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Abstract--This paper introduces a neural network architecture called an adaptive Hamming net for learning of 
recognition categories. This model allows new prototypes to be added to an existing set of memorized prototypes 
without retraining the entire network. Under some model hypotheses, the functional behavior of  the adaptive Ham- 
ming net is equivalent to that of  a fast-learning ART 1 network, so some useful properties of ART 1 can be applied 
to the adaptive Hamming net. In addition, the proposed network finds the appropriate category more efficiently than 
ART 1 : for the same input sequences, the adaptive Hamming net obtains the same recognition categories as ART 1 
without any searching. The adaptive Hamming net not only reduces the training time of ART 1 but is also easier to 
implement. The adaptive Hamming net is limited to binary pattern clustering, but it can be extended to the case of 
analog input vectors by incorporating fuzzy logic techniques. 
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1. INTRODUCTION 

Neural networks with parallel processing capability and 
robust performance provide a new approach to adaptive 
pattern recognition. However, most neural networks 
suffer from the following disadvantages: 
1. the training time is extremely long when solving 

large-scale problems (this is true in particular for 
back-propagation algorithms) 

2. it is necessary to retrain the entire network when a 
new pattern is added. 

To overcome these difficulties, Carpenter and Gross- 
berg (1991) developed a series of  adaptive resonance 
architectures (ART).  The most popular ART models 
include ART 1 (Carpenter & Grossberg, 1987a), ART 
2 (Carpenter & Grossberg, 1987b), fuzzy ART (Car- 
penter, Grossberg, & Rosen, 1991b), ARTMAP (Car- 
penter, Grossberg, & Reynolds, 1991), and fuzzy 
ARTMAP (Carpenter et al., 1992). In this paper, we 
aim to improve the computational efficiency of ART 1 
and apply the results to fuzzy ART. The neurological 
implications of ART will not be dwelled upon. 

ART 1 is a neural network architecture that self- 
organizes stable recognition categories in real time in 
response to arbitrary sequences of binary input patterns 

Requests for reprints should be sent to Sheng-Fuu Lin, Depart- 
ment of Control Engineering, National Chiao Tung University, 1001 
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(Carpenter & Grossberg, 1987a). A category is rep- 
resented by a node in a specific layer of the ART 1 
network, which corresponds to a prototype pattern for 
the category. It is this prototype that is matched to the 
input. In operation, the network tentatively selects a 
winning node in a category layer to represent an input 
pattern appearing across its input layer. To ensure 
learning stability, the orienting subsystem (Figure 1 ) 
in ART 1 essentially checks that a category prototype 
pattern corresponding to the winning node in the cat- 
egory layer matches the input pattern as closely as de- 
sired. When a pattern mismatch occurs, the winning 
node is reset and the node that has the next priority in 
the order of search is selected. The search process con- 
tinues until the system finds a node to learn the input 
pattern. Figure 2 illustrates a typical ART search-reset 
cycle. Although Carpenter and Grossberg (1987a) de- 
signed a self-adjusting memory search for the ART net- 
work, it is possible that a series of mismatch resets in 
response to a single input can affect the computational 
speed and efficiency of the network. To reduce the 
training time of ART 1, in this paper we propose a 
neural network architecture called an adaptive Ham- 
ming net, which can avoid an unnecessary search. 

Because many applications of ART 1 use fast-learn- 
ing conditions, only this case is described in detail here. 
Fast learning means that the weights in ART 1, which 
are governed by first-order nonlinear ordinary differ- 
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FIGURE 1. The architecture of ART 1. The two major subsystems are the attentional subsystem and the orienting subsystem. 

ential equations, are allowed to reach their asymptotic 
equilibrium values with each pattern presentation. The 
adaptive Hamming net accurately reproduces the be- 
havior of  ART 1 in the fast-learning case and thus may 
be an efficient method for selecting appropriate rec- 
ognition codes and reducing the design complexity of  
ART 1. It processes familiar and unfamiliar events 
without using a time-consuming search cycle. This fea- 
ture of the net eliminates consecutive resetting and 
choosing, and makes the net easier to implement than 
ART 1. 

The key idea behind this approach is to convert the 
search procedure of ART 1 into an optimization prob- 
lem (see Section 3). To solve this optimization prob- 
lem, a set of categories is initially constructed that sat- 
isfies the vigilance constraints, and then the best 
matching solution is found by maximizing a measure 
of similarity. Such a search process is different from 
the one used in ART 1. It eliminates all infeasible so- 
lutions from existing categories, thereby reducing train- 
ing time. To realize the above idea a locally defined 
neural network architecture is utilized. The use of a 
neural network architecture allows us to exploit the par- 
allelism inherent in the proposed method. 

The configuration of an adaptive Hamming net is 
similar to that of  the traditional Hamming net (Lipp- 
mann, 1987). The former can be treated as an adaptive 
version of the latter. Before describing the adaptive 
Hamming net, we briefly introduce the Hamming net. 
The Hamming net for binary patterns computes the 
Hamming distance to each prototype and selects the 
prototype with the minimum Hamming distance. It 
comprises a feedforward excitatory network and lateral 
inhibitory network. The main feature of  the Hamming 

net is that it uses a M A X N E T  to pick the node that has 
the maximum output value. This action is equivalent to 
MAXNET picking the prototype that has the least 
Hamming distance from the input pattern. Another fea- 
ture of  the Hamming net is that its synaptic weights are 
prestored and are not capable of  learning. 

Unlike the fixed-weight Hamming net described 
above, the adaptive Hamming net can learn to adapt 
based on experience collected from previous training 
patterns. Furthermore, it is also able to learn new input 
patterns without forgetting old learned patterns. This 
property makes the neural model ideal for use as a pat- 
tern recognition machine in real-time environments. 

