple
coverings is given, followed by some applications for finding upper bounds of the
sizes of (d, s out of r; z]-disjunct matrices and (k,m, c,n; z)-selectors, respectively.
This gives a unified treatment for some previously known results relating to various
models of group testing.
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1 Introduction

Let X be a finite set and � be a family of subsets of X. Denote by H = (X,�) the
hypergraph having X as the set of vertices and � as the set of hyperedges. A subset
T ⊆ X such that T ∩ E �= ∅ for any hyperedge E is called a vertex cover (synony-
mously: transversal or hitting set) of the hypergraph H . The minimum size of a vertex
cover of the hypergraph H is denoted by τ(H). An upper bound for τ(H) was given
by Lovász (1975):

τ(H) <
|X|

minE∈� |E| (1 + ln�),

where � = maxx∈X |{E : E ∈ � and x ∈ E}|. An equivalent statement in terms of the
point-block incidence matrices of the corresponding hypergraphs was given by Stein
(1974) independently. It was called the Stein-Lovász Theorem in Cohen et al. (1996)
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while dealing with the covering problems in coding theory, see Sect. 2 for further
details.

The Stein-Lovász theorem was used in dealing with the upper bounds for the sizes
of (k,m,n)-selectors (De Bonis et al. 2005), followed by the upper bounds for the
sizes of (d, r; z]-disjunct matrices (Chen et al. 2008). More of its applications for
treating the minimal sizes of various set systems were also found in Deng et al.
(2011). These applications were obtained by translating the problems into the hyper-
graph problems and showing that the models can be deduced from the vertex cover of
properly defined hypergraphs. The notion of (k,m,n)-selectors was first introduced
by De Bonis et al. (2005), followed by a generalization to the notion of (k,m,w,n)-
selectors (De Bonis 2008). In this paper, we use the notation (k,m, c,n)-selectors for
convenience. Further generalizations of (d, r; z]-disjunct matrices and (k,m, c,n)-
selectors to (d, s out of r; z]-disjunct matrices and (k,m, c,n; z)-selectors respec-
tively will be given in Sect. 2. The variable z here is for error-tolerance purpose in
the group testing application (see Definition 2.7 and the following paragraph). A no-
torious feature of biological experiments is that errors almost always occur during
the testing procedure. Therefore, it would be wise for group testing to allow some
outcomes to be affected by errors.

In order to deal with the upper bounds for these binary matrices defined in Sect. 2,
an extended Stein-Lovász theorem is derived in Sect. 3, which can be regarded as
a more general version in terms of “z-cover”, i.e., a subset T of vertices such that
each hyperedge contains at least z elements in T . Although there is an intuitive way
to form a z-cover by making z copies of all elements of a vertex cover, the z-cover
we construct consists of distinct elements. This extension can be useful practically,
for example, in experiment designs all experiments are usually required to be distinct
because duplicates of experiments are redundant and meaningless.

In Sect. 4, the extended Stein-Lovász theorem will be used in dealing with the
upper bounds for the sizes of (d, s out of r; z]-disjunct matrices (Theorem 4.1) and
(k,m, c,n; z)-selectors (Theorem 4.3), respectively. It in turn provides a few upper
bounds for the sizes in various models with specific parameters as shown in Corol-
lary 4.2 and Corollary 4.4.

2 Preliminaries

2.1 Equivalence of the theorems of Lovász and Stein

For the hypergraph H = (X,�) with the vertex set X and the hyperedge set �,
the degree of x ∈ X is the number of hyperedges containing x, and � denotes the
maximum degree in H . A binary matrix M = (mEixj

) of order |�| × |X| can be in-
terpreted as a block-point incidence matrix of the hypergraph H , i.e., the rows of M

correspond to the hyperedge set � = {E1,E2, . . . ,E|�|}, and the columns correspond
to the vertex set X = {x1, x2, . . . , x|X|}, where

mEixj
=

{
1 if the hyperedge Eicontains the vertex xj

0 otherwise.
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A subset N ⊆ � (the same hyperedge may occur more than once) such that each
vertex belongs to at most z of its members is called a z-matching of the hypergraph H .
The maximum size over all z-matchings of the hypergraph H is denoted by νz(H).
Thus ν(H) = ν1(H) is the maximum number of disjoint hyperedges. For νz(H) and
other functions to be defined we often remove the argument H when the context is
clear. A z-matching is simple if no hyperedge occurs in it more than once. Let ν̃z be
the maximum number of hyperedges in simple z-matchings. Clearly, ν̃z ≤ νz. A sub-
set T ⊆ X (the same vertex does not occur more than once) such that |T ∩ E| ≥ z for
any hyperedge E is called a z-cover of the hypergraph H . Note that the requirement
“the same vertex does not occur more than once” is different from the definition of
the origional z-cover in Lovász (1975). The minimum size over all z-covers of the
hypergraph H is denoted by τz(H). Thus τ(H) = τ1(H) is the minimum size of a
vertex cover of the hypergraph H .

