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SUMMARY

This paper proposes a stepwise genetic fuzzy logic controller (SGFLC) by considering traffic flows and
queue lengths of cars and motorcycles as state variables and extension of green time as control variable,
towards the minimization of total vehicle delays. For the learning efficiency of SGFLC and the capability in
capturing traffic behaviors of Asian urban streets, where mixed traffic of cars and motorcycles are prevailing,
the mixed traffic cell transmission model (MCTM) is introduced to replicate traffic behaviors. To investigate
the control performance of the proposed SGFLC model, comparisons with two pre-timed timing plans and three
adaptive signal timing models are conducted at an isolated intersection. Results show our proposed SGFLC
model performs best. Moreover, as traffic flows vary more noticeably, the SGFLC model performs even better.
In the experimental and field cases of three-intersection arterial under four coordinated signal systems, namely
simultaneous, progressive, alternate and independent, both cases consistently show that the proposed SGFLC
model perform best, suggesting that the proposed SGFLC signal control model is efficient and robust.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive traffic signal control typically feeds the real-time traffic data, collected by the sensors, into
a built-in controller to produce the timing plans. Thus, it can provide signal-timing plans in response
to real-time traffic conditions. Actuated signal control, dynamic signal control, and adaptive signal
control are examples of on-line control. Because of its flexibility, applicability and optimality,
adaptive signal control tends to be the mainstream of signal controls nowadays. The well-known
adaptive signal controllers, such as SCOOT, SCATS, and OPAC, employ mathematical equations
or models to determine “crisp” threshold values as the cores of control mechanism; thus, the control
performance could be negatively affected by the uncertainty of traffic conditions. Because a fuzzy
control system has excellent performance in data mapping as well as in treating ambiguous or vague
judgment [1], many recent works have employed fuzzy set theory to develop fuzzy logic controllers
(FLC), also known as fuzzy control system, fuzzy inference system, approximate reasoning, or expert
system. The applications of FLC to signal control are to determine the signal phasing and
timing plans, including priority of phases, cycle length and split, by utilizing the real-time
traffic data, such as vehicle arrival or arrival rate, occupancy, queue length and speed, collected
by detectors.
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In FLC systems, both inference engine and defuzzification have been consistently used in
previous literature; however, methods for formulating the rule base (logic rules) and data
base (membership functions) are subjectively preset, not optimally solved. Adjusting the
combination of logic rules and membership functions very often requires tremendous
efforts, but there is no guarantee to obtain good control performance. Genetic algorithms
(GAs) have been proven suitable for solving both combinatory optimization problem (e.g.,
selecting the logic rules) and parameter optimization problem (e.g., tuning the membership
functions). Employing GAs to construct an FLC system with learning process from examples,
hereafter termed as genetic fuzzy logic controller (GFLC), can not only avoid the bias caused
by subjective settings of logic rules or membership functions but also greatly enhance the
control performance.

Most previous GFLC studies, however, have employed GAs either to calibrate the member-
ship functions with preset logic rules or to select the logic rules with given membership
functions. Thus, the applicability of that GFLC is very likely reduced. However, to simulta-
neously or sequentially learn of logic rules and membership, functions may require a rather
lengthy chromosome and large search space, resulting into poor performance, a long conver-
gence time and unreasonable learning results (i.e., conflicting or redundant logic rules and
irrational shapes of membership functions). To avoid these shortcomings, this paper proposes
a stepwise evolution algorithm to learn both logic rules and membership functions. At each
learning process, the proposed algorithm selects one logic rule, which can best contribute
to the overall performance controlled by previously selected logic rules combined with this
selected rule. Such a selection procedure will be repeated until no other rule can ever improve
the control performance. Therefore, the incumbent combination of logic rules is the optimal
learning results.

However, to develop a stepwise genetic fuzzy logic controller (SGFLC)-based signal control
requires an efficient traffic simulation model to replicate traffic behaviors and determine the
performance of the control logic. Although many studies use an application programming
interface via microscopic traffic simulation software to simulate the urban signal control
and implement the optimized signal policy, such as AIMSUN [2,3], PARAMICS [4-6], VISSIM
[7-9] and CORSIM [10,11]. However, such simulation software would be rather time con-
suming, making it better for evaluating the control performance for a given signal control
model, but not suitable for the evolution of genetic generations for model training. Thus, this
paper employs a cell transmission model (CTM), proposed by Daganzo [12,13], to evaluate
the performance of learned logic rules and tuned membership function. Besides, the conven-
tional CTM was designed for pure traffic. Incorporation of more realistic CTM rules into
the simulation of mixed traffic (various types of vehicles such as cars and motorcycles) on
urban streets is comparatively less addressed. On this basis, this study conducted mixed traf-
fic cell transmission models (MCTM), proposed by Chiou and Hsieh [14], to replicate the
behaviors of mixed traffic consisting of cars and motorcycles. The MCTM model uses the
ratio of car to motorcycle in the last upstream cell to determine the amount of roadway
resources (i.e., max flow capacity and storage capacity) allocated to cars, and vice versa
for motorcycles. In order to describe the relationship between cars and motorcycles more re-
alistically, the MCTM model further incorporates an entropy index to adjust the traffic speed,
because the interferences between two types of vehicles will be rapidly increased as the
mixture ratio of cars and motorcycles becomes higher.

