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Constrained Nonlinear Optimization 
Approaches to Color-Signal Separation 

Po-Rong Chang, Member, IEEE, and Tsung-Hsieh Hsieh 

Abstmcr-The process of separating a color signal into illu- 
mination and surface reflectance components is a fundamental 
issue in color reproduction and constancy. This color-signal 
separation can be carried out by minimizing the error in the 
least squares fit of the product of the illumination and the 
surface spectral reflectance to the actual color signal. Moreover, 
when taking in account the physical realizability constraints 
on both the surface reflectance and illumination, the feasible 
solutions to the nonlinear least-squares problem should satisfy 
a number of linear inequalities. Four distinct novel optimization 
algorithms are presented to employ these constraints to minimize 
the nonlinear least squares fitting error. The first approach, which 
is based on Ritter’s superlinear convergent method, provides a 
computationally superior algorithm to find the minimum solution 
to the nonlinear least-squares error problem subject to linear 
inequality constraints. Unfortunately, this gradient-lie algorithm 
may sometimes be trapped at a local minimum or become 
unstable when the parameters involved in the algorithm are 
not tuned properly. The remaining three methods are based 
on the stable and promising global minimizer called simulated 
annealing. The annealing algorithm can always find the global 
minimum solution with probability one, but its convergence is 
extremely slow. To tackle this difficulty, a cost-effective variable- 
separable formulation based on the concept of Golub and Pereyra 
is adopted to reduce the nonlinear least-squares problem to be a 
small-scale nonlinear least-squares problem whose solution state 
space is less than that of the original space. It will be shown that 
the computational burden is reduced by an order of magnitude. 
The computational efficiency can be further improved when 
the original Boltzman generating distribution of the classical 
annealing is replaced by the Cauchy distribution. Finally, a 
number of test samples are conducted to verify the effectiveness 
of the proposed methods. 

I. INTRODUCTION 
HE spectral power distribution of the ambient light and T the surface spectral reflectance of objects in a still image 

are the two primary physical factors that influence the color 
appearance of the objects in the image. The information 
obtained during image acquisition and display of a synthetic 
image is called the color signal. The term color signal will 
be used to describe the spectral power distribution of the 
light arriving at the recording device or the human eye. In 
a natural scene, the color signal is generally computed as 
the product of the spectral power distribution of the light 
incident on an object and the surface reflectance of that object. 
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[n the analysis of color images, the perceived surface color 
descriptors in the acquired image are determined by the color 
signal. More precisely, the recovery of color descriptors is 
always recognized as extracting the underlying surface spectral 
reflectance and ambient light spectral power distribution from 
the color signal. The knowledge of surface spectral reflectance 
can improve color reproduction to render the scene’s color 
best. 

Wandell [l]  and Maloney [2] proposed a method of recov- 
ering both surface reflectance and illumination that requires 
solving a set of equations based on the receptor values from 
several regions of different colors. Recently, Ho et al. [3] 
showed that the method has several primary limitations. One 
of them is that Wandell’s system cannot capture the richness of 
surface color with the information of the lower dimensionality. 
‘To extract the illumination and surface reflectance with higher 
dimensionality, it requires a sampling of the entire (visible) 
color-signal spectrum. In [3] and [4], the spectral information 
of color signal can be derived from the chromatic aberration 
inherent in lens systems. Once the sampled color signal has 
been determined, the process of dividing it into one component 
due to the illumination and the second due to the reflectance is 
executed by minimizing a nonlinear least-square error between 
the sampled color signal and the product of both illumination 
and reflectance. 

Ho et al. [3] showed that this nonlinear least-squares solu- 
tion provides a good fit to illumination and surface reflectance 
individually. More precisely, their separation algorithm de- 
rives least squares approximations to the actual illumination 
and reflectance based on Judd’s [ 5 ]  and Cohen’s [6] finite- 
dimensional linear models, respectively. The error bound of 
each approximation is dependent on the accuracy of both 
linear models. The correct color signal separation is achieved 
when both the finite-dimensional models describe illumination 
and reflectance exactly, but the primary limitation of their 
method is that the recovered components may violate the 
physical constraints. For example, the recovery procedure may 
give rise to estimates of the surface reflectance functions that 
are not physically realizable, that is, that contain negative 
values of surface reflectivity. In this paper, a constrained 
nonlinear least squares formulation is introduced by taking 
into account the physical constraints on both illumination and 
reflectance. Section I1 shows that these constraints can be 
mathematically expressed as a number of linear inequalities. 
A computationally superior algorithm based on the concept of 
Ritter’s superlinearly convergent method [ 151 is applied to find 
the minimum solution subject to linear inequality constraints 
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and without computation of second-order derivatives. More 
details will be discussed in Section III. Unfortunately, this 
gradient-like algorithm sometimes may become trapped in 
a local minima. Moreover, it becomes unstable when the 
parameters involved in the algorithm are not tuned properly. 

