J Comb Optim (2011) 22:270-281
DOI 10.1007/s10878-010-9291-0

Reconstruction of hidden graphs and threshold group
testing

Huilan Chang - Hong-Bin Chen - Hung-Lin Fu -
Chie-Huai Shi

Published online: 30 January 2010
© Springer Science+Business Media, LLC 2010

Abstract Classical group testing is a search paradigm where the goal is the identi-
fication of individual positive elements in a large collection of elements by asking
queries of the form “Does a set of elements contain a positive one?”. A graph re-
construction problem that generalizes the classical group testing problem is to recon-
struct a hidden graph from a given family of graphs by asking queries of the form
“Whether a set of vertices induces an edge”. Reconstruction problems on families
of Hamiltonian cycles, matchings, stars and cliques on n vertices have been stud-
ied where algorithms of using at most 2nlgn, (1 + o(1))(nlgn), 2n and 2n queries
were proposed, respectively. In this paper we improve them to (14 o(1))(nlgn), (1+
0(1))("12g"), n 4+ 2lgn and n + Ign, respectively. Threshold group testing is another
generalization of group testing which is to identify the individual positive elements

in a collection of elements under a more general setting, in which there are two fixed
thresholds £ and u, with £ < u, and the response to a query is positive if the tested sub-
set of elements contains at least u positive elements, negative if it contains at most £
positive elements, and it is arbitrarily given otherwise. For the threshold group testing
problem with £ = u — 1, we show that p positive elements among n given elements
can be determined by using O (plgn) queries, with a matching lower bound.

Keywords Graph search - Threshold group testing - Pooling design - Adaptive
algorithms

This research is partially supported by NSC 97-2115-M-009-011-MY3.

H. Chang () - H.-B. Chen - H.-L. Fu - C.-H. Shi
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan
e-mail: huilan0102@gmail.com

@ Springer

mailto:huilan0102@gmail.com

J Comb Optim (2011) 22:270-281 271

1 Introduction

Graph reconstruction Combinatorial search problems on graphs in the literature
(Aigner 1988) consist of identifying an unknown edge or vertex in a given graph,
verifying a property of a hidden graph, reconstructing a hidden graph of a given
class, and some others. In this paper we consider the graph reconstruction problem
as follows. Let H be a family of labeled graphs on the set V = {1, 2, ..., n}. The goal
is to reconstruct a hidden graph H € H by asking queries as few as possible, where a
query Q(S) is of the form “Does S contain at least one edge of H?” for S C V, and is
answered 1 (positive) or 0 (negative), indicating whether the subgraph of H induced
by S contains an edge or not.

Different settings on input data according to the prior knowledge of the hidden
graph produce various graph reconstruction problems. For example, the hidden graph
of bounded degree was studied in (Bouvel et al. 2005; Grebinski and Kucherov 2000),
while the general hidden graph was considered in (Angluin and Chen 2008; Bouvel
et al. 2005); moreover, in group testing literature (Du and Hwang 2006), the usual
assumption is that the number of edges of the hidden graph is bounded by a parame-
ter d. In this paper we study the problem of reconstructing a hidden graph with the
assumption that the topology of the hidden graph is known.

There are various families of hidden graphs for which the problem has been stud-
ied. Many recent studies focus on two cases: Hamiltonian cycles and matchings
(Alon et al. 2004; Beigel et al. 2001; Grebinski and Kucherov 1998) which have
specific application to the genome sequencing problem. In the genome sequencing,
some clones can overlap forming longer continuous fragments, called contigs, that
cover the genome with possible gaps. The task is to determine the relative placement
of contigs on the genome. A tool for doing this is an experiment called multiplex
PCR (Polymerase Chain Reaction, see Sorokin et al. 1996). In multiplex PCR, the
input to an experiment is a set of primers, which are short nucleotide sequences
that characterize the ends of the contigs, and whenever the input set contains two
primers corresponding to adjacent ends of neighboring contigs, the experiment out-
puts a reaction bringing a PCR product; hence, the relative placement of contigs
can be represented by the reaction graph which is a graph with primers as its ver-
tices and pairs of vertices with a reaction as its edges. In particular, for a circular
genome, a reaction graph can be characterized as either a Hamiltonian cycle if the
two primers of each contig are mixed together and are considered as a vertex or a
matching if primers are treated independently, i.e., each primer corresponds to a ver-
tex. For more general settings, the problem can be considered as to find the pairs
that react with each other among the given set of molecules (Alon and Asodi 2005;
Torney 1999).