On this basis, this paper aims to develop an adaptive signal control model for both isolated
and sequential intersections based on the proposed SGFLC with an MCTM approach. The paper
is organized as follows. Section 2 briefs the rationales for signal control with SGFLC and
MCTM models. Section 3 presents the validation of the MCTM model in replicating real traffic
hydrodynamic behaviors. Section 4 utilizes experimental cases to validate the effectiveness and
robustness of the proposed SGFLC model in controlling the signal at an isolated intersection.
Section 5 further validates the effectiveness of the SGFLC model in controlling the signal of
arterial coordinated sequential intersections. Finally, the concluding remarks and suggestions
for future research follow.

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
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2. THE RATIONALES

2.1. The stepwise genetic fuzzy logic controller model

The encoding methods, genetic operators and stepwise evolution algorithm for the SGFLC model are
briefly described as follows.

2.1.1. Encoding logic rules and membership functions

Consider a triangle fuzzy number and let parameters c”, ¢ and ¢' respectively represent the coordinates
of right anchor, cortex and left anchor of a linguistic degree as shown in Figure 1. Therefore, a variable
with a linguistic degree has three parameters that need to be calibrated in the following order:

d<ct<et (1)

To avoid the violation of the aforementioned order of these three parameters, three 3-position
variables r—r; are designed as follows:

d=r 2)
c=r+n (€)]
F=r+nrn+rs @

To achieve two significant digits, each position variable is represented by four real-coding genes
also depicted in Figure 1. The maximum value of the position variables is 99.99 and the minimum
value is 0. Thus, in the example of two state variables and one control variable, the chromosome is
composed of 36 genes.
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Figure 1. Encoding method for logic rules and membership functions.
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2.1.2. Genetic operations

The max-min-arithmetical crossover and the non-uniform mutation are adopted. In the max-min-arithmetical
crossover, let G,,'={gu;" » s &k » - &ux} and GL={g./" ...., & » ... g’} be two chromosomes
selected for crossover, the following four offsprings will be generated [15]:

G/'""' =4aG,' + (1 —a)G, S
G,""' =aG,'+ (1 —a)G,’ (6)
G 'with g3 = min{g,«", gu'} Q)
Gy"Mwith go' ! = max{g.i’, gu'} ®)

where a is a parameter (0 <a < 1) and ¢ is the number of generations. In the non-uniform mutation, let
G={g/...g ., .. gK ) beachromosome and the gene g;’ be selected for mutation (the domain of
gl is [gkl, g¢']), the value of gk”] after mutation can be computed as follows [16]:

i1 J e + AL gk — 8 if =0 ©)
8 &' — At g — gl it b=1

where b randomly takes a binary value of 0 or 1. The function A(z, z) returns a value in the range of [0, z]
such that the probability of A(#, z) approaches to O as ¢ increases:

Alt,z) = z(l - AH/T)”) (10)

where r is a random number in the interval [0,1], 7'is the maximum number of generations and 4 is a given
constant. In Equation (10), the value returned by A(z,z) will gradually decrease as the evolution
progresses.

2.1.3. The stepwise learning algorithm

The core logic of the proposed stepwise algorithm in selecting the logic rules with the membership
functions is similar to the stepwise regression model in selecting explanatory variables. At each stage,
a new logic rule that can best increase the control performance by combining with the rules chosen in
previous stages is selected. The selection process continues until the control performance cannot be
improved by introducing any other rule. The stepwise learning algorithm is structured as follows:

Step 0 Initialization: s = 1. The rule combination set, SR;, is an empty set.
Step 1 Update rule combination set. SR, = SR;_; + R,.
Step 2 Tuning membership functions.

Step 2-1  Generating an initial population with p chromosomes. Each chromosome representing a
logic rule has 12(n+ I) genes, and each gene randomly takes one integer from [0, 9]. n
is the number of state variables.

Step 2-2  Calculating the fitness values of all chromosomes based on the logic rule represented by
the chromosome and previously selected logic rules.

Step 2-3  Selection.

Step 2-4  Crossover.

Step 2-5  Mutation.

Step 2-6  Testing the stop condition. Let R, be the chromosome with largest fitness of f; among the
population for the sth evolution epoch. The stop condition is set on the basis of whether the
mature rate has reached a given constant 7. If so, proceed to Step 3 and let s =s+ /; otherwise,
go to Step 2-3.

Step 3 Testing the stop condition. If (f; — f;_|) <&, where ¢ is an arbitrary small number, then
stops. Incumbent rule combination set, SR,, is the optimal learning result. Otherwise, go
to Step 1.

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
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2.2. The signal control

2.2.1. Fitness value

The performances of signal control for an isolated intersection or sequential intersections are
commonly measured in terms of total number of stopped vehicles, proportion of stopped vehicles,
average vehicle delays, total vehicle delays, maximal green band, and so on. This paper sets the total
vehicle delays (TVD) as the control performance index and thus defines the fitness function of GAs as

fet (an

2.2.2. State variables

Following most of the previous literature, for the case of an isolated intersection, we choose traffic flow
in green phase (TF) and queue length in red phase (QL) as two state variables and extension of green
time (EGT) as the control variable. For the case of sequential intersections, TF is the summation of
traffic flows at all approaches in green phase; whereas QL is the summation of queen length at all
approaches in red phase.