Another feature of the adaptive Hamming net is that 
it picks and chooses adequate prototypes through a sim- 
ilarity checking process. The proposed model uses a 
nonlinear activation function to select available cate- 
gories for which prototype patterns are similar to the 
input pattern and to suppress categories for which pro- 
totype patterns are sufficiently different from the input 
pattern. The nonlinear activation function is similar to 
the piecewise linear function used in ART 2 (Carpenter 
& Grossberg, 1987b). The degree of match between 
the input pattern and stored prototype is defined by a 
threshold. Note that this is different from Lippmann's  
Hamming net, which has a predefined threshold level. 
The threshold level of  the adaptive Hamming net is 
dependent upon the input pattern. This enables the 
adaptive Hamming net to add new prototypes to an 
existing set of memorized prototypes without retraining 
the entire network. 

The remainder of this paper is organized as follows. 
Section 2 introduces both ART 1 and fuzzy ART. Sec- 
tion 3 describes in detail the adaptive Hamming net. 
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FIGURE 2. A search- reset  cycle in an ART 1 network is shown. This search process evolves from a category choice in (a) to 
vigilance testing in (b), to mismatch reset in (c), to selection of a different candidate category in (d). Searching ensues until either 
an adequate match is made  or a new category is established. 

Section 4 demonstrates the functional equivalence of 
the adaptive Hamming net and fast-learning ART 1. In 
addition, the learning algorithm of the adaptive Ham- 
ming net is modified and applied to fuzzy ART. Section 
5 presents simulation results comparing the adaptive 
Hamming net with fast-learning ART 1. Finally, the 
discussion and conclusion are presented in Section 6. 

2. ADAPTIVE RESONANCE T H E O R Y  

2.1. ART 1 

The binary-valued adaptive resonance theory (ART 1 ) 
neural network, proposed by Carpenter and Grossberg 
(1987a),  is a two-layer classifier that stores an arbitrary 
number of binary input patterns using competitive 
learning. The main feature of  ART 1 is the ability to 

self-organize and self-stabilize its recognition codes in 
real-time nonstationary input environments. To ensure 
that learning is stable, ART 1 uses a learned top-down 
expectation to check whether the input pattern and the 
chosen prototype pattern match. If  not, the system will 
search the established categories until either an ade- 
quate match is found or a new category is established. 
This confidence measure in the ART 1 network is con- 
trolled by a parameter p, called a vigilance parameter,  
which determines how fine the categories will be. 

For illustration, consider the ART 1 architecture 
shown in Figure 1, which has N output nodes repre- 
senting N potential categories for learning n-dimen- 
sional input patterns. Each category j corresponds to a 
bottom-up weight vector Bj --= [bj~ . . . . .  bj, l and a top- 
down weight vector Wj ----- [wj~ . . . . .  wj , ] .  The bottom- 
up weight big is used to multiply a signal that is carried 
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from the ith node in the input layer to the j th  node in 
the category layer. The top-down weight wj~ is used to 
multiply a signal that is carried from the j th  node in 
the category layer to the ith node in the input layer. 
These weights, which link the input layer and the cat- 
egory layer, can change as a result of learning. Because 
the top-down weights encode the salient features of the 
patterns appearing across the input layer, they are also 
called t o p - d o w n  t empla te s .  The top-down templates are 
the category prototype patterns. 

ART 1 is capable of stable learning at either a slow 
or a fast rate. In slow learning, the first-order nonlinear 
ordinary differential equations (Carpenter & Grossberg, 
1987a) for the bottom-up and top-down weights are not 
allowed to converge to a steady state for any particular 
input pattern. In contrast, in fast learning the weights are 
allowed to converge to new equilibrium values in re- 
sponse to each input pattern. Because many applications 
of ART 1 use fast learning, only the fast-learning case 
is described in detail in this paper. An algorithm for the 
fast-learning ART 1 is presented below. 

Step 0. Init ial ization: Initially, all categories are said 
to be u n c o m m i t t e d .  The bottom-up weights b:i satisfy 

b(init) --~ h (init) h : ,  j = 1, N, (1) 
j I ~ . . . .  jn ~ • • " 

where hj are ordered according to hN < • •. < k2 < kl 
< 1 / ( a  + n ) ,  with 0 < a ~ 1. Initially, all top-down 
weights wj~ are set equal to 1. That is, 

( init ) ( init ) w/l . . . . .  wj, = 1,' j = 1 . . . . .  N.  (2) 

Step 1. Present a binary pattern X = [x, . . . . .  x,,] to 
the input nodes, where each component xl E { 0, 1 }. 

Step 2. Use bottom-up processing to obtain a weighted 
sum expressing the input to each category node: 

n 

u j =  ~ .b j i x i ,  j =  1 . . . . .  N.  (3)  
i=1 

Step 3. Use a winner-take-all network to select the win- 
ner, which yields the maximum weighted sum. The 
winner is indexed by J ,  where 

J = a r g  max uj. (4) 
j j = l  . . . .  N 

Step 4. Vigi lance  test: In a fast-learning ART 1, mis- 
match reset occurs if 

IX A W~l ZT=, w~ixi 
- - -  < p, (5) 

I x l  2 ° i~ l  Xi  

where fq is the component-by-component Boolean 
AND operator and I X I is the number of  ones in binary 
pattern X. Then the weighted sum uj of the winner is 
reset to - 1 for the duration of the input presentation to 
prevent its persistent selection during search and the 
algorithm returns to Step 3. The search process contin- 
ues until a winner passes the vigilance test, that is, 

~ z =  I W j i X  i 
- -  - - >  p, (6) 

ET=l xl 

then proceeds to Step 5. 
For the vigilance test process, the parameter p satisfies 
0 < p < _ l .  

Step 5. If  the winner passes the vigilance test, the bot- 
tom-up weights bji and the top-down weights wji are 
updated according to the equations 

(old) 
(new) Wfi Xi if j = J 

wjl = / (ore (7) 
( w j i  if j :t: J 

and 

(old) 
I W j  i Xi 

w(Om if j = J 
b ) i n e w ) =  o~ + Y..7=I ji x i  

[b)i °la) i f  j ~ J ,  

(8) 

w h e r e i =  1 . . . . .  n a n d j =  1 . . . . .  N. 