A vector (wE1,wE2, . . . ,wE|�|) with wEi
≥ 0 for each Ei ∈ � is called a fractional

matching of the hypergraph H if each entry of the vector (wE1,wE2, . . . ,wE|�|)M is
at most 1. A vector (wx1 ,wx2, . . . ,wx|X|) with wxi

≥ 0 for each xi ∈ X is called a frac-
tional cover of the hypergraph H if each entry of the vector M(wx1 ,wx2 , . . . ,wx|X|)

t

is at least 1. Define

ν∗(H) = sup
∑
Ei∈�

wEi
and τ ∗(H) = inf

∑
xi∈X

wxi
,

where the extrema are taken over all fractional matchings (wE1,wE2, . . . ,wE|�|) and
all fractional covers (wx1 ,wx2 , . . . ,wx|X|), respectively. By the duality theorem of
linear programming, we have ν∗ = τ ∗. Then it is easy to see that

ν ≤ νz/z ≤ ν∗ = τ ∗ ≤ τz/z.

One of the most natural methods to produce a small vertex cover of a given hy-
pergraph H is the “Greedy Cover Algorithm”, which we describe as follows (Lovász
1975):

1. Let x1 be a vertex with maximum degree.
2. Suppose that x1, x2, . . . , xi have been already selected. If x1, x2, . . . , xi cover all

hyperedges, then stop; otherwise let xi+1 be a vertex which covers the largest
number of uncovered hyperedges.

Generally, the greedy cover algorithm is not the best, but we can expect that it gives
a rather good estimate for the upper bound of τ(H). By the greedy cover algorithm,
an upper bound for τ(H) was given by Lovász (1975).

Theorem 2.1 (Lovász 1975) If H is a hypergraph and the above greedy cover algo-
rithm produces t covering vertices, then

t ≤ ν̃1

1 × 2
+ ν̃2

2 × 3
+ · · · + ν̃�−1

(� − 1) × �
+ ν̃�

�
.
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Corollary 2.2 (Lovász 1975) For a hypergraph H ,

τ(H) ≤
(

1 + 1

2
+ · · · + 1

�

)
τ ∗(H) < (1 + ln�)τ ∗(H).

Theorem 2.3 (Lovász 1975) For a hypergraph H = (X,�),

τ(H) <
|X|

minE∈� |E| (1 + ln�).

Similarly, by the greedy cover algorithm, an equivalent statement in terms of the
point-block incidence matrices of the corresponding hypergraphs was given by Stein
(1974) independently.

Theorem 2.4 (Stein 1974) Let X be a finite set of cardinality n, and let � = {A1,A2,

. . . ,Am} be a family of subsets of X, where |Ai | ≤ a for all 1 ≤ i ≤ m. Assume that
each element of X is in at least v members of the set �. Then there is a subfamily of
� that covers X and has at most

n

a
+ m

v

(
1

2
+ 1

3
+ · · · + 1

a

)

members.

Note that Theorem 2.4 is closely related to the work of Fulkerson and Ryser (1963)
in the 1-width of a (0,1)-matrix. They define the 1-width of such a matrix, A, as the
minimum number of columns that can be selected from A in such a way that each
row of the resulting submatrix has at least one 1. In this terminology, Theorem 2.4
can be restated as follows:

Theorem 2.5 (Stein 1974) Let A be a (0,1)-matrix with n rows and m columns.
Assume that each row contains at least v ones and each column at most a ones. Then
the 1-width of A is at most

n

a
+ m

v

(
1

2
+ 1

3
+ · · · + 1

a

)
.

Theorem 2.5 was called the Stein-Lovász Theorem in Cohen et al. (1996) while
dealing with the covering problems in coding theory. The Stein-Lovász theorem was
used in dealing with the upper bounds for the sizes of (k,m,n)-selectors (De Bonis
et al. 2005). Inspired by this work, it was also used in dealing with the upper bounds
for the sizes of (d, r; z]-disjunct matrices (Chen et al. 2008). Some more applications
can also be found in Deng et al. (2011).

2.2 The Stein-Lovász theorem

We now give a “weighted” version of the Stein-Lovász theorem. The proof is included
for completeness. In a binary matrix, the weight of a row (or a column), is the number
of entries equal to one.
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Theorem 2.6 (Deng et al. 2011) Let A be a (0,1) matrix with N rows and M

columns. Assume that each row contains at least v ones, and each column at most
a ones. Then there exists an N × K submatrix C with

K ≤
(

N

a

)
+

(
M

v

)
lna ≤

(
M

v

)
(1 + lna),

such that C does not contain an all-zero row.