To reflect the different details of mixed traffic flow, three models with different considerations of
state variables are developed. Model 1 considers four state variables: traffic flow of cars (TFC), traffic
flow of motorcycles (TFM), queue length of cars (QLC) and queue length of motorcycles (QLM).
Model 2 considers two state variables by weighted summing up cars and motorcycle traffic: traffic flow
TFP(TFP=TFC +oTFM) and queue length QLP (QLP = QLC +oQLM), where « is the passenger car
equivalent (PCE) of motorcycles (0.3 in this study). Model 3 also considers two state variables by
simply summing up car and motorcycle traffic: traffic low TFV(TFV=TFC+ TFM) and queue length

OLV(QLV=QLC + QLM).

2.2.3. Activation points

In consideration of pedestrian safe crossing, a minimum green time (G,;,) in each green phase is preset
both for an isolated intersection or sequential intersections. At the end of G, the proposed SGFLC
model is activated automatically to conclude an EGT. If EGT = EGT,,;, (a preset value), current green
phase is extended by EGT seconds. If EGT < EGT,,, current green phase is then terminated. The
SGFLC model will not be activated again until the end of this extension time. If total green time
exceeds the preset maximum green time (G.x), current green phase is forced to terminate. A short
all-red (AR) period is designed in each signal change interval. The activation points for an isolated
intersection are also depicted in Figure 2(a).

This paper also uses the SGFLC model to adaptively control the signals of sequential intersections
along an arterial. To reflect the various traffic conditions of different coordinated intersections, the
green times along the arterial are independently determined by following the same control mechanism
of an isolated intersection. However, to synchronize the signal timing plans of all coordinated intersec-
tions, an integrated signal control mechanism is activated by considering the summation of traffic
flows at all approaches in green phase and summation of queen length at all approaches in red phase.
Therefore, the cycle length of all coordinated intersections is kept the same. It should be noted that the
activation of extended red time of the arterial (i.e., the extended green time of competing approaches)
will not be started until all intersections along the arterial have been turned into red phase. Figure 2(b)
illustrates the activation points and signal timings for one of the sequential intersections.

3. MIXED-TRAFFIC CELL TRANMISSIONS MODEL
The core logic and validation results of the MCTM are briefly narrated as follows.

3.1. The mixed traffic cell-transmission model
To facilitate the learning process of the proposed SGFLC model, an efficient traffic simulator is imper-

ative to evaluate the performance of selected logic rules and tuned membership functions in a short

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
DOLI: 10.1002/atr



48 Y.-C. CHIOU AND Y.-F. HUANG

‘ North-south directions‘

TF;, TF, TF;3 OL, QL, QL; QOL,
Time
Gin IEGTIIEGTzl AR R | | | | AR
| | | | | | |
East-west directions| | | I I I I I
oL, O, OLs nF; TF, TF; TFy
———— Ml e—> Time
R I I | AR Gin |EGT1|EGT4EGT1 AR
| | | | | | |
| | | | | | |
I -
Legend  ¥: Activation point [l : Red phase == : Green phase  [Elll : All red
(a) Isolated intersection
TFy OLy +QLy+OLus OLy +OLy+OLas
Intersection I
Gin | AR R || AR G
el 7E, [
I meersection 11
[ P— +——>le
Gin | ET AR R || AR Guin
77| | 75, | |
ﬁ Intersection IIT
e g [
Gin | EGT: | EGT | AR R | | AR Gin Time
Competing approach oLl | | TFy+TFs+TFss | | TF 3+ TFs + TFss
I = T ncrscction 1
revm— P
R : AR; | G :Eun: AR Runin
o1l ol | (-
N = N !:crccion 1
revam—
R : g ARi G : Ecn: AR Ruin
0Ly oLy | | |
S T e ——
R é v AR Guin éfon AR Runin
l 8 ‘ Time
[ CYCLE LENGTH
|
Legend  ¥: Activation point [l : Red phase 55 : Greenphase [l : All red

(b) Sequential intersection

Figure 2. Activation points for an (a) isolated intersection and (b) sequential intersections.

period. On this basis, a cell-based traffic simulator CTM is considered. CTM, proposed by Daganzo
[12,13] for simulating traffic hydrodynamic behavior, uses several simple equations to govern traffic
movements along the roadway, which is represented by a series of equal-length cells. These equations
are expressed as follows:

ni(t+ 1) = ni(t) + yi(t) — yir1(2) (12)
yi(t) = min{n; (1), qmi (1), B[Ni(t) — ni(1)]} (13)

1, if n;_ (I)SQmi(t)

b= %»if ni-1(t)=qmi (1) v

On the basis of the pure traffic CTM, Chiou and Hsieh [14] developed and validated an MCTM for
the traffic flow of cars and motorcycles. In Chiou and Hsieh’s model, the variable n,(f) is decomposed
into n$(r) and n*(z) for representing the numbers of cars and motorcycles in cell ; at time ¢, respectively.
Thus, Equation (12) can be revised as follows:

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
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(1 +1) = (1) + 6 (0) =36, () s
' (t+ 1) = " (1) + 37" (1) — ¥, (1)

Both types of vehicles exhibit rather different traffic behaviors in competing for roadway capacity
and remaining storage space. Thus, the parameters of the MCTM, including maximal flow rate,
maximal storage capacity, and remaining storage capacity, should be dynamically adjusted and
allocated between cars and motorcycles according to mixture ratio of vehicles types. Depending upon
various traffic conditions, three situations are detailed as follows:

(1) Free-flow condition: no competition between cars and motorcycles

The flow and density of cars and motorcycles, in the upstream cell, are less than the maximal flow
and remaining capacity in the downstream cell. This condition refers to the first condition of Equa-
tion (13), which the vehicles can transmit from upstream to downstream without any deterrent.