In constrast to the superlinearly convergent method, a 
method based on simulated annealing [20] can reduce the 
possibility of being trapped in a local minima. The annealing 
algorithm is a stochastic optimization algorithm derived from 
Monte Carlo methods in statistical mechanics. Corana et al. 
[26] showed that the convergence with probability one sense 
to a global minimum is provable. To implement the simulated 
annealing algorithm for the problem of separating the color 
signal successfully, it requires generating the interior points 
belonging to a convex polytope with a uniform distribution. 
This can be achieved by using the hit-and-run algorithm 
[12]. The algorithm chooses the current interior point on 
the line segment connecting the two hitpoints that are the 
intersections between the boundary of the convex polytope 
and a line formed by the previous interior point and a random 
direction vector. Moreover, it guarantees that the generated 
random sequence of interior points has the limiting uniform 
distribution. 

Undoubtedly, the linearly constrained simulated annealing 
can be utilized to find the global minimum solution over the 
convex polytope whose dimensionality is proportional to the 
total number of weighting coefficients corresponding to both 
the linear models. It can be shown that the convergence of 
the annealing algorithm becomes extemely slow when the 
dimensionality grows larger. To improve the computational ef- 
ficiency, a variable-separable formulation based on Golub and 
Pereyra [ll] is adopted to reduce the nonlinear least-squares 
problem to a small-scale nonlinear least squares problem. This 
can divide the solution state space of the specific annealing 
algorithm into a small-scale state space. A new cost function 
known as the variable projection functional is introduced 
and defined in the small-scale solution state space. Here, a 
minimum point defined in this variable projection functional 
is obtained by the same annealing algorithm on its associated 
state space whose dimensionality is smaller. According to 
Theorem 2 in Section V, once the minimum solution to the 
variable projection functional has been obtained, the mini- 
mum point to the original problem is determined. It will be 
shown that the variable-separable formulation can reduce the 
computational burden of the original annealing algorithm by 
an order of magnitude. At the end of Section V, we will 
discuss the fast simulated annealing [29] whose generating 
probability distribution is a Cauchy distribution instead of the 
original Boltzman distribution. The computational efficiency 
is further improved. Finally, a number of illustrated examples, 
experimental results, and comparisons will be discussed in the 
last section. 

can be identified as solving an unconstrained nonlinear least 
squares. Unfortunately, their method cannot guarantee that 
both the recovered components satisfy the physical constraints. 
The resultant illuminant and reflectance will become infeasible 
when they violate their corresponding physical constraints. 
To overcome this difficulty, our formulation includes the 
consideration of physical constraints. In a natural scene, the 
color signal is generally computed as the product of the 
spectral power distribution of the light incident on an ob- 
ject and the surface reflectance. Ho et al. [3] proposed a 
method to derive the spectral information of color signal from 
chromatic aberration. The color signal spectra can also be 
estimated, based on the response values of photoreceptors 
by a technique of Hermite interpolation polynominal [lo] or 
principal component approximate basis [7], [28]. Once the 
color signal has been determined, Ho et al. [3], [4] indicated 
that the process of separating a color signal is achieved 
by performing a nonlinear least squares or solving a set of 
equations. Moreover, Wandell [ 11 gave a condition that ensures 
the uniqueness of the decomposition. As mentioned above, 
none of their methods consider the validity of the physical 
constraints on both illuminant and surface reflectance. For 
example, the recovered feasible surface reflectance should 
have their values fall between zero and one according to 
the conventional definition of reflectance [l]. The spectral 
power distribution of the illuminant is never less than zero 
nor greater than the upper limitation of the light source. A 
constrained nonlinear optimization formulation based on finite- 
dimensional linear models will be introduced to extract the 
feasible illuminant and reflectance from a given color signal 
below. 

