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Abstract — In our daily life, digital cameras and smart phones 

have been widely used to take pictures. However, digital cameras 
and smart phones have a limited dynamic range, which is much 
lower than that human eyes can perceive. Thus, the photographs 
taken in high dynamic range scenes often exhibit under-exposure 
or over-exposure artifacts in shadow or highlight regions. In this 
study, an image fusion based approach, called classified virtual 
exposure image fusion (CVEIF), is proposed for image 
enhancement. First, a function imitating the F-stop concept in 
photography is designed to generate several virtual images 
having different intensity. Then, a classified image fusion method, 
which blends pixels in distinct luminance classes using different 
fusion functions, is proposed to produce a fused image in which 
every image region is well exposed. Experimental results on four 
different kinds of generic images, including a normal image, a 
low-contrast images, a backlight image, and a dark scene image, 
have shown that the proposed CVEIF approach produced more 
pleasingly enhanced images than other methods1. 

 
Index Terms — Classified virtual exposure image fusion, 

contrast enhancement, exposure fusion, image fusion.  

I. INTRODUCTION 

Digital cameras and smart phones have been widely used to 
take pictures in our daily life. However, digital cameras and 
smart phones have a limited dynamic range, which is much 
lower than that human eyes can perceive. As a result, people 
are not always pleasing with the photographs taken in high 
dynamic range scenes because they often exhibit under-
exposure or over-exposure artifacts in shadow or highlight 
regions. The common defects found in real-life images include 
1) a normal image with proper illumination/exposure but some 
regions are slightly under-exposed; 2) a backlight image with 
over-exposed and/or under-exposed regions; 3) a low-contrast 
image due to insufficient illumination/exposure; 4) a dark 
scene image which were taken in the night without using a 
photoflash. If the illumination/contrast of the acquired image 
is improper, a post-processing procedure using an image 
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enhancement method is needed in order to produce an image 
having better quality. Many software or image enhancement 
methods were developed to cope with these problems. In 
general, image enhancement methods can be classified into 
four categories: histogram-based methods [1]-[12], transform-
based methods [1], [13], [14], exposure-based methods [15], 
[16], and image fusion based methods [17]-[19]. 

Histogram equalization (HE) [1] is the most well-known 
technique for image enhancement. HE uses a non-linear 
mapping function to produce an enhanced image with its 
histogram approximating a uniform distribution. However, HE 
fails to produce pleasing pictures owing to three common 
drawbacks: 1) false contour; 2) amplified noises; 3) washed-
out appearance. Pizer et al. [2] proposed a local HE method 
called adaptive histogram equalization. First, an image is 
divided into several non-overlapping blocks. Then, HE is 
applied on each block independently. Finally, the enhanced 
blocks are fused together using bilinear interpolation in order 
to reduce blocking artifacts. Some brightness preservation HE 
methods [3]-[12] tried to preserve the original brightness to 
some extent, which is essential for consumer electronic 
products. These methods first divide the histogram into two 
[3]-[8] or more [9]-[12] sub-histograms and then apply HE on 
each sub-histogram independently. The main drawback of 
brightness preservation methods is that sometimes they may 
produce unnatural artifacts because some regions may be 
enhanced excessively. 

For transform-based methods [1], [13], [14], a transformation 
function (e.g., power-law or logarithmic function) is defined to 
map an input luminance value into an output one. These 
methods were widely provided in many consumer electronic 
products or software. Typically, some device-dependent 
parameters have to be specified in advance. The transform-
based methods generally can produce a properly enhanced 
image for either under-exposed or over-exposed images by 
selecting appropriate parameters [1]. However, if an image has 
both under-exposed and over-exposed regions, the transform-
based methods fail to produce appropriate contrast on both 
regions. Moroney [13] proposed an enhancement approach 
based on pixel-by-pixel gamma correction with a non-linear 
masking. The gamma correction of each pixel depends on the 
values of its neighboring pixels. Nevertheless, it may produce 
halo effects near edges. Thus, Schettini et al. [14] proposed a 
local and image-dependent exponential correction function for 
contrast enhancement in which the bilateral filter is used as the 
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mask of the exponential correction function in order to reduce 
the halo effect. However, the global contrast of the whole image 
was reduced as well. 