(2) Maximal flow (q,;(t)) competition between cars and motorcycles

This situation occurs when the number of cars and motorcycles in the upstream cell exceeds maxi-
mal flow (i.e., the second condition of Equation (13)). Thus, cars and motorcycles compete to transmit
from upstream cell to downstream cell. This competition behavior can be elaborated as follows:

5 n; n’ X Gmi
() = B0, 0) % 4] "

0:(1) = [1 = RE(n_, (1), (1))] X gui(t)

where flow competition functions RZ(n¢_(f),n!" (1)), is a function of the number of cars and
motorcycles.

According to our field observations, the interferences between cars and motorcycles are rapidly
increased as the mixture ratio of cars and motorcycles becomes higher. Thus, Chiou and Hsieh [14]
introduced the entropy concept to dynamically adjust PCE by defining the competition relationship as

: Tt
RE (1 (1,024 (0)) = ,Z(Z’;;(nl_l 0 an

where 7 is the adjusted PCE of motorcycles, which is assumed to linearly increase as the entropy can
become higher from a base value of PCE (o):

n=o+ (¢ x H(ni_(1))) (18)
where H(n; _ (1)) is an entropy function measured by the proportions of cars (p©) and motorcycles (p”):

H(ni-1(t)) = —[p"(ni-1(1)) log p" (ni-1 (1)) + p(ni-1(2)) log p©(ni-1(1))] (19)

The proportions of cars (p) and motorcycles (p™) in upstream cell can be calculated by Equations (20)
and (21), respectively:

o B [ x nf,l(t)
pi(ni—i(t)) = ' (1) +1xnf (1) .

it (1)
+ 1 x i (1)

P ) = ey

i
where, [ is the space of a car/motorcycle.

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
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(2) Remaining storage capacity (N;(t) — n;(t)) competition between cars and motorcycles

This competition behavior occurs when remaining storage capacity in the downstream cell cannot
accommodate all vehicles transmitting from the upstream cell (ie., [ x n{ ,(r) +n =Si(z)). In
addition, the motorcycles can still “sneak” into the downstream cell when remaining storage capacity
cannot accommodate a car. To reflect on this phenomenon, a congestion index (9) is introduced to

determine how the remaining storage space (Si(#)) is allocated:

Sit) = & x {Ni(0)i = [ nf (1) + n(1)] } 22)
Uif n§ (1) + o x n" (1) <gmi(7)
where 0= % if nf (1) +oaxn (1) > gmi(t)

Consider a space competition function, RS, (n¢_, (1), (¢)), which allocates remaining storage space
between cars and motorcycles moving from upstream to downstream. The remaining storage capacity
is then allocated to cars (S¢(r)) and motorcycles (S7'()) and is expressed as follows:

Se(t) = RS (n§_ (1),n" (1)) % Si(t) (23)

S"(t) = [1 — RS (nffl(t),ln;’il(t))] x (1) ”

Logghe and Immers [17] indicated that higher density of vehicles of class i on the road has the
advantage to move forward. Thus, the competition functions can be expressed as

n (1)

— 25
'+ 1 xn (1) (25)

Ry, (ni_y (1), (1)) =

In sum, with the pure traffic CTM proposed by Daganzo in Equations (12) and (13), the mixed
traffic CTM with cars and motorcycles proposed by Chiou and Hsieh [14] can replicate mixed traffic
with Equations (26) and (27).

ni (14 1) = ni (1) + ¥ (1) =57y, (1)

(1) = (1) () — 3 (1) 20

yit) = min{nfl(t)7 [1 = RE(ni_ (1), n 1 (1))] % (1), L

[Rr%(”fﬂ (1),n", (t)) x ‘Imi(f)}
o

l

— R, (nzil(t)v ni’ (t)” X Si(t)}
(27)
RS( (5.1 (0) % sm}

3.2. Validation

To validate the MCTM in replicating the traffic behaviors at signalized intersections in Taiwan, field
traffic data were collected at one of the approaches of a signalized intersection in Taipei on 27 February
2009. The study approach was divided into six cells depending on free-flow speed and length of time step,
as shown in Figure 3. The traffic moves from cell 1 to cell 6 and y; and yo denote the traffic flows in and
out the study approach, respectively. The stop line of the intersection is located at the right bound of cell 6.

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
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Figure 3. Configuration of the validated approach.

The performance of the MCTM model is shown in Table 1. As noted from Table 1, the MAPE values are
less than 30% in most of the cells in both green and red time. In addition, the simulation results are more
accurate at the cells closer to the stop line and for motorcycle traffic.

According to the number of vehicles and flow at cell 6 in red time and green time, this study also
validates the queuing behavior in red phase and platoon dispersion in green phase. The results are
shown in Figure 4(a) and (b), respectively. The results show that the proposed mixed CTM can
satisfactorily replicate the traffic behaviors at the signalized intersection.