Threshold group testing “In a set of n elements, p elements are positive and the
other n — p elements are negative” is assumed by group testing problem, where p is
much smaller than n. A group test takes a set S of elements as input. Classically, the
test yields a positive outcome if S contains at least one positive element; otherwise,
the outcome is negative. The goal is to identify positive elements with as few tests
as possible. We suggest readers refer to the book (Du and Hwang 2006) for further
study.

@ Springer

272 J Comb Optim (2011) 22:270-281

With recent advances in molecular biology, group testing has been widely used
in various aspects of DNA sequencing projects. While some projects involve quan-
titative measurements, others consist in applying a basic yes-or-no test to a large
collection of objects. However, the sensitivity of tests can be reduced because of the
fact that biological assays can be somewhat noisy. Outcomes of experiments could
hardly be detected precisely. One might think of the model that being detected cor-
rectly or not is decided by the concentration of a substance; specifically there is an
upper threshold for sure detection and a lower threshold under which detection is
impossible, and between the thresholds, the outcome is arbitrary. This is so-called
threshold group testing introduced by Damaschke (2006), and a precise definition is
as follows.

Let ! and u be nonnegative integers with / < u. A test gives a positive (negative)
outcome if it contains at least u (at most /) positive elements, and an arbitrary
outcome if the number of positive elements is between these fixed thresholds /
and u.

In general, there is a gap between the thresholds; thus the positive set could hardly
be identified exactly. Instead, Damaschke suggested to find an alternative set close to
the positive set with up to a constant number of misclassifications, bounded by the
gap. In the present paper, we focus on the case without gap, i.e., a test returns positive
if the input set contains at least u positives and negative otherwise.

Overview of the paper In this paper we only consider adaptive algorithms where
queries are performed one by one and the feedbacks of all previous queries can be
used to set up the later one. In Sect. 2, we study some families of hidden graphs in-
cluding Hamiltonian cycles, matchings, stars, and cliques. Grebinski and Kucherov
(1998) gave an adaptive algorithm to reconstruct a Hamiltonian cycle in 2nlgn
queries, which achieves the information lower bound for the number of queries
needed. We improve their result by a factor of 1/2. Bouvel et al. (2005) provided
an adaptive algorithm to reconstruct a matching in (1 + o(1))(nlgn) queries while
(1 +o0(1))(51gn) is the best lower bound known so far and an algorithm to recon-
struct a star in 2n queries while the information lower bound is (1 4 o(1))n. We pro-
vide algorithms to close up the gaps between lower and upper bounds for the number
of queries required to reconstruct a star. Bouvel et al. also proved that a clique can be
reconstructed in 2n queries. We slightly improve this result by giving an algorithm
with at most n + 1gn queries. In Sect. 3, we study the graph reconstruction prob-
lem of its hypergraph version where each edge can consist of more than two vertices
and notice that this study can greatly contribute to solving the threshold group test-
ing problem. Using the strategy used to reconstruct a hidden hypergraph, we obtain
an asymptotically optimal O (plgn) solution to the threshold group testing problem
without gap for which Damaschke (2006) gave an algorithm using O ((p + u?)1gn)
queries.

Notation Subsequently, lg is the base 2 logarithm.

@ Springer

J Comb Optim (2011) 22:270-281 273

2 Reconstructing simple graphs

Reconstructions of some families of hidden graphs such as Hamiltonian cycles,
matchings, stars, and cliques are considered in this section. We start by presenting
some useful algorithms that will be subroutines in our main algorithms.

First, we adapt an algorithm in (Angluin and Chen 2006) to find a vertex contained
in at least one edge of a hidden graph on n vertices using at most lgn queries. The
algorithm is described as follows.