Proof A constructive approach for producing C is presented. Let Aa = A. We begin
by picking the maximal number Ka of columns from Aa , whose supports are pairwise
disjoint and each column having a ones (perhaps, Ka = 0). Discarding these columns
and all rows incident to one of them, we are left with a ka × (M − Ka) matrix Aa−1,
where ka = N − aKa . Clearly, the columns of Aa−1 have at most a − 1 ones (indeed,
otherwise such a column could be added to the previously discarded set, contradicting
its maximality). Now we remove from Aa−1 a maximal number Ka−1 of columns
having a − 1 ones and whose supports are pairwise disjoint, thus getting a ka−1 ×
(M −Ka −Ka−1) matrix Aa−2, where ka−1 = N −aKa − (a −1)Ka−1. The process
will terminate after at most a steps. The union of the columns of the discarded sets
form the desired submatrix C with K = ∑a

i=1 Ki .
The first step of the algorithm gives ka = N − aKa , which we rewrite, setting

ka+1 = N , as Ka = (ka+1 − ka)/a. Analogously, Ki = (ki+1 − ki)/i, 1 ≤ i ≤ a.
Now we derive an upper bound for ki by counting the number of ones in Ai−1 in two
ways: every row of Ai−1 contains at least v ones, and every column at most i − 1
ones, thus

vki ≤ (i − 1)(M − Ka − · · · − Ki) ≤ (i − 1)M.

Furthermore,

K =
a∑

i=1

Ki =
a∑

i=1

ki+1 − ki

i

= ka+1

a
+ ka

a(a − 1)
+ ka−1

(a − 1)(a − 2)
+ · · · + k2

2 × 1
− k1

≤ (N/a) + (M/v)(1/a + 1/(a − 1) + · · · + 1/2),

thus giving the result. �

The greedy procedure as shown in the proof constructs the desired submatrix one
column at a time, and hence the Algorithm follows (Deng et al. 2011).

Note that the Algorithm shows that some rows of C have weight exactly one. This
is the key why the Stein-Lovász theorem can be extended. If the entries of 1 occur in
a binary matrix A of order N ×M as uniformly as possible, for example, each row of
A contains exactly v ones and each column exactly a ones, then an upper bound for
K is found so that the submatrices of order N × K will share similar property too.
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Algorithm STEIN-LOVÁSZ(A)
input: A is an N × M matrix, each column has at most a ones,

each row has at least v ones
C ← ∅
while A has at least one row

do

⎧⎪⎪⎨
⎪⎪⎩

find a column c in A having maximum weight
delete all rows of A that contain a “1” in column c

delete column c from A

C ← C ∪ c

output: Returns a submatrix of A with no all-zero row

2.3 A few models for group testing purpose

A few types of binary matrices will be introduced in this subsection, followed by
corresponding associated parameters. These families of binary matrices will be used
as models for pooling designs.

Definition 2.7 For integers d, s, r and z, with 1 ≤ s ≤ r , a t × n binary matrix M is
called (d, s out of r; z]-disjunct if for any d columns and any other r columns of M ,
there exist z row indices in which none of the d columns appear (with entries “0”)
and at least s of the r columns do (with entries “1”). The integer t is the size of the
(d, s out of r; z]-disjunct matrix. The minimum size over all (d, s out of r; z]-disjunct
matrices with n columns is denoted by t (n, d, r, s; z].

Note that the notions of d-disjunct matrix and (d; z)-disjunct matrix (Cheng
and Du 2008) are equivalent to (d,1 out of 1;1]-disjunct matrix and (d,1 out of
1; z]-disjunct matrix, respectively. Furthermore, d-disjunct and (d; z)-disjunct matri-
ces form the basis for error-free and error-tolerant nonadaptive group testing algo-
rithms (Cheng and Du 2008).

Definition 2.8 For integers k,m, c and n with 1 ≤ c < k ≤ n and 1 ≤ m ≤ (
k
c

)
,

a t × n binary matrix M is called a (k,m, c,n; z)-selector if any t × k submatrix
of M contains z disjoint submatrices of order m × k such that in each of them the m

rows are all distinct and each row has exactly c entries equal to 1. The integer t is the
size of the (k,m, c,n; z)-selector. The minimum size over all (k,m, c,n; z)-selectors
is denoted by ts(k,m, c,n; z).

It is interesting to remark that the notions of (k,m,n)-selectors (De Bonis et al.
2005) and (k,m, c,n)-selectors (De Bonis 2008) are equivalent to (k,m,1, n;1)-
selectors and (k,m, c,n;1)-selectors, respectively. The upper bounds for the size of
(k,m,n)-selectors and (k,m, c,n)-selectors were studied in De Bonis et al. (2005)
and in De Bonis (2008) respectively by the Stein-Lovász theorem. The bound for the
size of (k,m, c,n; z)-selectors will be derived by the extended Stein-Lovász theorem
(Theorem 3.1) in Sect. 4. Table 1 is subclasses of (d, s out of r; z]-disjunct matrices
and of (k,m, c,n; z)-selectors, respectively.
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Table 1 Subclasses of (d, s out of r; z]-disjunct matrices and of (k,m, c,n; z)-selectors

Parameters Types Bounds References

s = r = 1, z = 1 d-disjunct t (n, d) Yeh (2002)

s = r = 1 (d; z]-disjunct t (n, d; z]
s = r , z = 1 (d, r]-disjunct t (n, d, r] Yu (2007)

s = r (d, r; z]-disjunct t (n, d, r; z] Chen et al. (2008)

s = 1, z = 1 (d, r)-disjunct t (n, d, r) Yu (2007)

s = 1 (d, r; z)-disjunct t (n, d, r; z)
z = 1 (d, s out of r]-disjunct t (n, d, r, s] Yu (2007)