4. EXPERIMENTAL EXAMPLE: ISOLATED INTERSECTION

To investigate the effectiveness and robustness of the proposed signal control model, comparisons to
two pre-timed models and three adaptive models are conducted at an experimental isolated
intersection.

4.1. Model training

To validate the effectiveness and robustness of the proposed SGFLC signal control model, an
experimental example for an isolated four-leg intersection (Figure 5) is demonstrated. To simplify
the analysis, the turning traffic is neglected. The parameters of the MCTM model are set as: free-flow
speed = 50 km/hour, time step =2 seconds, k;= 130 veh/km/lane. Assume that the intersection has two
lanes (N,(f) = 3.6 cars/cell for all i and #) in each approach with saturation flow of 1800 pcu/hour/lane
(gmi(f)=2.00 veh/time step for all i and 7). The flow patterns of 5-minute flow rates in different

Table I. Validation results of the mixed traffic cell-transmission model in different cells and phases.

Cell
Phase Performance  Vehicle types 1 2 3 4 5 6 Vel
Green (120 seconds) MAPE Car (%) 26.71 4280 3446 1090 16.81 15.79 8.05
Motorcycle (%) 23.60 38.95 30.63 3.38 8.17 11.75 348
RMSE Car 17.70  20.75 19.01 10.17 13.17 21.09 5.16
Motorcycle 2485 3256 26.06 450 11.29 2559 6.05
Red (50 seconds) MAPE Car (%) 3042 1142 24.60 2824 2766 1149 —
Motorcycle (%) 6.21 26.89 2740 21.19 3331 16.21 —
RMSE Car 2.03 071 3.18 22.06 3233 3156 —
Motorcycle 1.12 330 384 698 1396 91.87 —
MAPE, mean absolute percentage error; RMSE, root-mean-square error.
35
— — -Real data (car) 12 — — -Real data
Real data (motorcycle) Real data (motorcycle)
----- MCTM (car) 10 - -+ -MCTM (car)
----- MCTM (motorcycle) 8 -----MCTM (motorcycle)
5 .
é 6
4
2
|-ememeered time- I green time- ’ | 0 \ d ti I i
time step time step
(@) Number of vehicles (b) Flow

Figure 4. (a) Number of vehicles and (b) flow at cell 6 in red time and green time.
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Figure 5. Configuration of the experimental isolated intersection.

approaches are given in Figure 6. A noticeable peak and off-peak traffic patterns are assumed in east
and west directions; whereas rather flat traffic patterns are assumed in north and south directions. The
parameters of the SGFLC model are set the same as those in Chiou and Lan [18]. The center of gravity
method is employed for defuzzification. The parameters of signal control are: G,.x =100 seconds,
Gmin =20 seconds, all red + lost time = 6 seconds, EGT,,,x =20 seconds, and EGT,;, =4 seconds.

4.2. Model performance

Table 2 compares the control performances of three SGFLC models. As shown in Table 2, Model 1
performs best with lowest TVD of 46.67 vehicle-hour, suggesting that the more details in traffic
measurement, the better performance can be achieved. In what follows, only the learning results and
control performance of Model 1 is further elaborated and compared.
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Figure 6. Five-minute (a) car and (b) motorcycle flow rates at the experimental isolated intersection.

Table II. Control performances of the SGFLC models with various state variables.

Models State variables Generations TVD Number of selected rules
Model 1 TFC,TFM,QLC and QLM 60 46.67 5
Model 2 TFP and QLP 76 52.02 8
Model 3 TFV and QLV 90 52.15 7

SGFLC, stepwise genetic fuzzy logic controller; TVD, total vehicle delays; TFC, traffic flow of cars; TEM, traffic flow of
motorcycles; QLC, queue length of cars; QLM, queue length of motorcycles; TFP=(TFC+aTFM); QLP =(QLC +oQLM);
TFV=(TFC+TFM); QLV=(QLC + QLM); o.=PCE, passenger car equivalent.
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The learning process of Model 1 is depicted in Figure 7(a). Note that SGFLC converges after five
stepwise evolutions with a total of 60 generations progressed. The value of TVD decreases from
66.47 to 46.67 vehicle-hour. A total of five rules are selected after five stepwise evolutions. Figure 7(b)
presents the optimally selected five logic rules along with corresponding tuned membership functions.

4.3. Model validation and comparisons

To validate the effectiveness, the control performance of the SGFLC model is compared with two
pre-timed models: optimal single (OS) and optimal multiple (OM) and three adaptive models:
iterative genetic fuzzy logic control (IGFLC) model, vanishing queue (VQ) and maximum queue
(MQ), where the OS timing plan is determined by total enumeration method to search for an optimal
cycle length and green time during the study period. The OM timing plan, comprising seven optimal
single timing plans, depends on traffic flow pattern as shown in Figure 4. Because the OM model
designs the optimal signal timings for each of traffic flow rates, its control performance is optimal
for the given traffic pattern. The IGFLC model proposed by Chiou and Lan [18] is to simultaneously
and iteratively select all combination rules and then tune all membership functions of linguistic
variables. The VQ model proposed by Lin and Lo [19] is an actuated control system that switches
traffic signal to serve the other approach whenever the queue on the current approach vanishes;
whereas the MQ model switches traffic signal to serve the other approach when the queue length
on the that approach reaches a preset maximum queue. In this paper, the maximum queue length
is optimized via a trial-and-error manner.

