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ABSTRACT

This study examines the transient responses of a 50 kW ORC (Organic Rankine Cycle) system subject to
change of the water coolant in the condenser with R-245fa as the working fluid. With a moderate
increase or decrease of water coolant flow rate, all the major quantities such as the output power,
condensing pressure, evaporation pressure show mild transition. The mass flow rate of the R-245fa
remains roughly the same during the transient. For a sharp rise of the water coolant flow rate, the ORC
system undergoes a rather unusual behavior. The output power is first slightly increased, followed by
a sharp decline to barely any output power and remains there until the end of the transient. The output
power increased back right after the transient and exceeded its original state. There is almost no R-245fa
mass flow rate during the power outage period. Yet the evaporation pressure also experienced a gigantic
falloff during the transient period. This peculiar surge phenomenon is related to tremendous change
of the total void when condensation takes place that momentarily reduces the R-245fa mass flow rate.
The surge effect caused by the water coolant is associated with the rate of variation in the overall heat

transfer coefficient.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The needs for the low grade heat recovery had attracted
many attention and became more mature in the past decades. Some
new solutions had been proposed to generate electricity from
the low temperature heat sources and are now applied to many
applications, including solar thermal power, biological waste
heat, engine/vehicle exhaust gases, domestic boilers, and the
like. Among the proposed solutions, the Organic Rankine Cycle
(ORC) system is regarded as the most potential candidates for its
simplicity and the availability of its components [1] and is mostly
implemented in practice [2]. The ORC is basically a Rankine cycle
utilizing an organic fluid as the working medium. In such a system,
the working fluid is better adapted than water to the lower heat
source temperatures and ORC can efficiently produce shaft-work
from medium temperature heat sources up to 370 °C [3]. In
contrast to conventional power cycles, the ORC fluids fit perfectly in
local and small scale power generation applications [4].

A wide variety of ORC researches were conducted during past
years, including applications such as waste heat recovery [5—7],
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solar energy utilization [8—10], combined heat and power [11—13],
geothermal systems [14—16], or engine exhaust gases [17].
However, despite appreciable studies were reported, the system
performance reported the field operation were comparatively rare.
Only relatively few experimental system performance data were
reported (e.g Refs. [7,8,18].). Yet these data normally reported test
results that were conducted in a controlled ambient under steady
state. The system operation data provides valuable information in
balancing the components, working fluids, heating medium, and
cooling medium. However, in real operation, the ORC system is
subject to change in operational conditions, and may exhibit
transient behaviors. For instance, the water coolant flow rate in the
condenser may vary due to some operational needs such as
unloading or overloading. Moreover, the coolant flow rate may also
subject to change during breakdown or startup. It is therefore
imperative to investigate the system response pertaining to these
transient changes. However, the only studies associated with the
transient responses of an ORC system are mainly focused on the
development of theoretical models [19,20]. There are virtually no
systematic data reporting the associated influence. As a result, the
objective of this study is to provide some preliminary experimental
results concerning the transient responses of a 50 kW ORC system,
and some physical explanations are made to address some
observed peculiar characteristics.
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Nomenclature

cw coolant water flow rate (LPM)

H height of the plate evaporator (mm)

L length of the plate evaporator (mm)
MR_245¢; Mass flow rate of R-245fa (kg/s)
pressure (kPa)

temperature (°C)

time (s)

overall heat transfer coefficient (W/m?K)
width of the plate evaporator

heat transfer coefficient (W/m?K)

Sscm N

Greek letters
P density (kg/m?)

Subscripts

cond condenser

cw cold water (water coolant at the condenser)
eva evaporator

hw hot water (heating water into the plate evaporator)
i tube side of the condenser

in inlet

o shell side of the condenser

original original state before the transient starts

out outlet

L liquid phase

\% vapor phase

2. System construction and measurements

The schematic diagram of the 50 kW ORC system is shown in
Fig. 1. The major components for the ORC include a multi-stage
pump, a plate evaporator, a shell-and-tube heat exchanger with
four-pass design, a screw expander and a generator, and an oil
separator. The working fluid is R-245fa. The 7.5 kW pump is a multi-
stage centrifugal pump having 12 impellers with a nominal rating
flow rate of 2.1 m’/hr and a maximum discharge pressure of
2500 kPa. The power input to the R-245fa is from an external power
source. The screw expander is a semi-hermetic twin screw (made
by Hanbell Precise Machinery Co., model RC2-410AF). The electrical
generator is coupled with the expander and is enclosed in the same
housing. The corresponding expansion ratio is 4.8 with a nominal
volumetric flow rate of 480 m3/h. The counter-currently arranged
plate evaporator is fully welded type (Alfa Lava) with a total of 100
plates. The overall size is 289 mm (L) x 390 mm (W) x 1250 mm
(H) and the plate thickness is 0.4 mm. The nominal heat transfer
capacity is up to 1000 kW.