Step 6. Go to Step 1 and present a new pattern. 
The loop from Step 4 back to Step 3 constitutes a 

memory search cycle. In ART 1, Carpenter and Gross- 
berg (1987a) designed a self-adjusting search mecha- 
nism to maintain efficiency as the prototype patterns 
become arbitrarily complex due to learning. They also 
show that the ordering of initial uj values determines 
the order of  search in each trial. That is, if the initial uj 
values are ordered by decreasing size, as in 

bljl > Uj2 • Uj3 > . . . .  (9) 

then categories are searched in the order j 1, j2 ,  j3  . . . .  
in that trial. All things being equal, a fast-learning ART 
1 with a higher level of vigilance will require more 
accurate pattern matches and hence will search more 
deeply in response to each input pattern. 

From the above discussion, it is evident that the fast- 
learning ART 1 algorithm has a mixture of  both serial 
and parallel operations. The main operations of ART 
1, such as bottom-up input processing and top-down 
template matching, can be implemented in parallel. 
However, the search process remains a serial operation 
if the ART 1 algorithm is implemented as described. 

Let us now further analyze the order of search. As 
in Carpenter and Grossberg (1987a),  three types of 
learned templates are initially defined with respect to 
an input pattern X: s u b s e t  templates, s u p e r s e t  tem- 
plates, and m i x e d  templates. The components of a sub- 
set template W satisfy W _ X. That is, 

0 < l x n W l  = l W l - < l x l .  ( ,0)  

The components of a superset template W satisfy W D 
X. That is, 

0 <  I x n w l  = Ix l  < IwI .  (11) 
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The components of a mixed template W satisfy 

0 <  I X n W [  < IWl and 0 <  I X n W l  < IXl. (12) 

From the above definitions, an uncommitted node may 
be treated as a node with an unlearned superset tem- 
plate. To illustrate how the search ends, the search or- 
der theorem of ART 1 (Carpenter & Grossberg, 1987a) 
is rewritten below. 

THEOREM FOR SEARCH ORDER. Suppose that 
(A1) 1 --< IXl  - n -  1 
(A2) 0 < c~ --< 1/IXl 
(A3) N is large enough so that the category layer 

can represent all 2" - 1 possible nonzero in- 
put patterns. 

Then the order of  search among subset templates, su- 
perset templates, and mixed templates is as follows: 
1. Learned subset templates with respect to X are 

searched initially, in order of  decreasing size. I f  the 
largest subset template is reset, then all subset tem- 
plates are reset. 

2. I f  all subset templates are searched (or no subset 
templates) and if  there exist learned superset tem- 
plates but no mixed templates, then the node with 
the smallest superset template will be activated next 
and will code X.  

3. I f  all subset templates are searched (or no subset 
templates) and if  both mixed templates and learned 
superset templates exist, then the node with a tem- 
plate Wgt will be searched before the node with a 
t e m p l a t e  W j2 iff 

[ x n W j l l  IXnWj21 > (13) 
Iw~,l Iw~21 

4. I f  all subset templates are searched (or no subset 
templates) and if  there exist mixed templates but no 
learned superset templates, then the node with a 
mixed template WjI will be searched before an un- 
committed node J2 iff 

n 
I x ~ W J l l  / (init) 

> ~ ~'J2,i xi. (14)  
,~+ IWj, I ,=, 

5. I f  all subset templates are searched (or no subset 
templates) and if  no other learned templates exist, 
then the first unlearned superset template (uncom- 
mitted node) will be searched and will code X.  

REMARKS. If W j2 is a learned superset template with 
respect to X, then eqn ( 13 ) is equivalent to 

Ix n wj, I Ixl 
> - -  (15) 

IW~,l Iwj~l 

If W j2 is also a mixed template with respect to X and 
Ix n wj ,  I/Iwj,  I = Ix n wj21/Iwj21, then node J1 
will be searched before node J2 if 

Iw~,l < IW~=l. (16) 

A proof can be found in Carpenter and Grossberg 
(1987a).  

In simulations, the search process of ART 1 is time 
consuming when a new input pattern is quite different 
from all the existing prototype patterns. If logical cir- 
cuits were added to distinguish subset, superset, and 
mixed templates from all templates, it would be nec- 
essary to search for only the largest subset template, 
the smallest superset template, and other mixed tem- 
plates being used. This could save much unnecessary 
resetting time, but would increase the architectural 
complexity. 

Another method that can reduce the search time of 
the ART 1 model was proposed by Shih, Moh, and 
Chang (1992). They used bidirectional testing to de- 
termine the similarity between an input pattern and the 
top-down templates of  a chosen category. In addition 
to eqn (6) ,  they introduced the following inequality to 
determine how similar a prototype is to the input pat- 
tern 

n 
Y" i ~ 1 WJiXi  
- -  ~ p. ( 1 7 )  
Y'7:l wji 

In eqn (6) ,  for a vigilance test, the ratio represents the 
percentage of the l ' s  of the input pattern existing in the 
top-down templates. In eqn (17),  the ratio represents 
the percentage of the l ' s  of the top-down templates 
existing in the input pattern. It is worth noting that the 
similarity measure used in eqn (17) is just the nonfuzzy 
form of the similarity measure Tj (denoted by uj in our 
notation) used in the conservative limit of fuzzy ART 
(Carpenter et al., 1991b, p. 765). 

When the above modified ART 1 model is used, the 
search procedure does not need to check the categories 
with lower matching ratios characterized by eqn (17).  
This can save a significant amount of time in searching 
most of the unmatched categories. However, it still 
does not completely avoid the search cycle. 

In this paper, a modification is proposed to prevent 
this unnecessary searching. More precisely, the archi- 
tecture proposed here produces the same clustering re- 
suits as fast-learning ART 1 without any searching. Be- 
cause fast-learning ART 1 is a special case of fuzzy 
ART (Carpenter et al., 1991b), all of  our analysis can 
be extended to fuzzy ART. Before describing the adap- 
tive Hamming net, we briefly introduce the fuzzy ART 
algorithm. 

2 .2 .  F u z z y  A R T  

ART 1 is the earliest ART network designed for binary 
pattern clustering. To enhance the capabilities of ART 
1 for analog inputs, Carpenter et al. (1991b) developed 
a fuzzy ART algorithm that incorporates a fuzzy logic 
operator in ART 1. The fuzzy ART system replaces the 
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dot product used in ART 1 by the min operator. This 
makes fuzzy ART capable of handling both analog and 
binary inputs. 