Table 3 summarizes the comparison results. Comparing to the OS model, the proposed SGFLC
model can curtail 4.36 vehicle-hours (8.54%) and incur only 0.66 more vehicle-hours (1.43%) delays
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Figure 7. (a) Learning process and (b) selected logic rules and tuned membership function results of the stepwise
genetic fuzzy logic controller model at the experimental intersection.
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than the OM model, suggesting the proposed SGFLC model almost can achieve the optimal control.
Comparing to three adaptive models, the SGFLC model performs better than the IGFLC, VQ and
MQ models by respectively curtailing 0.06, 2.22 and 4.59 vehicle-hours (0.13%, 4.54% and 8.95%)
of total vehicle delays, demonstrating the effectiveness of our proposed SGFLC model.

Moreover, according to the learning results of two similar GFLC models, the SGFLC and IGFLC, as
shown in Table 4, although both GFLC models exhibit high control performance, the proposed
SGFLC model selects much fewer rules (only five rules) with a fewer generation than the IGFLC
model does (401 rules). Additionally, by examining the rules selected by the IGFLC model, many
of them are redundant or mutually conflicting. The merit of selecting few rules provides a chance
for post-optimization adjustment and rule interpretation. Thus, the comparison shows that the proposed
SGFLC is more effective, efficient and comprehensible than the IGFLC model.

The green splits determined by the SGFLC model are depicted in Figure 8(b), which are in coinci-
dence with the traffic patterns in Figure 8(a), suggesting that the proposed SGFLC can control the
signal responsively. Figure 8(c) further presents the average delays of cars and motorcycles. As the
traffic grows, the average delays of both cars and motorcycles are significantly increased. It is interesting
to note that the average delay of cars grow much more rapidly than that of motorcycles because
motorcyclists do not follow the lane disciplines. They may make lateral drifts breaking into two
moving cars. Once blocked by the front vehicles, they even make wide transverse crossings
through the gap between two stationary cars in the same lane, in order to keep moving forward.
The behaviors are in accordance with our field observations and the cellular automaton model
proposed by Lan et al. [20].

To further examine the robustness of the SGFLC model, we randomly vary the traffic flows by 10-50%
as shown in Figure 9. Assume that timing plans of pre-timed models (i.e., the OS and OM) remain
unchanged and the adaptive models follow the same rules learned from the original traffic patterns given
in Figure 4. The results are summarized in Table 5. Note that the SGFLC model performs best among the
pre-timed and adaptive models. Moreover, the SGFLC model can do much better than any other models
as the traffic flows vary more conspicuously, indicating the robustness of the SGFLC model.

5. EXPERIMENTAL EXAMPLE: SEQUENTIAL INTERSECTIONS
This paper further extends the proposed SGFLC model to the signal control of consecutive intersec-
tions. These sequential intersections contain an arterial (east—west direction) and three competing

approaches (north—south direction). To synchronize the signal control for the sequential intersections,

Table III. Comparisons of control models at the experimental isolated intersection.

ATVD compared with SGFLC

Models TVD (vehicle-hours) (vehicle-hours) (%)

SGFLC 46.67 — —

oS 51.03 4.36 8.54
OM 46.01 —0.66 —1.43
IGFLC 46.73 0.06 0.13
VQ 48.89 222 4.54
MQ 51.26 4.59 8.95

TVD, total vehicle delays; SGFLC, stepwise genetic fuzzy logic control; OS, optimal single; OM, optimal multiple; IGFLC, it-
erative genetic fuzzy logic control; VQ, vanishing queue; MQ, maximum queue.

Table IV. Learning results of the SGFLC and IGFLC models.

Models State variables Generations TVD Number of selected rules
SGFLC TFC,TFM,QLC and QLM 60 46.67 5
IGFLC TFC,TFM,QLC and QLM 314 46.73 401

SGFLC, stepwise genetic fuzzy logic control; IGFLC, iterative genetic fuzzy logic control; TFC, traffic flow of cars; TFM, traffic
flow of motorcycles; QLC, queue length of cars; QLM, queue length of motorcycles.

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:43-60
DOI: 10.1002/atr



STEPWISE GENETIC FUZZY LOGIC SIGNAL CONTROL 55

180

160 —— Car

1404 —=— Motorcycle|
1204

1004

80+

40

Traffic flows (vehicle/5min)

0 — T ———
1 11 21 31 41 51 61 71 81 91 101 111 121
Cycles progressed (number of cycles)

(@) Traffic flow rates of cars and motorcycles

100%
90%
80%+
70%
60%-
50%

40%-
30%+
20%+
o JUINE L
0%
31 41 51 61 71 81 91

1 11 21 101 111 121
Cycles progressed (number of cycles)

Green splits

(b) Green splits

—e— Car

—=— Motorcycle|

21 ¥
0 T T T T T T T T T T T T
1 11 21 31 41 51 61 71 &1 91 101 111 121
Cycles progressed (number of cycles)

Average delay (vehicle-min)

(c) Average delays of cars and motorcycles
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Figure 9. Varied five-minute (a) car and (b) motorcycle flow rates at the experimental isolated intersection.

three coordinated signal systems including simultaneous, alternate, and progressive systems are
considered. The simultaneous system implements exactly the same signal timing plans simultaneously
in sequential intersections without offset (time lag). The progressive system implements these plans
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Table V. Comparisons of control performance with randomly varied flow rates.