Algorithm 1 FIND-ONE-VERTEX
I: S«<V
if O(S) =0 then
Return @.
end if
A<V.
while |[A] > 1 do
Arbitrarily partition A into roughly equal-sized Ap and Aj.
if Q(S\ Ap) = 1 then
S« S\Ap, A< Ay
else
A <« A().
end if
: end while
: Return the element in A.

R e A A T o

—_ o e
bl

Observe that the algorithm preserves the invariance that Q(S) = 1 and
Q(S\A) = 0 if the input hidden graph contains at least one edge. This shows A
contains a vertex on an edge of the hidden graph; indeed, A is monotonically de-
creasing and the halving of A’s cardinality in each iteration results in 1gn queries.
Once the algorithm terminates, A = {v} for some vertex v and S \ {v} contains a
vertex adjacent to v; hence, we can find a neighbor of v by using binary splitting
algorithm on S\{v} with v added to each test. Note that it is the procedure we use to
find one edge in the rest of the paper if we do not stress what strategy being used and
it is accomplished in 21gn queries.

Second, we want to find a maximal matching of the hidden graph before recon-
structing the whole graph where a matching is maximal if it is not contained in a
matching of larger size. A reconstructed maximal matching of a graph reveals a par-
tial structure of the graph and provides us a direction of reconstructing the remaining
graph. Finding a maximal matching M can be accomplished by Algorithm 2 with
at most 2m’1gn + 1 queries, where m’ is the size of the maximal matching. We use
G[S] to denote the induced subgraph of graph G with vertex set S.

Algorithm 2 reconstructs edges one by one and removes from S the two vertices
in an edge as soon as it is reconstructed; therefore, the returned set M is a matching
since the reconstructed edges share no vertex. Indeed, M is a maximal matching
because searching an edge in S continues until it induces no edge which implies that

@ Springer

274 J Comb Optim (2011) 22:270-281

Algorithm 2 FIND-MAXIMAL-MATCHING
I M<«—@,8S<~V(G),U<«@,U «@.
2: while Q(S) =1 do
3: Reconstruct an edge in G[S], say {u, f(u)}.
M <~ MU {{u, f@)}}, S < S\{u, f)}, U < U U{u}, U' < U'"U{fu))}.
4: end while
5: Return (M, U, U’, f).

no larger matching contains M. In addition, the algorithm returns two sets U and U’
to collect the vertices in the reconstructed edges and also returns a function f that
pairs the vertices between U and U’ to record the edges in M. We call U U U’ the
saturating set of M for U, U’ and M returned by the algorithm.

Third, we propose an algorithm (Algorithm 3) to reconstruct any graph on n ver-
tices that contains only nontrivial paths, that are paths with at least one edge, in
2m1gn +m+ 5 queries where m is the number of edges of the hidden graph. Figure 1
demonstrates an example of Algorithm 3.

Algorithm 3 FIND-ALL-PATHS

Let G be a graph on a set V of n vertices and contain only nontrivial

paths.

1. E<~0.
if Q(V) =0 then
Return ¢.
else
Apply FIND-MAXIMAL-MATCHING on G. Assume (M, U, U’, f) is returned.

end if

E< EUM,I < V\(UUU".

Apply FIND-MAXIMAL-MATCHING on G[U] and G[U’]. Assume (M1, A, A, f1)

and (M», B, B’, f>) are returned, respectively.

9. E<~EUM UMy, I; < U\(AUA"), I, < U'\(BUB).

10: for u € 11 do

11: Apply a binary splitting algorithm on /5 \{ f («)} with u added to each test. Assume v
(if any) is obtained from the search.
E <~ EU{u,v}}, 1 < I1\{u}, I < DL\{v}.

12: end for

13: while Q(/;Ul)=1do

14: Reconstruct an edge in G[I; U I], say {u,i} whereu € I} andi € I.
E — EU{{u,i}}, I} < L\{u}.

15: end while

16: Reconstruct edges between I, and I by the same way as lines 13-15.

17: Return E.

S A A

Lemma 2.1 Algorithm 3 reconstructs any graph G on n vertices containing only
nontrivial paths in 2mlgn + m + 5 queries where m is the number of edges of G.