Exposure-based methods [15], [16] tried to adjust the 
exposure level of an image using a mapping function between 
the light values and the pixel values of interested objects. 
Battiato et al. [15] proposed a content dependent exposure 
correction approach using the camera response curve to adjust 
the exposure levels. Since this approach was specifically 
designed for interested regions, it can produce pleasing results 
in interested regions; whereas it may lead to poorer illumination 
in other regions. Safonov et al. [16] developed an enhancement 
method for global and local correction of various exposure 
defects. Their approach is based on contrast stretching and 
alpha-blending of the brightness of the original image and the 
estimated reflectance. The main problem with this approach is 
that it might exhibit insufficient illumination for some regions. 

Image fusion based methods [17]-[19] aimed to combine 
relevant information from multiple images taken from the 
same scene in order to produce a fused image, which is more 
informative than each individual one. In this paradigm, several 
“pseudo images” or “virtual images” have to be generated 
from a single input image before image fusion. Hsieh et al. 
[17] used a linear function to fuse the input image and HE 
enhanced image to get a fused one. Pei et al. [18] generated 
two images, a HE enhanced image and a sharpened image 
using Laplacian operator, and then fused their discrete wavelet 
transform (DWT) coefficients to get a fused image having 
higher contrast and sharpness. Lim et al. [19] applied an 
intensity mapping function to the input image to generate 
multiple images having different exposure. The intensity 
mapping function can be either 1) estimated from a set of 
images taken by the same camera in order to imitate the 
camera response function or 2) expressed explicitly in terms 
of a power-law function. In the first case, several images taken 
by the same camera should be provided for learning the 
camera response function. For the second case, parameters of 
the power-law function should be chosen carefully in order to 
get a high contrast fused image. 

In this study, an image fusion based approach, named 
classified virtual exposure image fusion, will be proposed for 
image contrast enhancement. The main contributions are as 
follows. First, a function imitating the F-stop concept in 
photography is designed to generate several virtual images 
having different intensity. Second, a classified image fusion 
method, which blends pixels in distinct luminance classes using 
different fusion functions, is proposed to produce a high-
contrast image in which every image region is well exposed. 

II. PROPOSED CLASSIFIED VIRTUAL EXPOSURE IMAGE 

FUSION APPROACH FOR IMAGE CONTRAST ENHANCEMENT 

In this study, an image fusion based approach, called 
classified virtual exposure image fusion (CVEIF), will be 
proposed for image contrast enhancement. Image fusion have 
been widely developed for producing high quality images in 

applications such as remote sensing [20]-[22], medical 
imaging [22], high dynamic range imaging (HDRI) [22]-[24], 
multi-focus imaging [22], [25], etc. In remote sensing or 
medical imaging, the input images captured from different 
sensors, having variant spatial and spectral properties, are 
combined to generate a high quality fused image. In HDRI, 
several input images taken with distinct exposure time, 
resulting in several images having different intensity, are 
blended together to produce a wide dynamic range image. In 
multi-focus image fusion, some input images captured using 
variant foci [25], with each one containing some objects in 
focus, are fused together to obtain an image in which all 
relevant objects are in focus. Acquisition of several images 
having different exposure or foci is a prerequisite for these 
applications. However, for image contrast enhancement, only 
one input image is given. Thus, several “pseudo images” or 
“virtual images” have to be generated from the input image to 
realize a image fusion system. 

Since the proposed CVEIF approach works on luminance 
image, each input color image is first converted to the 
luminance image. In this study, the luminance value of each 
pixel is converted from the red, green, and blue color values 
using the following conversion function: 

),(114.0),(587.0),(299.0),( yxByxGyxRyxY   (1) 

where R(x, y), G(x, y), and B(x, y) denote the red, green, and 
blue color values of a pixel located at (x, y). Then, several 
virtual images having different intensity, realized by setting 
different imitative F-stops, will be generated. Meanwhile, a 
multilevel thresholding algorithm will be employed to classify 
all pixels in the input image different three luminance classes 
according to their luminance values. Then, a classified image 
fusion method, which fuses pixels in distinct luminance 
classes using different fusion functions, will be proposed to 
obtain a fused image with appropriate exposure on every 
image region. The block diagram of the proposed image 
contrast enhancement system is depicted in Fig. 1. 
 

 
Fig. 1. Block diagram of the proposed CVEIF approach. 