(d, s out of r; z]-disjunct t (n, d, r, s; z]
c = 1, z = 1 (k,m,n)-selectors ts (k,m,n) De Bonis et al. (2005), Yu (2007)

c = 1 (k,m,n; z)-selectors ts (k,m,n; z)
z = 1 (k,m, c,n)-selectors ts (k,m, c,n) De Bonis (2008)

(k,m, c,n; z)-selectors ts (k,m, c,n; z)

2.4 Some basic counting results

The Stein-Lovász theorem and its extension will be used to estimate the upper bounds
of the sizes of various models for pooling designs. In order to give upper bounds for
the above mentioned parameters, the following results involving binomial coefficients
will be involved. Lemma 2.9 will be used in showing appropriate values of a real-
valued variable w of various models. We need information regarding the maximum
of the function

f (w) =
(

n − w

d

)(
n − w − d

r − s

)(
w

s

)
(∗)

with various r and s when dealing with possible upper bounds for the size t of vari-
ous models. Lemma 2.11 and Lemma 2.12 will be used in the simplifications of the
bounds M/v and lna respectively in the expression (M/v)(1 + lna) found in the
Stein-Lovász theorem (Theorem 2.6).

Lemma 2.9 For any positive integers n,d, r, s with k = d + r ≤ n and 1 ≤ s ≤ r , the
function f (w) in (∗) gets its maximum at w = (ns − (k − s))/k.

Proof First note that

f (w) =
(

n − w

k − s

)(
w

s

)(
k − s

d

)
,

and

f (w + 1) =
(

(w + 1)(n − w) − (w + 1)(k − s)

(w + 1)(n − w) − s(n − w)

)
f (w).
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Note also that

(w + 1)(n − w) − (w + 1)(k − s)

(w + 1)(n − w) − s(n − w)

{
≥ 1 if w ≤ (ns − (k − s))/k

≤ 1 otherwise.

Hence f (w) is increasing for w ≤ (ns − (k − s))/k, and decreasing otherwise, as
required. �

By taking s = r = c in f (w), we get the function

g(w) =
(

w

c

)(
n − w

k − c

)
(∗∗)

for selectors, and Corollary 2.10 follows immediately.

Corollary 2.10 The function g(w) in (∗∗) gets its maximum at w = (nc−(k−c))/k.

Lemma 2.11 For any positive integers n,d, r, s with k = d + r ≤ n and 1 ≤ s ≤ r ,

∏r+d−1
i=0 (n − i)∏s−1

i=0(n − ik/s)
∏k−s−1

j=0 (n − jk/(k − s))
≤ 1.

Proof Without loss of generality, let s ≤ k − s and thus 1 ≤ k/(k − s) ≤ 2 ≤ k/s. To
prove this inequality, we will give a bijection

f : {0,1, . . . , r + d − 1}
→ {ik/s | 0 ≤ i ≤ s − 1} ∪ {jk/(k − s) | 0 ≤ j ≤ k − s − 1}

with the property that f (t) ≤ t , and hence (n − t)/(n − f (t)) ≤ 1 for 0 ≤ t ≤ r +
d − 1. Note that the element 0 will be counted twice as 0 · (k/s) and 0 · (k/(k − s))

respectively in the range of the function f . Note also that for the case i + j = t ,
if ik/s = i + i(k − s)/s > t , then s/(k − s) < i/(t − i) and hence jk/(k − s) =
j (1 + s/(k − s)) < j (1 + i/(t − i)) = j (t/(t − i)) = t .

Such a function f is defined recursively as follows. For 0 ≤ t ≤ 2, let f (0) =
0 · (k/s), f (1) = 0 · (k/(k − s)), f (2) = k/(k − s). For 3 ≤ t ≤ r + d − 1, let
i (resp. j ) be the smallest positive integers such that ik/s (resp. jk/(k − s)) /∈
{f (0), f (1), . . . , f (t − 1)} if they exist, in this case it follows that i + j = t .

1. Let f (t) = ik/s if ik/s ≤ t ; otherwise define f (t) = jk/(k − s).
2. For the case t is large and there is no such i, note that

n − s

n
≤ n − s − 1

n − k/(k − s)
≤ · · · ≤ n − r − d + 1

n − k + k/(k − s)
< 1,

then n−t
n−(t−s)(k/(k−s))

≤ 1 for s ≤ t ≤ r + d − 1, and define f (t) =
(t − s)(k/(k − s)).
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Clearly, the function f defined above is a bijection and f (t) ≤ t for 0 ≤ t ≤
r + d − 1, as required. �

Lemma 2.12 For any positive integers n,d, r, s with k = d + r ≤ n and 1 ≤ s ≤ r ,
let n′ ≥ n be the smallest positive integer such that w = n′s/k is an integer, then

1. (n′
d )(

n′−d
r )

(n′−w
d )(n′−w−d

r−s )(w
s )

≤ ( k
s
)s ( k

k−s
)k−s

(r
s)

, and

2. ln
((

n′−w
d

)(
n′−w−d

r−s

)( w
s

))
< k[1 + ln( n

k
+ 1)] + ln

(
k−s
d

)
.