@ Springer

J Comb Optim (2011) 22:270-281 275

d e
OO
U b d e i k| ___ I b ik
a b cde gh i LS —" % ! T !
o—o0—0—0—0—0—0——o° o] © 7
0—0—0 o \b [S—Y o \0 O
Jj ok Ui.a ¢ g h | L ia c J
O
(@) g h (b)
b d e
% d e %
i ko i ko
I \ ! i I \ wn
\ o \ d
o) le) o (o] :
| L —t
c g h (©) c g h (d)

Fig. 1 (a) (line 5) The bold edges form a maximal matching and an independent set / is produced.
(b) (lines 8-9) Reconstruct edges in G[U] and G[U’]. Then finally two independents sets I} = {b, i, k}
and I, = {a, c, j} are obtained. (c¢) (lines 10-12) Reconstruct edges between /1 and I. By applying a
binary splitting algorithm to IL\{f(b)} = {c, j} with b added to each test, edge {b, c} is reconstructed.
Finally, 11 ={i, k} and I» = {a, j}. (d) Reconstruct edges between [and I} U I,

Proof We first take at most 2| M |1gn + 1 queries to find a maximal matching M of G.
Since M is a maximal matching of G and U U U’ is the saturating set of M, E[U] and
E[U’] are both matchings of G and I is an independent set. Thus FIND-MAXIMAL-
MATCHING reconstructs G[U] and G[U’] in at most 2(| M1 |+ |M>|) lgn + 2 queries
(see line 8). Then the incident edges of all vertices in AU A’ U BU B’ are reconstructed
so it remains to reconstruct edges between three independent sets 7, I1 = U \ (AU
AN,and L, =U"\ (BUB).

The reconstructions of edges between I and /> and edges between [and 11 U I,
can be done separately. Here, we deal with them sequentially. For the hidden edges
between I7 and I, since each u € I7 has at most one neighbor in I\{f ()}, we
can reconstruct them by applying a binary splitting algorithm to I>\{f ()} with u
included in each query for each u € I;. Actually, in this part, once an edge {u, v} is
reconstructed, we can remove u from I; and v from I since their incident edges
are reconstructed, making them become redundant in the reconstruction of edges
between I and I; U Ip. Since |I1| < |M|, there are at most m1gn + |M| queries
spent in this portion where m is the number of edges reconstructed here.

Finally, we turn to reconstruct hidden edges between I and I; U I. Notice that
they are all unreconstructed so far. By the symmetry of 71 and 1>, we only discuss the
reconstruction of edges between I and /1. As shown in lines 13-14, we recursively
reconstruct an edge in G[I1 U], say {u, i} where u € I} and i € I and remove u from
I until 7 U [; induces no edge where u can be removed because both its incident
edges are reconstructed after the reconstruction of {u, i} and indeed the remove of
u is to make sure that edges in 7 U I] are unreconstructed before each iteration. The

@ Springer

276 J Comb Optim (2011) 22:270-281

number of queries spent here is at most 2my lgn + 2 where m is the number of edges
between [and 11 U I5.

It is easily observed that each edge is reconstructed once and hence the overall
cost of this algorithm is upper bounded by 2mlgn 4+ m 4 5. Therefore, the result
follows. |

In the following, we introduce our main results on graph reconstruction problems
including asymptotically optimal adaptive algorithms for reconstructing Hamiltonian
cycles, matchings, stars, and cliques.

Assume that the hidden graph we want to reconstruct is a Hamiltonian cycle.
Since there are ("_Tl)' Hamiltonian cycles on n vertices, the theoretic information

lower bound is 1g @ < nlgn. Grebinski and Kucherov (1998) gave an adaptive
algorithm to reconstruct a Hamiltonian cycle with 2nlgn queries. We improve their
result by providing an algorithm using at most (1 + o(1))(nlgn) queries.

An affine plane of order p is a balanced incomplete block design with p? elements
and p? + p blocks of size p such that each pair of elements appear together in exactly
one block. It is well-known that an affine plane of order p exists whenever p is a
prime power (see Anderson 1990). Using the so-called affine plane method together
with the algorithm FIND-ALL-PATHS, the following theorem slightly improves the
result in (Grebinski and Kucherov 1998).