@)

The condenser is of shell-and-tube configuration having a total
of 300 condensing tubes and its detailed schematic is shown in
Fig. 2. The nominal outer diameter of the condensing tube is
19.05 mm with a low fin configuration. The shell diameter and the
tube length are 558.8 mm (22”) and 2300 mm, respectively. A four-
pass design is incorporated in the waterside. For effective driving
the ORC system, additionally auxiliary components include
a 1.8 Ton/h cross flow steam boiler and a 200 cooling tons cooling
tower. The cross flow steam boiler provides the pressurized hot
water around 115—125 °C to simulate the heat source which then
exchange heat with the plate evaporator. The cooling water from
the condenser is cooled by an air-cooled cooling tower. The cooling
tower is an air-cooled forced draught having counter flow
arrangement. An inverter is used to regulate the capacity of the
cooling tower.

Detailed locations of the measurements are depicted in Fig. 1.
The sensors for measuring the pressure, temperatures, flow rate
and electric power are installed in the ORC system accordingly. The
pressure transducers are made by Danfoss (model MBS 3200), with
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Fig. 1. Schematic of the test facility and measurement location.
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Fig. 2. Detailed dimension of the shell-and-tube heat exchanger.

an accuracy of £1.0% of the full scale range (2500 kPa). Tempera-
tures were measured with RTD Pt100 (3 wires) made by MorShine
with a calibrated accuracy of +£0.25 °C. The flow rate of the cold
water was measured using an electromagnetic flow meter made by
SeaMetric (model EX80) with an accuracy of +1.0%. The flow rate of
working fluid (R-245fa) was measured using a vortex flow meter
made by BNC (model BV-FO080-4K1-A1NC-N) with an accuracy of
+0.7%. The electric power of the induction generator was measured
using a power analyzer made by HIOKI (model 3169-20 with 9661
clamp on sensor), with an accuracy of +0.1%. All the signals were
collected by using AB MicroLogix 1400 programmable logic
controller and the measured data were then transmitted to the host
computer for further analyzing.

3. Results and discussion

For studying the dynamic response of the present 50 kW ORC,
a total of four experiments are carried out. The controlled condi-
tions are given as follows:

(1) Case 1, the coolant water flow rate in the condenser is suddenly
raised from 400 L/min to 600 L/min.

(2) Case 2, the coolant water flow rate in the condenser is suddenly
raised threefold from 400 L/min to 1200 L/min.

(3) Case 3, the coolant water flow rate in the condenser is suddenly
decreased from 800 L/min to 400 L/min.

(4) Case 4, the coolant water flow rate in the condenser is suddenly
decreased from 1200 L/min to 400 L/min.

Fig. 3 shows the transient variation in case 1. With a 50% rise of
coolant flow rate, the condenser performance is improved moder-
ately. In fact, one can see a steady increase of the ORC power from
21 kW to 27 kW as shown in Fig. 3(c). The results are in line with the
common knowledge that a better condenser performance results in
higher ORC power output. Notice that there is no appreciable
change of the R-245fa mass flow rate as appeared in Fig. 3(b) where
the mass flow rate is around 2.0—2.2 kg/s. The condensing pressure
is slightly decreased when the transient starts, and the evaporation
pressure holds quite steadily during the transient period. Hence,
the moderate increase of ORC power is mainly from the slightly
rise of pressure difference between the evaporator and the
condenser as shown in Fig. 3(c).