 

A.  Generation of Virtual Exposure Images 

In photography, exposure refers to how much light will reach 
the image sensors on digital cameras. To determine the correct 
exposure, we have to select an appropriate combination of 
shutter speed and F-stop. Shutter speed controls how long the 
shutter is open, determining the exposure time that the light of 
the scene reaches the image sensors. F-stop is used to control 
the size of the aperture, which is the hole the light of the scene 
passes through in a camera. Modern cameras use a standard F-
stop scale, which is an approximately geometric sequence of 
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numbers that corresponds to the sequence of the powers of the 
square root of 2. Specifically, the standard F-stop number runs 
as follows: F1.4, F2, F2.8, F4, F5.6, F8, F11, F16, F22, and so 
on. Each stop represents a halving/doubling of the amount of 
light from its immediate predecessor/successor. For example, 
F1.4 allows the double of light through than F2, and 4 times 
more light through than F2.8. In this study, we take a half-step 
along this scale to make an exposure difference of "half a stop." 
That is, the generated luminance values associating with each 
pixel approximate a geometric sequence with common ratio 2 . 
Let Y(x, y) denote the luminance value of the input image Y at 
spatial location (x, y), and assume that each luminance value is 
an integer in the interval [0, 255]. The luminance value of each 
pixel in the k-th virtual image Yk can be expressed as 

   


 



otherwise,255
2552),( if,2),(),(

kk

k
yxYyxYyxY  (2) 

In this study, N high exposure brighter images (with k = -N, -
N+1, …, -1) and N low exposure darker images (with k = 1, 2, 
…, N) will be generated first (please see Fig. 2 for an 
example). From these generated virtual exposure images, we 
can see that, as the exposure increases, dark regions become 
more and more clear (see the central building) whereas 
brighter regions (see the sky area) become saturated. 
 

 
Fig. 2. Generated virtual exposure images (a) k = 5 (b) k = 4 (c) k = 3 (d) k 
= 2 (e) k = 1 (f) k = 0 (original image) (g) k = -1 (h) k = -2 (i) k = -3 (j) k = -4 
(k) k = -5. 

 
Among these 2N+1 virtual images, only those having some 

relevant informative regions will be selected for image fusion. 
That is, those images which are completely under-exposed or 
completely over-exposed will not be used in the image fusion 
process in an attempt to yield a high informative fused image. 
To this end, an anchor image (the image with the most proper 
exposure) among these 2N+1 virtual images will be selected 
first. The anchor image as well as its preceding M (M  N) 
lower exposure images and succeeding M higher exposure 
images,  resulting in an image set consisting of 2M+1 images, 
will be used for image fusion. The anchor image is found by 
evaluating the average luminance of each virtual exposure 
image. Let k denote the average luminance of all pixels in Yk, 
k = -N, …, N. The exposure image with its average luminance 
closest to 128 (the middle value of the luminance interval [0, 

255]) will be selected as the anchor image. That is, the index 
anc of the anchor image Yanc can be determined by the 
following equation: 

|128|minarg
,,


 k

NNk
anc 


 (3) 

Besides Yanc, its preceding M lower exposure images and 
succeeding M higher exposure images, denoted by Yanc-M, …, 
Yanc, …, Yanc+M, will constitute the set of virtual images for 
image fusion. 
 

B.  Image Pixel Classification 

In this study, the pixels in the input image will be classified 
into three classes: dim class (denoted by YL), well-exposed 
class (denoted by YM), and bright class (denoted by YH), 
according to their luminance values. From the classification 
result, pixels in different classes will be blended using 
different fusion functions. To this end, the multilevel 
thresholding algorithm proposed by Liao et al. [26] is 
employed to find two thresholds, denoted by Thd0 and Thd1 
(Thd0 < Thd1), such that the input image Y can be decomposed 
into three subimages: 

HML YYYY   (4) 

where YL, YM, and YH respectively consist of pixels with 
luminance values smaller than Thd0, in-between Thd0 and 
Thd1, and larger than Thd1: 

 YY  ),( ,),(|),( 0 yxYThdyxYyxYL
 (5) 

 YY  ),( ,),(|),( 10 yxYThdyxYThdyxYM
 (6) 

 YY  ),( ,),(|),( 1 yxYThdyxYyxYH
 (7) 

Fig. 3 shows the image pixel classification result of the input 
image shown in Fig. 2(f). We can see that the pixels in the sky 
region belong to bright class, most of the pixels in the central 
building and the windows in the other buildings belong to dim 
class, and the others are attributed to well-exposed class. To 
provide appropriate exposure on every region (particularly the 
central building), the proposed CVEIF approach aims to blend 
pixels in distinct classes using different fusion functions. 