Theorem 2.2 For any hidden Hamiltonian cycle H of order n, H can be recon-
structed in nlgn + cn queries for larger n and some small constant c.

Proof Let p be the smallest prime power such that p?> > n. Add p> — n dummy
vertices to obtain an affine plane and take them away when testing the blocks. A block
is said to be positive if its testing result is positive. It is obvious that each positive
block induces a graph containing only nontrivial paths; hence, a Hamiltonian cycle
can be reconstructed by applying FIND-ALL-PATHS to these blocks (see an example
in Table 1). Since there are p” + p blocks and every edge exactly appears in a block,
there are totally at most (p2 + p) 4+ 2mlg p +m + 5(p* + p) queries where m = n.
Nagura (1952) proved that p < 1.2¢g for two consecutive prime numbers 29 < g < p
so there always exists a prime number p such that n < p2 < 1.44n < 2n forn > 292,
Hence, a Hamiltonian cycle can be reconstructed within 121 4+6+2n4+nlg2n+n <
nlgn + cn queries for larger n and some small constant c. g

A matching on n vertices is a graph with each vertex of degree 1 or 0 while a
perfect matching on n vertices is a matching on n vertices which matches all ver-
tices. The reconstruction of matchings on n vertices has been studied in (Alon and
Asodi 2005; Bouvel et al. 2005). The number of perfect matchings on n vertices
is 2%"!’” providing an information lower bound Ig 2%”!'” = (1 +o(1))(51gn) on the
reconétruction of matchings. Bouvel et al. (2005) gave adaptive algorithms to recon-
struct an unknown size matching and a perfect matching (a graph with each vertex
of degree 1) on n vertices with (1 4+ o(1))(nlgn) and (1 + 0(1))(% lgn) queries, re-
spectively. We now exploit the affine plane method to reconstruct a matching using
at most (1 + o(1))(5 Ign) queries.

@ Springer

J Comb Optim (2011) 22:270-281 271

Theorem 2.3 Reconstructing a matching on n vertices can be done in mlgn 4 3n
queries, where m < 5 is the number of edges of the matching.

Proof As in the proof of Theorem 2.2, we first use the affine plane method. Since
each block induces a graph containing just a matching, we simply apply FIND-
MAXIMAL-MATCHING to each positive block (see an example in Table 1). Simi-
larly, for n large, it takes at most (p2 + p) + 2mlg p < 2n + +/2n + m1g2n queries
to reconstruct a matching on n vertices, where m < n/2. O

We now give examples of small order to illustrate Theorem 2.2 and Theorem 2.3.
Let n = 7. Then p =3 is the smallest prime power such that its square is at least 7.
{{1,2,3}, {4,5,6}, {7,8,9}, {1,4,7}, {2,5, 8}, {3,6,9}, {1,5,9}, {2,6,7}, {3,4, 8},
{3, 5,7}, {1,6, 8}, {2,4, 9} } is an affine plane of order 3. In Table 1, the hidden graph
G is a Hamiltonian cycle and the hidden graph G is a matching. For G, {1, 2, 3},
{4,5,6}, {1,4,7}, {2,6,7} and {3, 4, 8} are positive blocks and we apply FIND-
ALL-PATHS to each of them to reconstruct edges induced by any of them. For G2,
{1,2,3}, {4,5, 6} and {3, 5, 7} are positive blocks and we apply FIND-MAXIMAL-
MATCHING to each of them (see the corresponding cell in Table 1). Notice that
the dummy vertex 8 is removed when testing the blocks. Based on the property of
affine plane, the edge set of the hidden graph is decomposed into the edge sets of
graphs induced by positive blocks, and therefore the whole graph is reconstructed by
collecting edges induced by positive blocks.

A star is a graph where all its edges have a common incident vertex called center.
A star of k edges can be defined by choosing a vertex as the center and other k vertices
that are adjacent to it so the number of all stars on n vertices is upper bounded by

roan()+ el = p@ ! — 1) — 222D 41 Accordingly, we obtain the
information lower bound (1+o0(1))n for the number of queries required to reconstruct
a hidden star. Bouvel et al. (2005) gave an adaptive algorithm using queries achieving
the lower bound €2 (n). In fact, their algorithm requires 2n queries in the worst case.
We now prove that the lower bound (1 + o(1))n can be achieved by an adaptive
algorithm.