Fuzzy ART is an algorithmic clustering technique. 
It reduces to fast-learning ART 1 in response to binary 
input patterns. In fuzzy ART, the weight vector Wj sub- 
sumes both the bottom-up and top-down weight vectors 
of ART 1. The following algorithm implements the ba- 
sic idea behind fuzzy ART. 

Step O. Initialization: Initially, all categories are said 
to be uncommitted. The weights w~i are set equal to 1. 
That is, 

( i n i t )  ( i n i t )  wjl = . . .  = wj, = 1, j = 1 . . . . .  N. (18) 

Step 1. Present a binary or analog pattern X = [x~ . . . . .  
x,] to the input nodes. All input values x~ must be 
within the range [ 0, 1 ]. 
Step 2. The input to the j th  node in the category layer 
is given by 

Y"i=l min(wjl, xi) 
u~= , j =  1 . . . . .  N. (19) 

i = 1  

Step 3. Use a winner-take-all network to select the win- 
ner, which yields the maximum weighted sum. The 
winner is indexed by J, where 

J : arg max uj. (20) 
i 1 = 1  . . . . .  N 

If more than one uj is maximal, the output node with 
the smallest index is chosen to break the tie. 

Step 4. Vigilance test: In fuzzy ART, mismatch reset 
occurs if 

E7=1 min(wji, xi ) 
< p. (21) E n 

i = 1  Xi 

Then the weighted sum uj of the winner is reset to - 1 
for the duration of the input presentation and the al- 
gorithm returns to Step 3. The search process continues 
until a winner passes the vigilance test, that is, 

E "i:l min ( w~i, xi ) 
-> p, (22) 

n 
"~' i = 1 Xi 

and then proceeds to Step 5. 
For the vigilance test process, the parameter p satisfies 
0 -< p -< 1. After a category is selected for learning it 
becomes committed. 

Step 5. If  the winner J passes the vigilance test, the 
weights wji can be updated according to the equations 

r ( o l d )  ~ ' .  . ~ ( o l d )  ~ ( o l d )  /wji + p~mmtx~, wj~ ) - wj~ ) 

w), ."ewe= ] if Jiscommined (23) 
/ 
I. x~ if J is uncommitted, 

where the learning rate/3is set in [0, 1] and i = 1 . . . .  , 
n. In the fast-learning case,/3 is set to 1. 

Step 6. Go to Step 1 and present a new pattern. 
Fuzzy ART, as well as other ART models, imple- 

ments a best-first search that is performed in the order 
of descending value of uj. As mentioned before, the 
memory search cycle from Step 4 back to Step 3 can 
affect the computational speed and efficiency of fuzzy 
ART. To reduce the training time of fuzzy ART, we 
propose an efficient algorithm to allow analog patterns 
to be encoded without performing an extensive serial 
search through all stored prototypes. This algorithm, 
which is derived from fuzzy ART, is called a fuzzy 
adaptive Hamming net ( see Section 4). For the special 
case of binary inputs and fast learning, the computa- 
tions of the fuzzy adaptive Hamming net are identical 
to those of the adaptive Hamming net. The adaptive 
Hamming net and its learning algorithm are described 
in the next section. 

3. A D A P T I V E  H A M M I N G  NET 

An adaptive Hamming net is a two-layer neural net- 
work that consists of a matching score net with a 
threshold 0 and a MAXNET. The matching score net 
is designed to map an input pattern into N matching 
scores, appearing respectively at the N output nodes of 
that net. For a binary-valued input, the matching scores 
are defined in terms of the inner product between the 
synaptic weight matrix and the input pattern. After mul- 
tiplying the N matching scores by a set of weights, one 
can use a MAXNET to select an adequate category for 
which the weighted matching score is the highest. If an 
adequate match is found, the weights connected to that 
net are updated. Learning within an adaptive Hamming 
net either refines the prototype of a previously estab- 
lished category or assigns the input pattern to a new 
category. When the input pattern is familiar, the system 
will access a previously learned category. When the 
input pattern is novel, the system will memorize it. 

The architecture of an adaptive Hamming net is 
shown schematically in Figure 3. The net contains n 
input layer neurons, N hidden layer neurons, and N out- 
put layer neurons. To carry out fast  learning of stable 
recognition categories in response to arbitrary se- 
quences of binary input patterns, the matching score 
between an input pattern and an existing prototype 
must be larger than a certain threshold. This means that 
learning occurs only when the input pattern and stored 
prototype are sufficiently similar. Note that the thresh- 
old level of the matching score net is autotuned by a 
linear combiner, as shown in Figure 3. 

The adaptive Hamming net and the fixed-weight 
Hamming net (Lippmann, 1987) have a similar archi- 
tecture, but use different weight learning and thres- 
holding techniques. In a traditional Hamming net, the 
prototype patterns are directly assigned to the weights 
and the threshold value is fixed. In contrast, in an adap- 
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FIGURE 3, Adaptive Hamming net architecture. The large 
solid circle is a linear combiner tha t  con t ro ls  the threshold 
value o f  a matching score net. 

tive Hamming net, the weights can be refined by a sim- 
ilar input pattern or directly assigned by a novel pattern 
and the threshold value is controlled by the input pat- 
tern and v i g i l a n c e  p a r a m e t e r  p.  Unlike the fixed-weight 
Hamming net, the matching scores in the adaptive 
Hamming net are also weighted by a set of  parameters. 

To clarify the approach used here, the recognition 
category J of  ART 1 may be treated as a solution to 
the maximization problem (Healy, Caudell, & Smith, 
1993 ) 

~,,n_ 1 WjiX i 
J := arg max (24) 

j j=J ... . .  N a  + 27-]  Wj~ 

Xn=l WjlX i 
subject t o -  --> p (25) 

Xn=l xi 

w h e r e 0 - <  p - <  1 ,0  < a < 1, andxg = 0 o r  1. This 
shows clearly that the selection of category J is a global 
decision over the network: it depends upon the current 
state of  all templates stored in the synaptic weights. 