10% 20% 30% 40% 50%

Models TVD ATVD (%) TVD ATVD (%) TVD ATVD (%) TVD ATVD (%) TVD ATVD (%)

SGFLC 48.74 — 48.81 — 52.01 — 53.24 — 55.13 —

oS 55.41 13.68 61.45 25.90 66.57 27.99 70.12 31.71 74.98 36.01
oM 52.02 6.73 52.88 8.34 56.81 9.23 60.47 13.58 65.54 18.88
IGFLC 50.40 3.41 53.52 9.65 57.32 10.21 58.83 10.50 61.04 10.72
VQ 50.04 2.67 51.91 6.35 55.46 6.63 57.00 7.06 59.64 8.18
MQ 52.47 7.65 53.14 8.87 56.97 9.54 61.16 14.88 65.77 19.30

TVD, total vehicle delays; SGFLC, stepwise genetic fuzzy logic control; OS, optimal single; OM, optimal multiple; IGFLC,
iterative genetic fuzzy logic control; VQ, vanishing queue; MQ, maximum queue.

with offset. The alternative system implements two timing plans with inverse green and red times. In
addition, an independent operation that implements the timing plans at the sequential intersections
without any coordination is also compared. The timing plans of these four signal systems are
determined by the SGFLC, IGFLC, VQ and MQ models, respectively.

5.1. Model training

The difference of signal control between an isolated intersection and coordinated sequential intersections
is that the control variable (EGT) of an isolated intersection is determined on the basis of the state variables
considering the traffic condition at the intersection alone, whereas the EGT of coordinated sequential
intersections is determined on the basis of the traffic conditions of all approaches along the arterial.

An experimental example with three consecutive four-leg intersections (Figure 10) is demonstrated.
Assume that the intersections have two lanes in each approach with saturation flow of 1800 pcu/hour/
lane. The distance between intersections 1 and 2 is 139 m (five cells). The distance between intersections 2
and 3 is 222 m (eight cells). The 5-minute flow rates in different approaches are shown in Figure 11.
Noticeable peak and off-peak traffic patterns are assumed in east and west directions. The offset of
progressive coordinated system are 10 and 16 seconds, because the average travel speed between
intersections is set as 50 km/hour.

5.2. Model performance

To validate the effectiveness, the control performance of the SGFLC model is compared with the
IGFLC, VQ and MQ models. To avoid lengthy discussions, the learning results of SGFLC are not
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Figure 11. Five-minute (a) car and (b) motorcycle flow rates at the experimental sequential intersections.

reported. The control performances of these control models are reported and compared in Table 6.
Obviously, the performances under progressive coordinated system are significantly superior to other
systems. The progressive SGFLC model performs best among these four models, followed by the
progressive VQ model. The signal control models under alternate coordinated system perform relatively
poor. Also notice that all the SGFLC models under various coordinated systems perform better than the
IGFLC, VQ and the MQ models. The results show the effectiveness of the proposed SGFLC model in
controlling the signal timings of sequential intersections.

5.3. Model application

To further investigate the field applicability of our proposed SGFLC model, a case study on three
consecutive intersections along Jin-Ma arterial intersecting with Chang-Mei Road, Chang-Xing Road
and Dong-Gu Road in Changhua City, Taiwan has been conducted. Configuration and traffic flow of
the three intersections are shown in Figures 12 and 13, respectively. The green times of current timing

Table VI. Comparison of control performance at the experimental sequential intersections.

Signal TVD (vehicle-hours) Rate of ATVD reduced by SGFLC
coordinated

system SGFLC IGFLC VQ MQ IGFLC (%) VQ (%) MQ (%)
Simultaneous 198.44 201.38 201.66 206.24 1.48 1.62 3.93
Progressive 185.21 190.47 189.51 193.76 2.84 2.32 4.62
Alternate 238.98 240.34 241.64 245.21 0.57 1.11 2.61
Independent 211.21 212.67 212.41 216.78 0.69 0.57 2.64

TVD, total vehicle delays; SGFLC, stepwise genetic fuzzy logic control; OS, optimal single; OM, optimal multiple; IGFLC, it-
erative genetic fuzzy logic control; VQ, vanishing queue; MQ, maximum queue.
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Figure 12. Configuration of the three consecutive intersections along Jin-Ma Road.
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Figure 13. Five-minute (a) car and (b) motorcycle flow rates at the three consecutive intersections along Jin-Ma
Road.

plans during the observed period are 40 seconds north—south and 75 seconds west—east at Jin-Ma/
Chang-Mei intersection, 50 seconds north—south and 120 seconds west—east at Jin-Ma/Chang-Xing
intersection, 50 seconds north—south and 125 seconds west—east at Jin-Ma/Dong-Gu intersection.
All-reds and change interval are 6 seconds for all intersections. Currently, there is no signal coordinated
control among these three intersections.

The control performances of SGFLC, IGFLC, VQ, MQ and current timing plan are reported in
Table 7. Compared with the current timing plan, the progressive SGFLC can curtail the total vehicle
delays by the largest amount (18.05%), followed by progressive IGFLC and VQ (15.82% and
15.13%), and with the least reduction (1.08% and 0.32%) by alternate signal system. Also notice that
SGFLC consistently outperforms over other single models, no matter which signal system is operated.