Theorem 2.4 A star on n vertices can be reconstructed in n + 21gn queries.

Proof The fist step is to find the center of the star, and then to find all its neighbors by
querying each vertex with the center. We first reconstruct an edge of the star in 21gn
queries. It is easy to see that one of the two vertices in the edge is the center. Simply
testing one of these two vertices together with all other vertices, we can determine
which one is the center. Clearly, the process takes at most 21gn + n queries. d

Assume that the hidden graph we consider here is a clique. It is easily seen that
the information lower bound is 1g2" = n. Bouvel et al. (2005) provided an adaptive
algorithm to reconstruct a clique in 2n queries. We slightly improve their result by

giving an algorithm with at most n 4 1gn queries in the worst case.

Theorem 2.5 A clique on n vertices can be reconstructed in n + 1gn queries.

@ Springer

J Comb Optim (2011) 22:270-281

278

. f y o< £ y ¢ D
o) o b e} MA 0 b
7 4 / A
[
¥ 9 ¥ r < £ y ¢ 'O
£ ‘ T Y € 9
/ Zo N / L z
! 7 l L
[
S19UJ0 {Ls*¢} {8v ¢} {L'9°t} {Lv 1} {9°¢ v} {ecen) yoo1q\ydeis uoppry

93pe ou surejuod i1 Aq peonpur ydei3 oy <91 “aanisod jou st 300[q Surpuodsarrod ayy sueowr A3dwo I [[90 T d[qeL

pringer

A's

J Comb Optim (2011) 22:270-281 279

Proof By applying FIND-ONE-VERTEX, we can find a vertex x on the clique in
Ign queries and then the clique can be reconstructed by querying each vertex with x.
The whole process takes at most n + lgn queries. g

3 Reconstructing hypergraphs and threshold group testing

Given a finite set X, a hypergraph H = (X, F) is a family F = {E}, Ea, ..., E,;} of
subsets of X. The elements of X are called vertices, the subsets E;’s are the edges
of the hypergraph H, and |X| is the order of H. In this section we study the graph
reconstruction problem where the hidden hypergraph is a k-hyperclique, that is, every
k-subset of its vertices forms an edge. Note that the information lower bound of
reconstructing a k-hyperclique is 1g2" = Q(n).

It is not difficult to see that the algorithm FIND-ONE-VERTEX also returns a
vertex in some edge of the hidden graph under the hypergraph version. By extending
the idea used to reconstruct a simple graph, we have the following result.

Theorem 3.1 A k-hypercliqgue on n vertices can be reconstructed using at most
klgn + n queries.

Proof Initially, we can find a vertex in the k-hyperclique in 1gn queries. Suppose that
we have found B, a set of vertices in the hypergraph. Apply FIND-ONE-VERTEX
with § <~ V \ B and A < V' \ B as its initial condition and include the vertices in B
for each query. Then we can find a further vertex in the hypergraph if there remains
one. So, we can find k£ — 1 vertices in the hidden k-hyperclique in klgn queries.
Furthermore, by testing those k — 1 vertices together with each of the other vertices
separately, we can reconstruct the whole graph. This completes the proof. g

In case of that the order of the hidden k-hyperclique is at most p, the following
lemma shows that there is a big reduction in the query complexity if p < n.

Lemma 3.2 A k-hyperclique of order at most p on n vertices can be reconstructed
in O((p + k)lgn) queries.

Proof Similar to Theorem 3.1, we can find k — 1 vertices in this hidden k-hyperclique
in klgn queries. Then we can introduce the ordinary group testing strategy here to
find all other vertices (positive elements) by treating these k — 1 vertices as positive
elements and using them as an auxiliary pool. Since O (plgn) is a query bound for
group testing (Du and Hwang 2006), the result follows. g

Now, we turn to the threshold group testing problem without gap, i.e., u =1+ 1.
Let p denote the number of positive elements in the given n elements. Then, the in-
formation lower bound for this problem is Ig (Z) = O(plgn). We now prove that
the bound O(plgn) can be achieved in the following theorem, which improves
Demeschke’s result O ((p + u?)1gn).