In the ART 1 model, initially a category J is sought 
to maximize the similarity m e a s u r e  ( ~ , ~ - 1  wjixi  ) / ( o l  ~- 

Y.,."=~ w~). The chosen category is then checked to de- 
termine whether it satisfies the constraint in eqn (25).  
If  this constraint is not satisfied for the category J ,  then 
a reset occurs and the search continues. The above pro- 
cedure is different from the approach used in this study. 

The key idea underlying the adaptive Hamming net 
is to utilize a piecewise linear function to select a set 
of  prototypes that satisfy the constraints in eqn (25).  
After all surviving candidate categories are formed, the 
function of the MAXNET is to determine the prototype 
that is most like the input pattern. That is, the arg max 
function in eqn (24) returns the index of the maximum 
element in the sequence of surviving nodes. This ap- 
proach is more efficient than a fast-learning ART 1. 

In the remainder of this section, the main operations 
of  the adaptive Hamming net (Figure 3) will be de- 
scribed. The fast-learning algorithm of the adaptive 
Hamming net is summarized below. 

Input pattern: The input pattern X = [xj . . . . .  x,] is 
a binary vector, where each component xi E { 0, 1 }. 

Similarity evaluation: To test whether the input pattern 
is sufficiently similar to the stored prototype of a cat- 
egory, a piecewise linear function is used to suppress 
summed input signals that fall below a certain thresh- 
old. That is, 

zj = fo wjixi , (26) 

where w;i denotes the weight value linked between the 
ith neuron at the input layer and the j th  neuron at the 
hidden layer and f0(- ) is the following piecewise linear 
function 

{~  if x < 0  (27) 
3~(x) = if x > 0 .  

Equation (27) is similar to a function used in ART 
2 (Carpenter & Grossberg, 1987b) and ART 2-A (Car- 
penter et al., 1991a). The only difference in the func- 
tion fo("  ) used in ART 2 and in an adaptive Hamming 
net is that the threshold 0 is assumed to be constant in 
the former and variable in the latter. The adaptive 
threshold 0 in eqn (27) satisfies the equation 

n 

0 = ~ pxi ,  (28) 
i - I  

where p is the v i g i l a n c e  p a r a m e t e r ,  with 0 --< p --< 1. 
Equation (28) can be implemented by using a single 
element neural network with n constant weight values 
p for which output is the product of  p and the sum of 
input components. 
Category choice: The output layer uses a winner-take- 
all network to find a winner from among all output 
units. The winner J is defined as the unit for which the 
weight-gated signal uj is the largest. That is, 

J = a r g  max uj (29) 
j j - - I  . . . . .  N 

where u j  = ~ j z j ,  j = 1 . . . . .  N, and the weight value 
~; links the j th  neuron in the hidden layer and the j th  
neuron in the output layer. 

In a real network, one can use l a t e r a l  i n t e r a c t i o n  to 
implement a set of  winner-take-all neurons. A well- 
known network for winner selection is MAXNET, 
which was introduced by Lippmann (1987) and can be 
regarded as a subnet of the Hamming net. A MAXNET 
(shown schematically in Figure 3) is a fully intercon- 
nected network with lateral inhibitions between its N 
nodes and excitatory connections from each node's  out- 
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put back to its input. In the subnet, all excitatory 
weights are set to 1 and all inhibitory weights are set 
to a value of - e .  To ensure convergence, the inhibition 
constant e must satisfy the constraint 0 < e < 1/N 
(Lippmann, Gold, & Malpass, 1987). 

The MAXNET usually needs several iterations to 
choose the winner. Once the hidden layer outputs uj 
have been received at the output layer, MAXNET it- 
erates until the output of  only one node is positive. The 
one surviving positive output is the winner. Of  course, 
in simulations, one need not use a MAXNET, but can 
instead find the winner algorithmically. 
Fast-learning: When the output node J is chosen, the 
weight values are updated by the equations 

F (old) 
(new) ~Wj; Xi if j = J  

Wji ~ l (old) 
I. w j/ if j ¢ J 

(30) 

and 

i 1 if j = J  
^ (new) ~ O~ "~- Zj 

Wj ] ^ (old) 
[wj  if j - ~ J ,  

(31) 

where i = 1 . . . . .  n ; j  = 1 . . . . .  N, and a is taken to 
be a small positive constant value (i.e., 0 < a ~ 1 ). 

Equation (30) is the same as the fas t - learning al- 
gorithm used in ART 1 (Carpenter & Grossberg, 
1987a). In this algorithm, because xi E {0, 1}, the 
weights of  the winner J are updated only by removing 
l ' s  without adding them. By eqn (31) ,  both subset and 
superset input patterns can directly access distinct cat- 
egories. This feature plays an important role in ART 1 
(Carpenter & Grossberg, 1987a). 
Initial weights: For the network to be able to encode 
each input X given an arbitrary value of the vigilance 
parameter p, it is necessary to take all initial weights 
wj~ greater than or equal to 1. To understand this, sup- 
pose that for all weights w~ < 1 and p = 1. Then, 
because ZT=I wj;x~ < ~n_ 1X i = 0 ,  all hidden layer out- 
puts zj will become zero. Thus, no category could learn 
any input pattern. To avoid this problem, the initial 
weights wj; in this study are given by 

(init) (init) 
wj, = . . . =  win = 1, j =  1 . . . . .  N. (32) 

Condition (32) ensures that the network can classify 
any input pattern into a category, because 

n n n 
(init) 

Z w j, x, = Z x ;  >-- ZPX; ,  for O--p----- 1. (33) 
i = l  i=1 i=1 

This implies that after thresholding at least one node in 
the hidden layer is active; that is, there exists a positive 
zj. The only exception is that the network has used up 
its full memory capacity and the input pattern is suffi- 
ciently different from all stored prototype templates. 

Naturally, if the network is at full capacity, adapting 
should stop. 

Another set of  weights ~,j is initially chosen to sat- 
isfy a fundamental ART design constraint; namely, an 
input pattern X must be able to directly access a learned 
category j for which weight vector Wj equals X. This 
can be accomplished by letting 

(init) 
wj = hi, j =  1 . . . . .  N, (34) 

where 

~'N ~ - 

1 
• < k j < . . . <  kj < - - .  ( 3 5 )  

o t q - n  

If weight values ffj are ordered according to eqn (35),  
then a new category is chosen in the order j = 1, 2, 
. . . , N .  