For case 2, the operation condition is similar but the coolant
mass flow rate is abruptly raised from 40 L/min to 120 L/min.
Contrast to that in case 1, the transient response of the ORC reveals
some unexpected peculiar phenomena as seen in Fig. 4. Firstly, one
can see that the ORC output power is slightly increased from 23 kW
to 26 kW, and followed by a tremendous surge to barely any output
power as shown in Fig. 4(c). The power outage lasts about 70 s and
subsequently a sharp rise of power output emerges. Eventually the
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Fig. 3. Transient response for the 50 kW ORC system when the water coolant is
increased from 400 LPM to 600 LPM.

output power exceeds that before the transient starts due to a better
condenser performance. Secondly, as shown in Fig. 4(c), the pres-
sure in the evaporator remains unchanged that is similar to case 1
during the initial 10 s, and followed by a sharp decline which is
completely opposed to that in case 1. The power outage occurs
when the sharp decline emerges. This is expected since the pressure
difference between the evaporator and condenser is too small to
generate any useful work. On the other hand, there is barely any
R-245fa flow rate during power outage period as shown in Fig. 4(b).
The foregoing results show an extraordinary phenomenon when
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Fig. 4. Transient response for the 50 kW ORC system when the water coolant is
increased from 400 LPM to 1200 LPM.

compared with case 1. The initial rise of output power is analogous
to that in case 1 where the condensing pressure is reduced when
the transient starts, the higher pressure difference between the
inlet and out of screw expander leads to a rise of power output.
Notice that there are two effects that compete with each other
during the transient subject to change of the water coolant flow.
This phenomenon had been experimentally verified by Wang and
Liao [21]. They showed that the condensing pressure is decreased
during the transient period of increasing the water coolant flow
rate. Fig. 5 depicts a schematic showing the effect of substantial rise
of water coolant flow rate on the surge phenomenon. Firstly, a lower
condensing pressure results in a lower vapor density, indicating
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a larger vapor volume that will displace more R-245fa condensate
out of the condenser. Secondly, in contrast, increased flow rate of
water coolant leads to condensing more vapor in the condenser,
thereby reducing the effective voids in the condenser. This even-
tually will slow down or even reveals a flow reversal. For a gigantic
rise of the water coolant flow rate, the latter influence may surpass
the former and the condensate may be momentarily pulled back
from the condenser exit, and results in a flow surge phenomenon.
Notice that change of the condensing pressure usually precedes the
thermal response caused by the water coolant. Thus, one can see
a slight rise of output power when the transient starts.

The flow surge phenomenon is caused by a significant reduction
in vapor void fraction in the condenser. Notice that the density ratio
(pv/pL), for R-245fa at p = 300 kPa is about 76.8. According to a prior
analysis (Kuo et al. [22]), the thermal resistance is comparable
between the shell side (R-245fa) and tube side (water) since the
low fin tube had been employed in the present condenser. In this
regard, a threefold increase of water coolant flow rate would result

in about 140% increase of the water coolant heat transfer coefficient
(hi ~ V98), and it corresponds to about 41% increase in overall
heat transfer coefficient (U~ (1/h; +1/ho)” ). In contrast, a 50%
increase of water coolant flow rate (case 1) only results in about
38% increase of the waterside heat transfer coefficient, and it
corresponds to about 15% increase in overall heat transfer coeffi-
cient. With a significant density difference in liquid and vapor, the
decrease of effective voids in the shell-side volume is much more
pronounced when the coolant flow rate is increased above certain
threshold value. In fact, the flow surge phenomena in a double-pipe
condenser had been thoroughly investigated by Wang and Liao
[21], Liao et al. [23], and Liao and Wang [24]. Their analysis and
experimental results in a double-pipe condenser clearly showed
that the abrupt change of condensate mass flow rate is associated
with tremendous change of the total void when condensation takes
places. The flow surge phenomenon can be understood by
considering the variation of the void fraction during the transient
process subject to heat addition or removal. For instance, an
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appreciable rise of water coolant flow rate will augment the
performance of the condenser, and the sufficient amount heat
removal results in an appreciable reduction in total vapor volume
within the heat exchanger, thus causing the outlet liquid flow rate
to be momentarily lowered, and the outlet flow rate may be even
pulled back to the condenser. In essence, appreciable condensation
removes considerable void in the condenser, and momentarily
reduces the refrigerant mass flow rate. It is worth noting that the
shell-side volume in a shell-and-tube heat exchanger is much
larger than that in a double-tube condenser. Therefore the effect of
increasing water coolant flow rate on the transient surge may be
even more severe. However, the apparent drop in condensing
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Fig. 6. Transient response for the 50 kW ORC system when the water coolant is
reduced from 800 LPM to 400 LPM.