@ Springer

280 J Comb Optim (2011) 22:270-281

Theorem 3.3 There is an asymptotically optimal algorithm with O (plgn) tests for
the threshold group testing problem without gap.

Proof The problem can be reduced to reconstructing a hidden u-hyperclique of order
at most p on n vertices. Then by applying Lemma 3.2, the theorem follows. g

4 Concluding remarks

Threshold group testing is a generalization of group testing and the setting of thresh-
olds seem to be natural in some chemical scenarios, and thus the threshold group
testing problem is worth studying. In particular, one cannot simply test individual
items and then identify all positives using a trivial strategy; instead, one has to test
subsets of items. In view of this, it is intuitive to consider the connection between the
two seemingly unrelated problems: threshold group testing and graph search. Chen
and Fu (2009) first observed the relation between threshold group testing and graph
search. Consequently, they showed that generalized disjunct matrices, a standard tool
for graph search, can also be useful in constructing nonadaptive algorithms for the
threshold group testing. In this paper, we propose an optimal algorithm for the case
without gap by using the strategy of getting smaller and smaller sets that contain a
positive. In doing this, we can identify each positive in O (Ign) tests. However, the
strategy we use here does not work for the case when there is a gap between the
thresholds. The reason for this is that in the duration a positive outcome indicates
that / + 1 or more positives are in that test, while a negative one cannot immediately
help us to recognize a smaller set containing at least a positive and then continue this
strategy recursively to narrow down the candidate set.

Acknowledgement The authors would like to express their gratitude to the referees for their helpful
comments.

References

Aigner M (1988) Combinatorial search. Wiley, New York

Alon N, Asodi V (2005) Learning a hidden subgraph. SIAM J Discrete Math 18:697-712

Alon N, Beigel R Kasif S, Rudich S, Sudakov B (2004) Learning a hidden matching. SIAM J Comput
33:487-501

Anderson I (1990) Combinatorial designs: construction methods. Ellis Horwood, Chichester

Angluin D, Chen J (2006) Learning a hidden hypergraph. J Mach Learn Res 7:2215-2236

Angluin D, Chen J (2008) Learning a hidden graph using O (logn) queries per edge. J Comput Syst Sci
74:546-556

Beigel R, Alon N, Apaydin MS, Fortnow L, Kasif S (2001) An optimal procedure for gap closing in whole
genome shotgun sequencing. In: Proceedings 2001 RECOMB. ACM, New York, pp 22-30

Bouvel M, Grebinski V, Kucherov G (2005) Combinatorial search on graphs motivated by bioinformatics
applications: a brief survey. Lect Notes Comput Sci 3787:16-27

Chen HB, Fu HL (2009) Nonadaptive algorithms for threshold group testing. Discrete Appl Math
157:1581-1585

Damaschke P (2006) Threshold group testing. Lect Notes Comput Sci 4123:707-718

Du DZ, Hwang FK (2006) Pooling designs and nonadaptive group testing—important tools for DNA
sequencing. World Scientific, Singapore

@ Springer

J Comb Optim (2011) 22:270-281 281

Grebinski V, Kucherov G (1998) Reconstructing a Hamiltonian cycle by querying the graph: Application
to DNA physical mapping. Discrete Appl Math 88:147-165

Grebinski V, Kucherov G (2000) Optimal reconstruction of graphs under the additive model. Algorithmica
28:104-124

Nagura J (1952) On the interval containing at least one prime number. Proc Jpn Acad 28:177-181

Sorokin A, Lapidus A, Capuano V, Galleron N, Pujic P, Ehrlich SD (1996) A new approach using mul-
tiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and
sequencing. Genome Res 6:448-453

Torney DC (1999) Sets pooling designs. Ann Comb 3:95-101

@ Springer

	Reconstruction of hidden graphs and threshold group testing
	Abstract
	Introduction
	Graph reconstruction
	Threshold group testing
	Overview of the paper
	Notation

	Reconstructing simple graphs
	Reconstructing hypergraphs and threshold group testing
	Concluding remarks
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