4. FUNCTIONAL EQUIVALENCE AND ITS 
I M P L I C A T I O N S  

From the previous two sections, it is clear that the func- 
tional equivalence of an adaptive Hamming net and a 
fast-learning ART 1 model can be established if the 
following are true: 
1. The constant c~ and the vigilance parameter p in 

these two networks are assigned as the same values. 
2. The initial weights of ART 1 satisfy eqns ( 1 ) and 

(2) .  On the other hand, the initial weights of  the 
adaptive Hamming net satisfy eqns (32) and (34).  
Under these conditions, these two networks can pro- 

duce the same clustering results for the same input se- 
quences. Hence, the weights wj; that associate the input 
layer with the hidden layer in the adaptive Hamming 
net are the same as the top-down templates of the fast 
learning ART 1. 

Because of the functional equivalence shown above, 
some useful properties of ART 1 may be applied to the 
adaptive Hamming net. One of these properties of ART 
1 is its learning convergence. Georgiopoulos, Heile- 
man, and Huang (1991) have provided a theoretical 
upper bound for the number of list presentations nec- 
essary to stabilize the learning of ART 1. This bound 
depends only on the number of distinct sizes of binary 
patterns in the input list. As is evident from the above 
discussion, the adaptive Hamming net has the same 
convergence property as ART 1. Further, after learning 
has stabilized, no new category will be formed and no 
existing prototype will be changed. In other words, 
each input pattern in the training set will directly find 
its cluster. 

It should be noted that the adaptive Hamming net 
can be functionally equivalent to a fast-learning ART 
1 while using fewer weights. For example, with n input 
nodes and N output nodes the adaptive Hamming net 
requires n × N + N weights (n × N weights wj; plus 
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N weights ff~), whereas ART 1 requires 2(n  × N) 
weights (n × N weights wj~ plus n × N weights bi~ ). In 
this case, the adaptive Hamming net saves (n - 1 ) × 
N weights. With the reduced number of  weights, one 
looses the ability to read out modified templates from 
the input layer of  ART 1. 

A primary limitation of the adaptive Hamming net 
is its restriction to binary pattern clustering. Utilizing 
the same idea as the fuzzy ART, the adaptive Hamming 
net can be extended to the case of  analog input vectors. 
The new fuzzy adaptive Hamming net, as well as the 
ART models and adaptive Hamming net, can overcome 
the stability-plasticity problem. In the fuzzy adaptive 
Hamming net, plasticity is maintained because the net 
can directly memorize novel input patterns at any time. 
To obtain stability without sacrificing plasticity, the 
fuzzy adaptive Hamming net allows the weight vectors 
to move only in one direction by taking the min oper- 
ator. However, the unidirectional weight updating rule 
will introduce the category proliferation problem de- 
scribed by Moore (1989).  The fuzzy ART solution to 
the category proliferation problem is to use a prepro- 
cessing step called c o m p l e m e n t  c o d i n g  (Carpenter et 
al., 1991b). The same idea can be applied to the al- 
gorithm proposed here. 

Complement coding is an input normalization pro- 
cess that represents the presence or absence of a par- 
ticular feature in the input pattern. I f  X is the given 
input pattern vector of  n features, the complement of  
X, denoted by X ~, represents the absence of each fea- 
ture where 

x~ = 1 - x i ,  i = 1 . . . . .  n. (36) 

Because complement coding normalizes the input pat- 
terns, the sum in eqn (28) reduces to a constant 

n n 

o = E px, + E px~ 
i=1 i=1 

= r i p .  

With complement coding, the initial condition (32) is 
replaced by 

( init ) ( init ) wjl = . . .  =wj.2~ = 1, j =  1 . . . . .  N. (37) 

Note that this additional preprocessing stage will dou- 
ble the number of  input nodes. 

The fuzzy adaptive Hamming net is an algorithmic 
clustering technique. The learning algorithm for this 
net is as follows: 

Step  0.  Initialization: Initially, all weights wj~ are set 
to 1. That is, 

(init) (init) wjl = . . . = w j . 2 ~  = 1, j =  1 . . . . .  N. (38) 

Step 1. Input :  Present a binary or analog pattern X -- 

[x~ . . . . .  xn] to the input nodes. All input values xi must 
be within the range [ 0, 1 ]. 

Step 2. Complement  coding: The complement of  the 
original input vector X is denoted by X C, where X ~ ~- 
[x~ . . . . .  x~] and x~ = 1 - xi. Therefore, the comple- 
ment-coded representation I ,  internal to the fuzzy adap- 
tive Hamming net, is given by the 2n-dimensional vec- 
tor 

l = [X,  X c] 

= [xt . . . . .  xn, x~ . . . . .  x~] 

--- [I~ . . . . .  I2~], (39) 

where 2n 2i=1 li  -- n .  

Step 3. Pat tern  matching:  The matching score between 
the input I and the weight vector W~ is computed as 

2,1 

sj = ~ min(l,, wji). (40) 
i=1 

To test whether the input pattern matches the stored 
prototype of a category closely enough or not, a piece- 
wise linear function is used to suppress matching scores 
below a threshold. That is, 

0 if s j < O  
zj = fo(sj) --- (41) 

sj if s j>-O.  

The threshold value is set at 0 = n p  and the vigilance 
parameter p is set in [0, 1]. 

Step 4. Category choice: Choose the pattern category 
according to the choice function 

zj 
uj - a + Y'i~l w i i '  (42) 

where ot > 0 and the category choice J is defined as 

J = a r g  max u/. (43) 
j j = l  . . . . .  N 

I f  more than one uj  is maximal, the output node with 
the smallest index is chosen to break the tie. 

Step 5. Learning:  When the Jth category is chosen, the 
weight values are updated by the equation 

(new) (old) (old) x (old) x 
W J i  = w j, + f l ( z j ) ( m i n ( l i ,  w j i  ) - wj i  ),  ( 4 4 )  

where i = 1 . . . . .  2n and the learning rates ~ ( z j )  satisfy 

{1/ if z4=n  (45) 
/~(zj) = if zj < n. 