Proof To prove 1, the left hand side can be rewritten as

( k
s
)s( k

k−s
)k−s(

r
s

) ·
∏r+d−1

i=0 (n′ − i)∏s−1
i=0(n′ − ik/s)

∏k−s−1
j=0 (n′ − jk/(k − s))

≤ ( k
s
)s( k

k−s
)k−s(

r
s

)
by Lemma 2.11. To prove 2, first note that n′ < n + k for such n′. By the inequality(
a
b

) ≤ ( ea
b

)b ,
(
n′−w

d

)(
n′−w−d

r−s

)(
w
s

)
can be rewritten as

(
n′ − w

k − s

)(
w

s

)(
k − s

d

)
≤

(
n′

k

)(
k − s

d

)
≤

(
en′

k

)k(
k − s

d

)

< ek

(
n

k
+ 1

)k(
k − s

d

)
.

Therefore,

ln

((
n′ − w

d

)(
n′ − w − d

r − s

)(
w

s

))
< ln

(
ek

(
n

k
+ 1

)k(
k − s

d

))

= k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − s

d

)
,

as required. �

The substitutions of w for various subclasses are summarized in the following
Table 2.

3 Extension of the Stein-Lovász theorem

The Stein-Lovász theorem can be extended from rows with weight at least 1 to the
case of rows with weight at least z ≥ 1. Moreover, the bound can be further improved
when A is a matrix with constant row weight and column weight as well.

Theorem 3.1 (Extension of the Stein-Lovász theorem) Let A be a (0,1) matrix of
order N × M , and let v, a, z be positive integers. Assume that each row contains at
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Table 2 The substitutions of w for various subclasses

Types Parameters

d-disjunct s = r = 1, z = 1 w = (n − d)/k w = n′/k

(d; z]-disjunct s = r = 1 w = (n − d)/k w = n′/k

(d, r]-disjunct s = r , z = 1 w = (nr − d)/k w = n′r/k

(d, r; z]-disjunct s = r w = (nr − d)/k w = n′r/k

(d, r)-disjunct s = 1, z = 1 w = (n − (k − 1))/k w = n′/k

(d, r; z)-disjunct s = 1 w = (n − (k − 1))/k w = n′/k

(d, s out of r]-disjunct z = 1 w = (ns − (k − s))/k w = n′s/k

(d, s out of r; z]-disjunct w = (ns − (k − s))/k w = n′s/k

(k,m,n)-selectors c = 1, z = 1 w = (n − (k − 1))/k w = n′/k

(k,m,n; z)-selectors c = 1 w = (n − (k − 1))/k w = n′/k

(k,m, c,n)-selectors z = 1 w = (nc − (k − c))/k w = n′c/k

(k,m, c,n; z)-selectors w = (nc − (k − c))/k w = n′c/k

least v ones, and each column at most a ones. Then there exists an N × K submatrix
C with

K ≤ z

(
M

v − (z − 1)

)
(1 + lna),

such that each row of C has weight at least z. More specifically, if each row of A

contains exactly v ones (i.e., A is v-uniform) and each column exactly a ones (i.e.,
A is a-regular), then the upper bound can be reduced to

K ≤ z

(
M

v

)
(1 + lna).

The strategy for the proof of Theorem 3.1 is stated as follows:

1. Use the Stein-Lovász theorem to obtain a submatrix C1 with each row has weight
at least 1.

2. Choose some columns in the matrix A\C1 to combine with the submatrix C1 to
form a submatrix C2 with each row has weight at least 2.

3. Choose some columns in the matrix A\C2 to combine with the submatrix C2 to
form a submatrix C3 with each row has weight at least 3.

4. Step by step, and finally we obtain the desired submatrix C = Cz with each row
has weight at least z.

Proof A constructive approach for producing C is presented. Let A1 = A. By the
Stein-Lovász theorem, there exists an N × M1 submatrix C1(= B ′

1 = B1) of A1 with
M1 ≤ (M/v)(1 + lna) such that each row of C1 has weight at least 1.

The algorithm used in the proof of the Stein-Lovász theorem shows that some rows
of C1 have weight exactly 1. Let R1 be the set of indices of those rows and let |R1| =
r1. Let A2 be the submatrix of order r1 × (M −M1) obtained from A1 by deleting the
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submatrix C1 and the k-th row, k /∈ R1 as well. Then each row of A2 contains at least
v − 1 ones, and each column at most a ones. Again, by the Stein-Lovász theorem,
there exists an r1 × M2 submatrix B ′

2 with M2 ≤ ((M − M1)/(v − 1))(1 + lna) such
that each row of B ′

2 has weight at least 1. Let B2 be the matrix of order N × M2
obtained from B ′

2 by adding the k-th row, k /∈ R1. Let C2 be the matrix of order
N × (M1 + M2) obtained by the union of B1 and B2. Then C2 is a submatrix of A

with each row weight at least 2.
Similarly, there exist some rows of C2 that have weight exactly 2. Let R2 be the

set of indices of those rows and let |R2| = r2. Continue in this way, for 2 ≤ i ≤ z we
have