 

 
Fig. 3. Image pixel classification result of the image shown in Fig. 2(f). 
 

C.  Classified Image Fusion 

In this study, a weighted average approach will be 
employed to blend together the 2M+1 virtual images with 
weights computed from the proposed quality measure. First, a 
weight map, indicating the contribution of each pixel to the 
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fused image, is generated for each virtual image to guide the 
fusion process. For each pixel, Mertens et al. [27] combined 
the information from different measures, including contrast, 
saturation, and well-exposedness, into a scalar weight value. 
Since the proposed classified image fusion method is 
conducted on the luminance image, the weight map considers 
only the contrast and well-exposedness measures. The contrast 
measure tries to preserve the detailed parts of an image such 
as edge or texture information. The well-exposedness measure 
is used to find proper exposure for every pixel. In this study, 
we combine the concept of just-noticeable-distortion (JND) 
model of the human visual system (HVS) in the contrast 
measure in order to prevent from amplifying noises. Further, 
for each pixel, a classified well-exposedness measure is 
proposed to find its proper luminance value. 

1) JND-based Contrast Measure: In this study, the JND 
model of HVS is combined in the contrast measure to prevent 
from amplifying noises. For a pixel p located at (x, y) in 
virtual image Yk, we first compute the maximum, minimum, 
and average luminance values of its eight neighbors within the 
33 window centered at p, denoted by ),(max yxYk

, ),(min yxYk
, 

and ),(avg yxYk
. Then, the difference between ),(max yxYk

 and 

),(min yxYk
 is evaluated: 

),(),(),( minmaxdif yxYyxYyxY kkk   (8) 

This difference value provides a simple measure of the 
contrast value around pixel p. If the difference value is smaller 
than the visibility threshold of HVS, indicating that there exist 
no visible edges of texture information around pixel p, we set 
the contrast value 0. Otherwise, the contrast value is defined 
as ),(dif yxYk

. In addition, because different quality measures 

have distinct dynamic ranges and to prevent from the 
computed weight values being zero, we define the contrast 
value of pixel p as follows: 




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where ),( yxCt
k

 denotes the contrast value of pixel p, JND(·) is 

the visibility threshold function providing the JND that HVS 
can perceive. In this study, the JND model proposed by Chou 
and Li [28] is employed to design the visibility threshold 
function, which can be described by the following equation: 

 






otherwise,3127
127 if,3))127/(1()(

5.0
0

g
ggTgJND


 (10) 

where g is the luminance value in the interval [0, 255], the 
parameters T0 and γ depend on the viewing distance between a 
tester and the monitor. In this study, T0 and γ are set to be 17 
and 3/128 according to the subjective experiments conducted 
by Chou and Li [28]. 

2) Classified Well-exposedness Measure: Well-exposedness 
assesses how well a pixel is exposed. Traditionally, a 

luminance value close to the middle value of the luminance 
interval is considered well-exposed, whereas a luminance 
value near the boundary of the luminance interval is regarded 
as poor-exposed. Thus, the well-exposed measure is generally 
defined by the following Gaussian function [27] [29]: 








  2

2

2
)128),((

exp),(


yxY
yxE kt

k
 (11) 

where 128 (viewed as the desired target luminance value) is 
the middle value of the luminance interval [0, 255], ),( yxEt

k
 

denotes the well-exposedness value of the pixel located at (x, 
y),  is the standard deviation of the Gaussian curve (set as 
0.2luminance range). This definition gives those pixels with 
luminance value close to 128 a larger well-exposedness value 
and a small weight value is assigned to those pixels with 
luminance values close to 0 or 255. Nevertheless, such a 
definition does not consider the original brightness of the 
pixels in the image. That is, the luminance values of both dark 
and bright pixels will be moved toward 128 in the fused 
image. As a result, the global contrast of the fused image will 
be reduced although all pixels are well exposed based on the 
well-exposedness measure defined in (11). To deal with this 
problem, the proposed classified well-exposedness measure 
defines distinct desired target luminance values for pixels 
belonging to different classes. Specifically, pixels in well-
exposed class (YM) have a desired target luminance value of 
128, whereas pixels in bright class (YH) and dim class (YL) 
will be assigned a desired target luminance value larger than 
128 and smaller than 128, respectively. Let L and H denote 
the average luminance values of all pixels in YL and YH, 
respectively. The desired target luminance value for pixels in 
class YL, denoted by t