The parameter f l i s  set in [0, 1]. 
Equations (44) and (45) combine fast initial learning 
with a slower rate of  forgetting (Carpenter et al., 
1991b). Fast learning corresponds to setting/~(zj) = 1 
( o r / ~  = 1 ). I f  the category J is chosen for the first 
time, then zj = n and/~(zj) = 1. In this case, the com- 
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plement-coded input le is simply incorporated directly 
into the weight wji. That is, 

( n e w )  
wsi = L, i = 1 . . . . .  2n. (46) 

Step 6. Backing Step 1: A new pattern enters the fuzzy 
adaptive Hamming net. 

The fuzzy adaptive Hamming net is designed as a 
generalization of the adaptive Hamming net. It can 
learn stable categories in response to both analog and 
binary input patterns. For the special case of binary 
inputs and fast learning, the computations of the fuzzy 
adaptive Hamming net are identical to those of the 
adaptive Hamming net. Because the fuzzy adaptive 
Hamming net is functionally equivalent to fuzzy ART, 
the geometric interpretation of fuzzy ART dynamics 
(Carpenter et al., 1991b) can be applied to this algo- 
rithm. 

As previously stated, the proposed neural networks 
eliminate the entire search process characteristic of 
ART 1 and fuzzy ART. Therefore, the complexity of 
the ART networks and the cycling time of the search 
process can be reduced. With some modification, it is 

Input patterns 
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FIGURE 4. (a) The set of binary training patterns. (b) Template 
formation in ART 1 when the nine patterns are presented in 
the list order X1, Xa . . . . .  X~. The order of search is indicated 
by the numbers beneath the templates. 
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FIGURE 5. Fast-learning clustering results for the adaptive 
Hamming net. The first column indicates the bit-map input 
patterns and the rectangular boxes mark the maximum uj 
value on each trial. For a training pattern, the weight vectors 
Wj are represented by 5 × 5 bit-map patterns. 

possible to apply the basic concepts of the adaptive 
Hamming net to other ART-type neural networks, such 
as the fuzzy min-max  clustering neural network 
(Simpson, 1993), adaptive fuzzy leader clustering 
(Netwon, Pemmaraju, & Mitra, 1992), ARTMAP, and 
fuzzy ARTMAP. We have recently submitted a com- 
parative study of these neural networks for publication. 

5. SIMULATION RESULTS 

In this section the superior efficiency of an adaptive 
Hamming net is demonstrated using two bit-map pat- 
tern clustering examples from Carpenter and Grossberg 
(1987a).  The purpose of these examples is to show 
how the search process of ART 1 can be eliminated by 
the adaptive Hamming net. In these simulations, only 
the fast-learning case is considered. 
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I st listoP~o nwn~ti~e~pnla~s Input 2nd list presentation 
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FIGURE 6. Template formation in ART 1 for a set of four nested binary input patterns. The order of search is indicated by the 
numbers beneath the templates. After four list presentations, no new templates are created and no existing learned templates 
are modified. 

5.1. Bit-Map Pattern Clustering 

As mentioned before, the ART 1 model  and an adap- 
tive Hamming  net are limited to storing binary im- 
ages. Therefore,  in this example,  these two neural 
networks are used to cluster 25-bit binary-valued 
patterns. 

Consider the nine binary patterns shown in Figure 
4a, where a black square indicates a binary 1 and a 
blank square indicates a zero. In this simulation, each 
of nine input patterns was presented once. The vigi- 
lance parameter p was set to be close to 1, the parameter 
a was chosen to be 0.01, and the number of  uncom- 
mitted nodes was set to 9. Let us now try to compare 
the computational efficiency of ART 1 with that of  an 
adaptive Hamming net. 

Figure 4b illustrates how the ART 1 network mod- 
ifies its search order on each trial to reflect the cumu- 
lative effects of  prior learning. The first row shows the 
first pattern presented and the top-down templates 
formed in response to this pattern. The second row 
shows the second pattern presented and the top-down 
templates formed after search and learning, and so on. 
The symbol " n e w "  represents a new category that 
codes the input pattern on that trial. The numbers 1, 2, 
3 . . . .  listed under the top-down templates itemize the 
search order. The symbol " R E S "  represents a resonant 
state that refines the corresponding template on that 
trial. In Figure 4b, the order of  search is specified by 
the Theorem for  Search Order (see Section 2). To 

complete the whole learning process, the system had to 
be reset 33 times. Note the order of  search that occurred 
in response to the ninth input pattern. The sixth tem- 
plate was not searched. 

For the same input patterns and presentation order, 
Figure 5 shows the learning results of  the adaptive 
Hamming net with p = 1 and a = 0.01. The outputs zj 
of  the hidden nodes, the weight-gated signals u~, and 
the weight vectors Wj are calculated according to the 
algorithm described in Section 3. Note that the outputs 
z~ of all inadequate recognition categories are sup- 
pressed to zero. 

To guarantee that the functional behavior of  the 
adaptive Hamming net is equivalent to ART 1, it is 
sufficient to initialize all weights with the values that 
satisfy eqns (32) and (34).  More precisely, all w# val- 
ues are initially set to 1 and the weights ~j are initially 
arranged in the following order: 

[0.04, 0.039, 0.038, 0.037, 0.036, 0.035, 0.034, 0.033, 0.032]. 

With the above initial conditions, the adaptive Ham- 
ming net and the previous fast-learning ART 1 model 
produce identical clustering results, as expected. In 
fact, the same weight vectors Wj are obtained as the 
top-down templates of  ART 1. In Figure 5, the 
maximum uy value is marked by a rectangular box, 
which represents the winning node on that trial. 
Clearly the recognition categories are formed without 
any searching. 
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FIGURE 7. Behavior of the adaptive Hamming net in the second example. The network is repeatedly presented with a list of 
binary input patterns. After four list presentations, all patterns directly access distinct categories. 

5.2. Extended Bit -Map Pattern Clustering 

In the previous subsection each input pattern is pre- 
sented only once. To demonstrate that the functional 
behavior of the adaptive Hamming net is equivalent to 
ART 1 in more complex cases, we consider a list of  
binary input patterns that is repeatedly presented to 
ART 1 and the adaptive Hamming net. 