1. Ai is a matrix of order ri−1 × (M − ∑i−1
j=1 Mj), and each row contains at least

v − (i − 1) ones, and each column at most a ones;

2. B ′
i is an ri−1 × Mi submatrix of Ai with Mi ≤ M−∑i−1

j=1 Mj

v−(i−1)
(1 + lna), and each

row has weight at least 1;
3. Bi is a matrix of order N ×Mi obtained from B ′

i by adding the k-th row, k /∈ Ri−1;

4. Ci is an N × ∑i
j=1 Mj submatrix of A, and each row has weight at least i.

Hence, C = Cz is the desired submatrix, and

K =
z∑

j=1

Mj = M1 + M2 + · · · + Mz

≤ M

v
(1 + lna) + M − M1

v − 1
(1 + lna) + · · · + M − ∑z−1

j=1 Mj

v − (z − 1)
(1 + lna)

≤ M

v
(1 + lna) + M

v − 1
(1 + lna) + · · · + M

v − (z − 1)
(1 + lna)

≤ z

(
M

v − (z − 1)

)
(1 + lna),

thus giving the result.
More specifically, for the case of uniform and regular, using similar argument

as above with a minor modification. First we note that Nv = Ma by counting the
number of ones in A in two ways. For 2 ≤ i ≤ z, Ai is a matrix of order ri−1 ×
(M − ∑i−1

j=1 Mj), and each row contains exactly v − (i − 1) ones, and each column

at most a ones. Moreover, a lower bound for
∑i−1

j=1 Mj is derived by counting the
number of ones in the submatrix Ci−1 in two ways: each row of Ci−1 contains at
least i − 1 ones, and each column exactly a ones, thus N(i − 1) ≤ (

∑i−1
j=1 Mj)a, and

hence (M/v)(i − 1) ≤ ∑i−1
j=1 Mj for 2 ≤ i ≤ z. Furthermore,

K =
z∑

j=1

Mj = M1 + M2 + · · · + Mz

≤ M

v
(1 + lna) + M − M1

v − 1
(1 + lna) + · · · + M − ∑z−1

j=1 Mj

v − (z − 1)
(1 + lna)
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≤ M

v
(1 + lna) + M − M/v

v − 1
(1 + lna) + · · ·

+ M − (M/v)(z − 1)

v − (z − 1)
(1 + lna)

= z

(
M

v

)
(1 + lna),

thus giving the result. �

For the case of uniform and regular, Theorem 3.1 can be restated in the language
of hypergraphs as follows:

Corollary 3.2 Let H = (X,�) be a v-uniform and a-regular hypergraph with vertex
set X and edge set �, then τz(H) ≤ z(|X|/v)(1 + lna).

We conjecture that τz(H) ≤ zτ1(H) holds for hypergraphs which are uni-
form and regular. However, it need not be true in general as shown in the
following example. For the hypergraph H with X = {1,2,3, . . . ,8} and � =
{{1,2,3}, {4,5,6}, {1,7,8}}. It is easy to see that {1,4} is a 1-cover with minimum
size, hence τ1(H) = 2. Similarly, {1,2,4,5,7} is a 2-cover with minimum size, hence
τ2(H) = 5. This shows that τ2(H) = 5 > 2 · 2 = 2τ1(H).

4 Some applications of the extended Stein-Lovász theorem

In this section, the extended Stein-Lovász theorem will be used in dealing the up-
per bounds for the sizes of (d, s out of r; z]-disjunct matrices (Theorem 4.1) and
(k,m, c,n; z)-selectors (Theorem 4.3). It in turn provides a few upper bounds for
the sizes in various models with specific parameters as shown in Corollary 4.2 and
Corollary 4.4.

For positive integers n and d , let [n] denote the set {1,2, . . . , n} and
([n]

d

)
denote

the collection of all subsets of [n] with cardinality d . For any vector u ∈ {0,1}n,
the weight wt(u) of u is the number of coordinates equal to one. Recall that
t (n, d, r, s; z] is the minimum size over all (d, s out of r; z]-disjunct matrices with n

columns.

Theorem 4.1 For any positive integers n,d, r, s and z, with 1 ≤ s ≤ r , if k =
d + r ≤ n, then

t (n, d, r, s; z] <

(
z

(
k

s

)s(
k

k − s

)k−s/(
r

s

)){
1 + k

[
1 + ln

(
n

k
+ 1

)]

+ ln

(
k − s

d

)}
.
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Proof For s ≤ w ≤ n − d , let A be the binary matrix of order [(n
d

)(
n−d

r

)] × (
n
w

)
with

rows and columns indexed by {(D,R) | D ∈ ([n]
d

)
,R ∈ ([n]

r

)
with D ∩ R = ∅} and

U = {u | u ∈ {0,1}n,wt(u) = w}, respectively. The entry of A at the row indexed by
the pair (D,R) and the column indexed by the vector u ∈ U is 1 if the entries of u

over D are all zero and at least s entries of u over R are one; and 0 otherwise.
Observe that each row of A has weight

v =
min(r,w)∑

j=s

(
r

j

)(
n − (d + r)

w − j

)
,

and each column of A has weight

a =
(

n − w

d

) min(r,w)∑
j=s

(
n − w − d

r − j

)(
w

j

)
.