A. Finite-Dimensional Approximate Models for 
Illuminant and Surface Reflectance 

In general, finitedimensional models will not repesent the 
spectral power distribution of illuminant and the surface spec- 
tral reflectance exactly, although they should approximate 
them. Cohen [6] and Maloney [2] showed that the surface 
spectral reflectance curve of natural objects are usually rea- 
sonably smooth and continuous over the feasible spectrum 
(400-700 nm). Many experiments on empirical surface spec- 
tral reflectance show that most of them can be modeled by a 
finite-dimensional linear representation using only a few basis 
functions. For example, Cohen [6] found that over 99% of the 
variance of the spectral reflectance functions of the Munsell 
chips can be expressed using only three principal components. 
This analysis has been confirmed and extended by Maloney 
[2]. Higher dimensions result in better approximation, yet three 
functions still suffice when the filtering effect of cone response 
functions is taken into account. The estimate of the surface 
spectral reflectance corresponding to position p in sensor array 
is expressed as 

n 

II. A CONSTRAINED NONLINEAR OpTIMIzAnON SP(X) 2 Cp;.j(x) (1) 
FORMULATION FOR COLOR SIGNAL SEPAR4TION 

Ho et al. 131 showed that the problem of separating a 
color signal into illuminant and surface reflectance components 

j=1 

where s j ( X )  is the j th basis function, pj is its associated 
positiondependent coefficient, and n = 3. For simplicity, we 



CHANG AND HSIEH: CONSTRAINED NONLINEAR OPIlMlZATION 83 

neglect the position-dependent index p and obtain 
n 

S(X) % CPj.j(X). (2) 
j=1 

Consider approximating the spectral power distribution of 
light. Judd et al. [5]  reported that nearly all of the variations 
in the spectral power distribution of natural daylight can be 
described using a linear model consisting of three terms. This 
was confirmed in the later studies by Satri and Das as well 
as Maloney [2]. In addition, Maloney [2] has shown that the 
principal components that describe the observed variations in 
daylight also describe the variations across another class of 
light source: the blackbody radiators. In addition, it is assumed 
that the ambient light remains constant over the scene. This 
implies that the illuminant is independent of the location in an 
array. From these results, the spectral power distributions of 
lights can be characterized as 

m 

(3) 
i=l 

where ei(X) is the ith basis function, a; is its associated 
coefficient, and m = 3. 

Hence, the color signal I ( X )  at a position in a sensory array 
can be expressed as a linear combination of m x n functionals. 

m n  

m n  

i=l j=1 

where +;j(X) = ei(X)sj(X), and p;j = aiPj. 

functionals dij (A) form a linearly independent set. 
It should be noted that all the m x n(= 9) product-pair 

B.  Nonlinear Least Squares Problems with 
Linear Inequality Constraints 

Determining the illuminant and surface spectral reflectance 
can be described as the attempt to select their corresponding 
coefficients a; and /?j of linear models that "ize the 
metric between ?e given actual color signal I ( X )  and the 
unknown model I ( X )  formed by the product of linear models 
of both E(X) and S(X) over the visible spectrum. 

N 

k=l 

multiplicative scaling factor. To do so, the illuminant function 
E(X) is suggested to be normaked such that a1 = 1. Then, 
we have unique solution for all a; and P j .  In other words, 
the unique derivation of the best estimated illuminant and 
reflectance is guaranteed except for a scaling factor applied to 
normalize a 1  to 1. Unfortunately, the desired feasible solution 

be obtained by minimizing the metric of (5 )  directly. Since the 
surface reflectance function S(X) have the property that their 
values fall between zero and one, these reflectance weighting 
coefficients P j  should satisfy the constraint of boundedness 
and belong to the feasible reflectance coefficient set \k = 

Similarly, the feasible region for the illumination is found to 
be = { [ ~ i , a ~ , . . . , ~ n ] '  I I ( h )  I C z 1 a . i e i ( X k )  I C, 
1 I k 5 N, C = the upper bound of the illuminant} by 
taking into account the fact that E(X) = I(X)/S(X) and 
0 I S(X) I 1. 