LY , is defined by the following function: 
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where rL is the proportion of the number of pixels in YL, that 
is, 

HML

L
L NNN

N
r   (13) 

where NL, NM, and NH are the number of pixels in YL, YM, and 
YH. Note that the desired target luminance value for pixels in 
YL is defined in the interval [32, 64] according to the 
luminance distribution. If L > 64, indicating that the input 
image is a bright one, we set the desired target luminance 
value as 64. On the other hand, if L < 32, indicating that the 
input image is a dark one, the desired target luminance value 
for class YL will be defined according to the proportion of the 
number of pixels in YL, rL. If rL is large, indicating that the 
input image consists of many dark pixels, a large desired 
target luminance level is chosen, and vice versa.  
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For pixels belonging to well-exposed class YM, the desired 
target luminance value is defined as 128, that is, 

128t
MY  (14) 

Since the luminance values of dark pixels are often set toward 
higher ones, to preserve and even increase the global contrast 
of the fused image, the desired target luminance value for 
pixels in bright class YH, t

HY , is defined in a similar way. 

Specifically, t
HY  is defined as follows: 
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According to the definition of desired target luminance values 
for different luminance classes, the classified well-
exposedness measure is defined as follows: 
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where L, M, and H are the desired target standard deviation 
of the Gaussian curve for YL, YM, and YH (in this study, we set 
L = 32, M = 64, and H = 32).  

3) Classified Weight Map Generation: Finally, the weight 
map, t

kW , associated with virtual image Yk (k = anc-M, …, 

anc+M) is obtained by combining the information from both 
JND-based contrast measure and classified well-exposedness 
measure through multiplication: 

),(),(),( yxEyxCyxW t
k

t
k

t
k   (17) 

To obtain a consistent result, we normalize the weight values 
of the 2M+1 weight maps such that for each pixel location the 
sum of the 2M+1 weight values equals one: 






 Manc

Manci

t
i

t
k

k

yxW

yxW
yxW

),(

),(
),(

 (18) 

Fig. 4 and Fig. 5 show the weight maps generated by the 
proposed classified weight map generation method and that 
proposed by Mertens et al. [27]. From Fig. 5, we can observe 
that the weight values in the sky region of those low exposure 
images have larger weight values than those in high exposure 
ones. Consequently, the luminance value of the sky region 
will decrease in the fused image (see Fig. 6(a) to Fig. 6(e)). 
On the other hand, the proposed classified weight map 
generation method can produce proper luminance values for 
pixels in the sky region (see Fig. 6(j)). 

4) Classified Image Fusion in the Discrete Wavelet 
Transform Domain: In this study, the proposed classified 
image fusion is performed in the discrete wavelet transform 

    
Fig. 4. Weight maps of different exposure images generated by using the 
proposed classified weight map generation method (a) Y5 (b) Y4 (c) Y3 (d) 
Y2 (e) Y1 (f) Y0 (g) Y-1 (h) Y-2 (i) Y-3 (j) Y-4 (k) Y-5. 

 

 
Fig. 5. Weight maps of different exposure images generated by using the 
method proposed by Mertens et al. [27] (a) Y5 (b) Y4 (c) Y3 (d) Y2 (e) Y1 (f) 
Y0 (g) Y-1 (h) Y-2 (i) Y-3 (j) Y-4 (k) Y-5.  

 
(DWT) domain to avoid annoying seams at pixels having 
sharp weight value transitions [29]. By using DWT, a multi-
resolution representation can be constructed for each virtual 
image. Given a two-dimensional image, one-dimensional 
DWT can be successively applied to the rows and columns of 
the image. This process accomplishes one level of 
decomposition and results in four low-resolution subimages, 
denoted by LL, LH, HL, and HH. The subimage LL 
corresponds to a coarse approximate image, whereas the 
subimages LH, HL, and HH correspond to vertical, horizontal, 
and diagonal details. For multi-resolution wavelet 
decomposition, the subimage LL can further be decomposed 
into the other four subimages using the same decomposition 
procedure. Such a decomposition process is repeated until the 
desired number of levels determined by the application is 
reached. If L-level of wavelet decomposition is performed, we 
can obtain 3L+1 subimages. The reconstruction of the image 
can be carried out by reversing the above decomposition 
procedure level by level until the image is fully reconstructed. 