By the extended Stein-Lovász theorem, there exists a submatrix M of A of order
[(n

d

)(
n−d

r

)] × t with each row has weight at least z, where

t ≤ z

((
n

w

)
/v

)
{1 + lna} = z

((
n

d

)(
n − d

r

)
/a

)
{1 + lna}.

Note that the equality is obtained by counting the number of ones in A in two ways.
Let M ′ = (m′

ui) be a t × n matrix with rows indexed by the column indices of M

and columns indexed by [n] such that

m′
ui =

{
1 if the ith coordinate of the vector u is 1
0 otherwise.

Then it is straightforward to show that M ′ is a (d, s out of r; z]-disjunct matrix, and
thus

t (n, d, r, s; z] ≤ z

((
n

d

)(
n − d

r

)
/a

)
{1 + lna} ≤ z

((
n

d

)(
n − d

r

)
/a′

)
{1 + lna′},

where a′ = (
n−w

d

)(
n−w−d

r−s

)(
w
s

)
.

Let n′ ≥ n be the smallest positive integer such that w = n′s/k is an integer. By
Lemma 2.12, we have

(
n′
d

)(
n′−d

r

)
(
n′−w

d

)(
n′−w−d

r−s

)(
w
s

) ≤ ( k
s
)s( k

k−s
)k−s(

r
s

)
and

ln

((
n′ − w

d

)(
n′ − w − d

r − s

)(
w

s

))
< k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − s

d

)
.
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Therefore,

t (n, d, r, s; z] ≤ t (n′, d, r, s; z]

≤ z
(
n′
d

)(
n′−d

r

)
(
n′−w

d

)(
n′−w−d

r−s

)(
w
s

)
{

1 + ln

[(
n′ − w

d

)(
n′ − w − d

r − s

)(
w

s

)]}

<
z(k

s
)s( k

k−s
)k−s(

r
s

) {
1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − s

d

)}

as required. �

As a consequence, upper bounds for the sizes of various situations are summarized
in the following corollary.

Corollary 4.2 (Lee 2009)

1. If k = d + 1 ≤ n, then

t (n, d) = t (n, d,1,1;1] < k

(
k

d

)d{
1 + k

[
1 + ln

(
n

k
+ 1

)]}
;

t (n, d; z] = t (n, d,1,1; z] < zk

(
k

d

)d{
1 + k

[
1 + ln

(
n

k
+ 1

)]}
.

2. If k = d + r ≤ n, then

t (n, d, r] = t (n, d, r, r;1] <

(
k

r

)r(
k

d

)d{
1 + k

[
1 + ln

(
n

k
+ 1

)]}
;

t (n, d, r; z] = t (n, d, r, r; z] < z

(
k

r

)r(
k

d

)d{
1 + k

[
1 + ln

(
n

k
+ 1

)]}
;

t (n, d, r) = t (n, d, r,1;1]

<
k

r

(
k

k − 1

)k−1{
1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − 1

d

)}
;

t (n, d, r; z) = t (n, d, r,1; z]

< z
k

r

(
k

k − 1

)k−1{
1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − 1

d

)}
;

t (n, d, r, s] = t (n, d, r, s;1]

<
(k

s
)s( k

k−s
)k−s(

r
s

) {
1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − s

d

)}
.

Following similar arguments in De Bonis et al. (2005) and De Bonis (2008) with
a minor modification, the upper bound for the sizes of (k,m, c,n; z)-selectors is
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given below. Recall that ts(k,m, c,n; z) is the minimum size over all (k,m, c,n; z)-
selectors.

Theorem 4.3 For b = (
k
c

)
,

ts(k,m, c,n; z) <
(b − m + 1)(z − 1) + 1

b − m + 1

(
k

c

)c(
1 + 1

k − c

)k−c

×
{

1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
b − 1

b − m

)}
.

Proof For c ≤ w ≤ n − k + c, let X = {x ∈ {0,1}n | wt(x) = w} and U = {u ∈
{0,1}k | wt(u) = c}. Note that |U | = b. Moreover, for any A ⊆ U of size r , 1 ≤ r ≤ b,
and any set S ∈ ([n]

k

)
, define EA,S = {x ∈ X : x|S ∈ A}.

Let M be the binary matrix of order [( b
b−m+1

)(
n
k

)]×(
n
w

)
with rows and columns in-

dexed by � = {EA,S ⊆ X | A ⊆ U, |A| = b − m + 1, S ∈ ([n]
k

)} and X = {x ∈ {0,1}n |
wt(x) = w}, respectively. The entry of M at the row indexed by the set EA,S and the
column indexed by the vector x ∈ X is 1 if x ∈ EA,S ; and 0 otherwise.