6. CONCLUDING REMARKS

This paper summarizes an SGFLC model for signal control for both isolated and sequential intersections
with the MCTM traffic behavior modeling. We choose traffic flow and queue length as state variables,
extension of green time as the control variable, and total vehicle delays as performance measurement.
The validation results of the MCTM demonstrate its capability in replicating the mixed traffic behaviors
at the signalized intersection. It is interesting to note that although both average delays of cars and
motorcycles would be deteriorated as traffic demand grows, the average delay of cars grow much more
rapidly than that of motorcycles, suggesting that the MCTM model can simulate the behaviors of
motorcycles that do not follow the lane disciplines and may make lateral drifts breaking into two moving
cars in order to keep moving forward.

As to the control performance, under different levels of details of state variable measurement, the
proposed SGFLC model can perform better if more detailed levels of state variables are considered.
In other words, under mixed traffic conditions, vehicle detectors should be able to accurately detect
both traffic flows and queue length of cars and motorcycles. The comparisons among various

Table VII. Comparison of control performance at the three consecutive intersections along Jin-Ma Road.

Signal TVD (vehicle-hours)
coordinated
system SGFLC IGFLC VQ MQ Current timing plan

Simultaneous  269.98(11.02%) 274.13(9.65%)  275.88(9.07%)  281.59(7.19%) —
Progressive  248.65(18.05%) 255.41(15.82%) 257.49(15.13%) 264.64(12.78%) —
Alternate 296.41(2.31%)  298.45(1.63%)  300.14(1.08%)  302.45(0.32%) —
Independent  287.54(5.23%)  291.87(3.80%)  296.51(2.27%)  298.12(1.74%) 303.41

TVD, total vehicle delays; SGFLC, stepwise genetic fuzzy logic control; OS, optimal single; OM, optimal multiple; IGFLC,
iterative genetic fuzzy logic control; VQ, vanishing queue; MQ, maximum queue.
The percentages in parenthesis represent the rates of 7VD reduction compared with the current timing plan.
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pre-timed and adaptive signal control models show that the control performance of the SGFLC
model is almost the same as the OM model, which is considered as the optimal control under
given traffic patterns and is superior to the adaptive models for both cases of an isolated intersection
and coordinated intersections. Moreover, the SGFLC model can perform much better than any other
models as the traffic flows vary more conspicuously, indicating the robustness of the SGFLC
model. It should be mentioned that in comparing to the IGFLC model, our model has better
performance, but with much fewer selected rules and shorter evolution time, suggesting the
proposed model is more efficient and robust.

The proposed SGFLC model mainly relies on the traffic information including traffic flow and
queue length of cars and motorcycles to adaptively control the signal. Through a proper installation
of two sets of sensors near the intersections, both traffic flow and queue length can be obtained
(e.g., [21]). However, for the intersections with only one set of sensors, queue length can still be
estimated on the basis of traffic flow theories, for example, shockwave method proposed by Liu
et al. [22]. Additionally, the inaccuracy of traffic information detected on urban streets is pretty
common. How to conduct an optimal control based on such inaccurate and unreliable vehicle
detectors is also an interesting topic that deserves further attempt. Other directions for future
study can be identified. Firstly, the proposed stepwise algorithm is to select rules sequentially.
However, an early selected rule may not be necessary to be the one of rules in the optimal rule
combination. More effective and efficient encoding methods in selecting the logic rules or tuning
the membership functions or both deserve to be explored. Secondly, for sequential coordinated
intersections, the control performance is measured by 7VD in this paper. Other performance
indices, such as maximum green band, minimum stopping rate, and maximum throughput,
deserve to be adopted and examined. Moreover, in this study, only simple two-phase signal
control plan is considered. Multi-phase signal control plans with consideration of turning flows
at intersections deserve to be developed. Additionally, prior to field installation, the control
performances of the trained SGFLC model can be further examined by commonly adopted traffic
simulation software packages, such as AIMSUN, VISSIM, PARAMICS, and CORSIM through
built-in application programming interfaces, to judge effectiveness of the proposed model. Last,
but not least, for simplicity, this study lumps cars and heavy vehicles all together and limits
our application to signal coordination along a corridor. To further enhance the comprehensiveness of
the proposed model, the mixed traffic with motorcycles, cars, and heavy vehicles (trucks and busses)
and the signal control scaled up to the network level should be considered.

7. LIST OF ABBREVIATIONS

7.1. Abbreviations

SCOOT Split, cycle, and offset optimization technique
SCATS Sydney coordinated adaptive traffic system
OPAC Optimization policies for adaptive control
FLC Fuzzy logic controllers

GFLC Genetic fuzzy logic controller

IGFLC Iterative genetic fuzzy logic controller
SGFLC Stepwise genetic fuzzy logic controller
CT™M Cell transmission model

MCTM Mixed traffic cell transmission model

GAs Genetic algorithms

API Application programming interface

(0N} Optimal single timing plan

OM Optimal multiple timing plan

VQ Vanishing queue timing plan

MQ Maximum queue timing plan

AIMSUN, Paramics, Traffic simulation software packages
VISSIM, CORSIM
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