Let ,l
kY  denote the wavelet subimage with direction  (  

{LL, LH, HL, HH}) at level l (1  l  L) of the wavelet 
transform of virtual image Yk. For each weight map, a 
corresponding Gaussian pyramid will be constructed. Let l

kW  

denote the subimage at level l of the Gaussian pyramid of the 
weight map Wk associated with exposure image Yk. Blending 
is carried out independently for every wavelet subimage with 
direction  and level l, with the subimage at the l-th level of  
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Fig. 6. Comparison of the fused images using wavelet based exposure fusion method proposed by Mertens et al. [27] ((a)–(e)) and the proposed CVEIF 
approach ((f)–(j)) by blending together 2M+1 exposure images (a) M = 1 (b) M = 2 (c) M = 3 (d) M = 4 (e) M = 5 (f) M = 1 (g) M = 2 (h) M = 3 (i) M = 4 (j) 
M = 5. 

 
the Gaussian pyramid of the weight map serving as the 

weights: 





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Manck

l
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l
k

l yxWyxYyxF ),(),(),( ,,   (19) 

where Fl,(x, y) is the fused wavelet coefficient located at (x, 
y) in the wavelet subimage with direction  and level l. By 
applying inverse DWT on these wavelet subimages, we can 
reconstruct the fused image F. Fig. 6 compares the fused 
images obtained by blending different number of virtual 
images using the proposed CVEIF approach with wavelet 
based exposure fusion method proposed by Mertens et al. 
[27]. We can see that the proposed CVEIF approach yields 
better exposure on sky regions. In addition, improved contrast 
can be obtained as the number of exposure images used for 
image fusion increases. Thus, in the following experiments, 
we set the parameter M = 5. 

D.  Color Reconstruction 

From the fused luminance image F, the R, G, B color 
values of each pixel can be reconstructed by using the 
following formula in order to prevent relevant hue shift and 
color desaturation [30]: 
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III. EXPERIMENTAL RESULTS 

In this study, four different kinds of generic images will be 
used for performance comparison: 1) a normal image with 
proper illumination/exposure but some regions are slightly 
under-exposed; 2) a low contrast image due to insufficient 
illumination/exposure; 3) a backlight image with over-
exposed and/or under-exposed regions; 4) a dark scene image 
which was taken in the night without using a photoflash. The 
proposed CVEIF approach will be compared with some other 

methods, including 1) HE [1]; 2) Battiato’s exposure 
correction (EC) algorithm [15]; 3) Schettini’s local gamma 
correction (LCC) algorithm [14]; 4) Safonov’s shadow 
correction (SC) algorithm [16]; 5) Pei’s wavelet-based image 
fusion (WIF) method [18]; 6) Merten’s exposure fusion (EF) 
method [27]. 

A.  Experimental Results on a Normal Image 

Fig. 7 shows an image with proper exposure and the 
enhanced images obtained using different enhancement 
methods. Fig. 7(a) shows the original image; we can see that 
the exposure of the whole image is appropriate, except that the 
central building is a little under-exposed. From Fig. 7(b), we 
can see that HE produces an image having sharper contrast 
than the original one. However, the tone of colors in the sky 
area is also changed to some extent. From Fig. 7(c), Fig. 7(d), 
and Fig. 7(f), we can see that the central building in the 
enhanced images using Battiato’s EC algorithm, Schettini’s 
LCC algorithm, and Pei’s WIF method are clearer than that of 
original one, but the exposure is also insufficient. In Fig. 7(e), 
the central building has a better exposure but the global 
contrast of the image is not good enough. From Fig. 7(g), we 
can see that an unnatural, low-quality, and low-contrast image 
is obtained using Merten’s EF method. By observing all 
enhanced images, we can find that the proposed CVEIF 
approach (see Fig. 7(h)) yields a better, high-contrast image. 

B.  Experimental Results on a Low Contrast Image 

Fig. 8 compares the enhanced results of different methods 
on a low contrast image. Fig. 8(a) shows the original image; 
we can see that the exposure is deficient and thus a low-
contrast dark image is acquired. From Fig. 8(b), we can see 
that HE produced a high-contrast image at the cost of 
desaturating the color of those bright regions. From Fig. 8(d), 
we can see that Schettini’s LCC algorithm produced a 
washed-out appearance and thus the image looks unnatural. 
The contrast of the enhanced image using Safonov’s SC 
algorithm is a little better than the original one (see Fig. 8(e)). 
By carefully observing the white wall in the background, we 
can see that it becomes gray in the enhanced image using  
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Fig. 7. Enhanced results of a normal image using different methods (a) Original image (b) HE (c) EC (d) LCC (e) SC (f) WIF (g) EF (h) Proposed 
CVEIF. 