Observe that each row of M has weight

v =
(

b − m + 1

1

)(
n − k

w − c

)
,

and each column of M has weight

a =
(

w

c

)(
n − w

k − c

)(
b − 1

(b − m + 1) − 1

)
.

By the extended Stein-Lovász theorem, there exists a submatrix M ′ of M of order
[( b

b−m+1

)(
n
k

)] × t with each row has weight at least f = (b − m + 1)(z − 1) + 1,
where

t ≤ f

((
n

w

)
/v

)
{1 + lna} = f

((
b

b − m + 1

)(
n

k

)
/a

)
{1 + lna}.

Note that the equality is obtained by counting the number of ones in M in two ways.
Let M∗ = (m∗

xi) be a t × n matrix with rows indexed by the column indices of M ′
and columns indexed by [n] such that

m∗
xi =

{
1 if the ith coordinate of the vectorx is 1

0 otherwise.

Then it suffices to show that M∗ is a (k,m, c,n; z)-selector, that is, any submatrix of
k arbitrary columns of M∗ contains z disjoint submatrices of order m × k such that
in each of them the m rows are all distinct and each row has exactly c entries equal
to 1.
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Let x1, x2, . . . , xt be the t rows of M∗ and let T = {x1, x2, . . . , xt }. Suppose con-
tradictorily that there exists a set S ∈ ([n]

k

)
such that the submatrix M∗|S of M∗ con-

tains at most z − 1 disjoint submatrices of order m × k such that in each of them
the m rows are all distinct and each row has exactly c entries equal to 1. More-
over, M∗|S contains another disjoint submatrix with at most m − 1 distinct rows
with weight exactly c. Let uj1, uj2, . . . , ujq be such rows, with q ≤ m − 1; let A be
any subset of U\{uj1 , uj2, . . . , ujq } of cardinality |A| = b − m + 1, then we have
|T ∩ EA,S | < (b − m + 1)(z − 1) + 1, contradicting the fact that M ′ is a matrix of
order [( b

b−m+1

)(
n
k

)]× t with each row has weight at least f = (b −m+ 1)(z− 1)+ 1.
Hence we have

ts(k,m, c,n; z) ≤ f

((
b

b − m + 1

)(
n

k

)
/a

)
{1 + lna}.

Let n′ ≥ n be the smallest positive integer such that w = n′c/k is an integer. By
taking s = r = c in Lemma 2.12, we have

(
b

b−m+1

)(
n′
k

)
(
w
c

)(
n′−w
k−c

)(
b−1
b−m

) = 1

b − m + 1
·

(
k
c

)(
n′
k

)
(
w
c

)(
n′−w
k−c

)
≤ 1

b − m + 1

(
k

c

)c(
1 + 1

k − c

)k−c

and

ln

[(
w

c

)(
n′ − w

k − c

)(
b − 1

b − m

)]
< k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
b − 1

b − m

)
.

Therefore,

ts(k,m, c,n; z) ≤ ts(k,m, c,n′; z)

≤ [(b − m + 1)(z − 1) + 1]( b
b−m+1

)(
n′
k

)
(
w
c

)(
n′−w
k−c

)(
b−1
b−m

)
×

{
1 + ln

[(
w

c

)(
n′ − w

k − c

)(
b − 1

b − m

)]}

<
(b − m + 1)(z − 1) + 1

b − m + 1

(
k

c

)c(
1 + 1

k − c

)k−c

×
{

1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
b − 1

b − m

)}

as required. �

As a consequence, upper bounds for the sizes of various situations are summarized
in the following corollary.
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Corollary 4.4 (Lee 2009)

ts(k,m,n) = ts(k,m,1, n;1)

<
k

k − m + 1

(
1 + 1

k − 1

)k−1{
1 + k

[
1 + ln

(
n

k
+ 1

)]

+ ln

(
k − 1

k − m

)}
.

ts(k,m,n; z) = ts(k,m,1, n; z)

<
k[(k − m + 1)(z − 1) + 1]

k − m + 1

(
1 + 1

k − 1

)k−1

×
{

1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
k − 1

k − m

)}
.

ts(k,m, c,n) = ts(k,m, c,n;1)

<
1

b − m + 1

(
k

c

)c(
1 + 1

k − c

)k−c

×
{

1 + k

[
1 + ln

(
n

k
+ 1

)]
+ ln

(
b − 1

b − m

)}
.

5 Concluding remarks

In this paper, we derive the extended Stein-Lovász theorem to deal with more com-
binatorial structures. From the strategy of the proof in Theorem 3.1, it is easy to see
that the extended Stein-Lovász theorem also provides an algorithmic way to deal with
the existence of good coverings, and thus offers bounds related to some combinato-
rial structures. Note that most of these bounds are roughly the same as those derived
by the basic probabilistic methods including the Lovász Local Lemma (Yeh 2002;
Yu 2007). Thus, due to its constructive nature, the Stein-Lovász theorem can be re-
garded as a de-randomized algorithm for the probabilistic methods. The relationship
between the (extended) Stein-Lovász theorem and the Lovász Local Lemma deserves
further study.
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