In the example shown in Figure 6, an ART 1 net- 
work with a vigilance parameter o f p  = 0.8 is presented 
with a list of  four binary input patterns in order of  de- 
creasing size. (The size of  a binary input pattern is 
equal to the number of  its components that have a value 
of 1.) In particular, the patterns in the input list { X~, 
X 2 ,  X 3 ,  X4 } are such that X4 C X3 C X2 C X~, and this 
list is presented in the order XjX2X3X4. The order of 
pattern presentation is kept fixed from list presentation 
to list presentation. This example is the same as that 
used in Carpenter and Grossberg (1987a, Figure 8), 
except that the order of  pattern presentation is reversed. 

In this simulation, the choice parameter a was set to 
0.01, the number of  uncommitted nodes was set to 4, 
the initial values for the bottom-up weights were cho- 

sen to satisfy eqn (1) ,  and all top-down weights were 
set to 1. In Figure 6, the input patterns and the templates 
formed after the first four list presentations are depicted 
as two-dimensional images of  black and blank squares; 
a black square stands for a value of 1, and a blank 
square stands for a value of zero. As we can see from 
Figure 6, in the first list presentation no templates are 
searched; in the second list presentation the templates 
are searched three times; in the third list presentation 
the templates are searched four times; and in the fourth 
list presentation the templates are also searched three 
times. Because the four binary patterns X~, X2, X3, 
and X4 are presented in order of  decreasing size, each 
pattern has direct access to a category node after 
exactly four list presentations (Carpenter & Grossberg, 
1987a). In other words, no search occurs on subse- 
quent presentations of  the input list. In Figure 6, the 
order of  search is indicated by the numbers beneath the 
templates. 

The next simulation, shown in Figure 7, is the same 
as the one shown in Figure 6, except that the ART 1 
network is replaced by the adaptive Hamming net. In 
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this simulation, the vigilance parameter p was chosen 
to be 0.8, the choice parameter ct was chosen to be 0.01, 
the initial values for the weights wji were set to l, and 
the weights ffj were initially arranged in the following 
order: 

[0.04, 0.039, 0.038, 0.037]. 

In Figure 7, during each list presentation the outputs zj 
of the hidden nodes, the weight-gated signals u j, and 
the weight vectors Wj are shown. We observe from the 
simulations illustrated in Figures 6 and 7 that the 
weight vectors Wj formed in the adaptive Hamming net 
are the same as the top-down templates formed in ART 
1. The adaptive Hamming net and the ART 1 network 
produce identical clustering results in each list presen- 
tation. 

6. DISCUSSION AND CONCLUSION 

One potential problem with ART models is the serial 
search time, which in the worst case is proportional to 
the number of  learned templates. When a large number 
of  patterns must be stored, this problem is a serious 
concern. This is particularly true when an ART 1 model 
is implemented in software simulations on conven- 
tional computer systems. To overcome this difficulty, 
in this paper the search process of  ART 1 was first 
converted into an optimization problem, and then an 
effective algorithm was developed to find the best 
match. 

A typical ART 1 search cycle can be characterized 
as maximizing eqn (24) under the constraints in eqn 
(25).  When an ART 1 model is run, the objective func- 
tion is evaluated and checked to see whether the con- 
straint is violated. I f  the constraint is violated, the so- 
lution is infeasible and a parallel memory search is 
triggered. Because of its self-adjusting search mecha- 
nism, ART 1 is capable of discovering and learning 
appropriate categories without getting trapped in local 
maxima. However, this search process is not the most 
efficient method for finding the optimal solution. I f  bio- 
logical nets are not concentrated upon, there is greater 
freedom in solving this problem. 

It is clear that the search process will become more 
efficient if all infeasible solutions are eliminated from 
the solution set of  eqn (24) .  In other words, a set of 
categories is initially selected that satisfy the con- 
straints in eqn (25) ,  and then the best of these feasible 
solutions is found. In this paper a neural network ar- 
chitecture called the adaptive Hamming net was pro- 
posed to perform the above process. The adaptive 
Hamming net can reproduce the behavior of  ART 1 in 
the fast-learning limit without performing an extensive 
serial search through all the stored prototypes. It not 
only saves much unnecessary search time but also sim- 
plifies the ART 1 architecture. A primary limitation of 

the adaptive Hamming net is that it is restricted to bi- 
nary pattern clustering. For analog inputs we have pro- 
posed a neural computing-based clustering algorithm 
called the fuzzy adaptive Hamming net. 

This approach can also be applied to alternative 
match-based learning neural networks that utilize an 
ART-like search process. These neural networks in- 
clude the fuzzy m i n - m a x  clustering neural network, 
adaptive fuzzy leader clustering, ARTMAP, and fuzzy 
ARTMAP. In a more complex ART architecture, such 
as a hierarchy of ART 1 modules (Caudell, 1992), the 
approach in this study should also be quite efficient. 
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N O M E N C L A T U R E  

a choice parameter (0 < a ~ 1 ) 
learning rate parameter (0 -- ~ --< 1 ) 

e inhibitory weights of  MAXNET (e < l / N )  
p vigilance parameter (0 ----- p --< 1 ) 
0 threshold value of the matching score net 
hj initial value of the bottom-up weight bji or initial 

value of the weight ffj 
Bj bottom-up weight vector of ART 1 
bj~ the ith component of  Bj 
! complement-coded input to the fuzzy adaptive 

Hamming net 
I~ the ith element value of I 
J index of the chosen category 

C.-A. Hung and S.-F. Lin 

N number of pattern categories 
n number of  input nodes 
s t matching score between the input I and the weight 

vector W i 
uj weight-gated signal from the j th  hidden node to 

the j th output node 
W~ top-down weight vector of  ART 1 or connection 

weights from the input layer to the j th  hidden 
node 

wji the ith component of Wj 
ffj connection weight from the j th  hidden node to 

the j th  output node 
X input pattern 
xi the ith component of  X 
X" the complement of X 
x~ the ith component of X c 
zj the j th  output value of the matching score net 
fq Boolean AND operator 