pressure from approximately 400 kPa to 300 kPa offsets the influ-
ence as depicted in Fig. 5. In summary, the condensate mass flow
rate is significantly reduced. Hence the outlet temperature of R-
245fa at the evaporator is elevated to the hot water temperature
(~125°C)as seen in Fig. 4(a). However, the temperature rise occurs
at the end of the transient and it peaks after the transient period.
This is associated with the thermal lag due to hot water heating. It
should be emphasized that this unusual phenomenon occurs only
when substantial change of overall heat transfer is made during
some short period. In case 1, there is only moderate increase of
overall heat transfer coefficient, thereby only moderate transient
process is seen.
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Fig. 7. Transient response for the 50 kW ORC system when the water coolant is
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The foregoing cases are applicable for increasing the water
coolant flow rate. The opposite operation with decreasing flow rate
from 800 LPM to 400 LPM is designated as case 3 and the system
response is shown in Fig. 6. The transient response shows opposite
trend as compared to case 1. The ORC output power is slightly
reduced due to a small decrease of pressure difference amid
condenser and evaporator as shown in Fig. 6(c). All the measured
variables reveal some smooth variation during the transient period.
There is no surge phenomenon. Analogous results are also seen in
case 4 where the water coolant is abruptly reduced from 1200 LPM
to 400 LPM as shown in Fig. 7. Despite a gigantic reduction of water
coolant flow rate, in contrast to case 2, it appears that the no flow
surge phenomenon is encountered even though the mass flow rate
at the condenser exit may be temporarily increased. There are two
reasons for this result. Firstly, the relative decrease in overall heat
transfer coefficient is less pronounced (30% rather than 41% in case
2). Secondly, an appreciable increase of condensing pressure also
lessens the influence of decreasing coolant flow as shown by Laio
and Wang [24].

In summary from the foregoing observations, it appears that the
surge phenomenon is associated with the rate of the transient
variation. In case 2, there is a threefold increase of water coolant
flow rate in about 75 s whereas a 50% reduction in water coolant
flow rate in about 100 s. As a result, a rough estimation for the
occurrence of surge phenomenon is suggested as follows:

1 du > 0.005 s!

Uoriginal dt

(1)

4. Conclusions

This study examines the transient responses of a 50 kW ORC
system subject to change of the water coolant flow rate in the
condenser. The working fluid for the ORC system is R-245fa. The
effect of varying water coolant flow rate in the condenser on the
system performance is reported. Based on the foregoing discus-
sions, the following results are made:

(1) With a moderate increase of water coolant flow rate, all the
major quantities such as the output power of the ORC,
condensing pressure, evaporation pressure show moderate
transition. The output power is slightly increased due to
a better heat transfer performance in the condenser that leads
to a higher pressure difference between the inlet and outlet of
the screw expander. However, the mass flow rate of the R-245fa
remains roughly the same during the transient.

(2) For a sharp rise of water coolant flow rate, the ORC system
undergoes a rather unusual behavior. The output power is first
slightly increased, followed by a sharp decline to barely any
output power and remains there until to the end of the tran-
sient. The output power then shows a substantial rise sharply
and is virtually higher than the original state. There is almost no
R-245fa mass flow rate during the power outage period. Yet the
evaporation pressure also experienced a gigantic falloff during
the transient. This peculiar surge phenomenon is related to
tremendous change of the total void when condensation takes
place that momentarily reduces the R-245fa mass flow rate.

(3) With a moderate or significant decrease of the water coolant
flow rate, all the major quantities such as the output power of
the ORC, condensing pressure, evaporation pressure also show
moderate transition. The output power is slightly decreased
due to a worse heat transfer performance in the condenser that

leads to a smaller pressure difference between the inlet and
outlet of the screw expander. However, the mass flow rate of
the R-245fa remains roughly the same during the transient.

(4) In summary of the effect of water coolant on the transient
response of an ORC system, it is found that the surge
phenomenon is associated with the rate of the transient vari-
ation of the overall heat transfer coefficient.
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