 

 
Fig. 8. Enhanced results of a low contrast image using different methods (a) Original image (b) HE (c) EC (d) LCC (e) SC (f) WIF (g) EF (h) Proposed 
CVEIF. 
 

Merten’s EF method (see Fig. 8(g)). From Fig. 8(c), Fig. 8(f), 
and Fig. 8(h), we can see that the proposed CVEIF approach, 
Pei’s WIF method, and Battiato’s EC algorithm yield 
comparably pleasing images with higher contrast. 

C.  Experimental Results on a Backlight Image 

Fig. 9 shows a backlight image and the enhanced images 
obtained using different enhancement methods. Fig. 9(a) 
shows the original image; we can see that the foreground 
pagoda and trees are almost invisible. From Fig. 9(b), we can 
see that HE yields a clear image at the expense of a bit 
washed-out appearance (see the leaves near the sunlight). 
Battiato’s EC algorithm, Schettini’s LCC algorithm, and 
Safonov’s SC algorithm can enhance the foreground pagoda 
and trees to some extent, but the global contrast is not 
acceptable (see Fig. 9(c), Fig. 9(d), and Fig. 9(e)). In Fig. 9(g), 
we can see that the sky region becomes gray in the enhanced 
image using Merten’s EF method.  From Fig. 9(f) and Fig. 
9(h), we can see that the proposed CVEIF approach and Pei’s 
WIF method produce images with better contrast. However, 
by carefully observing the enlarged detail parts of the 
enhanced images obtained using Pei’s WIF method and the 

proposed CVEIF approach (see Fig. 9(i) and Fig. 9(j)), we can 
see that severe blocking artifacts exist in the enhanced image 
using Pei’s WIF method. 

D.  Experimental Results on a Dark Scene Image 

Generally, when images were taken in the night without 
using a photoflash and there exists some lighting in the 
background, the foreground objects will become dark and 
unclear due to relatively insufficient illumination in the 
foreground objects. Fig. 10 shows an image taken in the 
night and the enhanced images obtained using different 
enhancement methods. Fig. 10(a) shows the original image; 
we can see that the foreground subjects are dark and unclear 
due to the existence of the bright neon light and Chinese 
lanterns in the scene. By comparing all enhanced images, we 
can see that the faces in the foreground subjects become 
clear using HE, Pei’s WIF method, and the proposed CVEIF 
approach (see Fig. 10(b), Fig. 10(f), and Fig. 10(h)). 
However, HE will change the tone of color a bit (please see 
the Chinese lanterns). Similarly, blocking artifacts also exist 
in the enhanced image produced using Pei’s WIF method 
(see Fig. 11). 
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Fig. 9. Enhanced results of a backlight image using different methods (a) Original image (b) HE (c) EC (d) LCC (e) SC (f) WIF (g) EF (h) Proposed 
CVEIF (i) enlarged detail part of Fig. 9(f) (j) enlarged detail part of Fig. 9(h). 
 

 
Fig. 10. Enhanced results of a dark scene image using different methods (a) Original image (b) HE (c) EC (d) LCC (e) SC (f) WIF (g) EF (h) Proposed 
CVEIF. 

 

 

Fig. 11 Comparison of the enlarged detail parts of Fig. 10(f) and Fig.
 

10(h)) (a) WIF (b) Proposed CVEIF. 

IV. CONCLUSION 

In this study, an image fusion based approach, called 
classified virtual exposure image fusion (CVEIF), is proposed 
for image contrast enhancement. First, a function imitating the 
F-stop concept in photography is designed to produce several 
virtual images having different intensity. Then, a classified 
image fusion method, which blends pixels in distinct 
luminance classes using different fusion functions using the 
proposed JND-based contrast measure and classified well-
exposedness measure, is designed to produce a fused image in 
which every region is well exposed. Experimental results on 
four different kinds of generic images have shown that the 
proposed CVEIF approach yielded more pleasingly enhanced 
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images than other methods, including HE, Battiato’s EC 
algorithm, Schettini’s LCC algorithm, Safonov’s SC 
algorithm, Pei’s WIF method, and  Merten’s EF method. 
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