In summary, the constrained nonlinear least squares can be 

Vector [01, (Y2, . . . , a m ,  p1, p2 , .  . . , /LO,]' = [Q', $7' CalKlOt 

{ [A,h, - - . ,Pn] '  10 I C;=iPjsj(h) 5 1 ,  1 I k I NI. 

stated as follows: 

N m n  

where e3ij = [ei(Xl)sj(Xl),e;(X2)s,(X2), . . . , e;(XN)sj 

(AN)]'. 
Subject to a set of 4N inequality constraints and a equality 

constraint 

and 

or equivalently, the sets of (4N + 2) inequality constraints are 
given by 

where i(&) = C%lCi"=laiPjei(X,)sj(Xk), = and 
a 2 ,  - - . ,  am]', B = [ ~ l r ~ 2 7 * . * 7 ~ n ] ~ ,  3 = 

[I(X~),I(X~) ,..., I (XN)] ' ,  X k  is the kth sampling 
wavelength over the visible spectrum, N is the number 
of sampling, 11 0 11 represents the Eucledian norm, and T 
denotes the matrix transpose. 

Hoeta l .  [3]  showedthat thereareaninfinitenumberof 
solutions to the "ization problem. Since the a; and pj un- 
knowns appear in products, we can solve for them only up to a 

' A B <  L?+} (9) 

where E+ = [l, -1 ,C,C, .  . . ,C, - I ( X i ) ,  . . . , -I(XN)]', and 
L?+=[1,1, ..., 1,0,0 ,..., O]'arethe(2N+2)xland2Nxl 
matrices, reSpfXtiVely. Zk = [ e l ( X k ) ,  e 2 ( x k ) ,  . . . , e,,,(Xk>]' 
and gk = [ S i ( X k ) ,  s2(Xk), . . . , Sn(Xk)]' are the m X 1 and 

* = {B=  [P1 ,P2 , * . . ,Pn]  I - 
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n x 1 column vectors, respectively. 

c =  

- - 

and 

A =  

... 

... 

. . .  

... 

... 

. . .  

. . .  

. . .  

. . .  

. . .  

(2N+2)xm 

where (Zmxl)i is an m x 1 vector with unity in its ith 
coordinate and zeros elsewhere. 

Lemma 1 : Qi and @ are identified as the convex polytopes 
that can be expressed as the intersection of a finite number 
of closed-half spaces. Clearly, 9 contains a mvial feasible 
solution 0 = [0, 0,. . . , 0IT. Moreover, the more compact rep- 
resentations for 9 and @ with fewer inequalities are obtained 
by eliminating the redundant inequalities [17]. 

In many cases, the systems of inequalities (7.a) and (7.b) 
used to define Qi and 9 may not be the simplest, and it may 
be possible to find the other systems having fewer inequalities 
while defining the same feasible solution sets Qi and 9. A sys- 
tem of linear inequalities can be simplified by eliminating the 
redundant inequalities. This leads to a new equivalent system 

having the same number of variables but fewer inequalities. 
These redundent inequalities that are deleted from a system 
without changing its set of feasible solutions can be expressed 
as a linear combination of the others. Methods to eliminate 
such constraints have been proposed by many researchers. 
Most of them are based on the simple? method [17]. For ease 
of notation, both C and A defined in Qi and 3 are still used to 
represent the nonredundant inequalities that are deduced from 
the original inequalities. 

C.  Accuracy of the Nonlinear Least-Squares Solutions 
This section discusses the accuracy of the nonlinear least 

squares solutions to the color signal separation problem. Ho 
et al. [ 3 ]  introduced the following theorem to describe how 
the coefficients a; and pj representing the best fits to a color 
signal I( A) and obtained by solving the constrained nonlinear 
least squares problem provide a good fit to E(X) and S(X) 
individually. In other words, the error bound of the fit to each 
of both E(X) and S(A) is proportional to the errors involved 
in fitting illuminant and surface reflectance separately with 
the finite-dimensional model. The details are discussed in the 
following theorem. 

Theorem 1 [3]-The Error Bounds for Color Signal Separa- 
tion: Let E(X), s(X), e;(A), and sj(X) be bounded functions, 
and let I ( X )  be a given normalized color signal. The color 
signal is normalized if the illuminant contained in the signal 
is normalized. The errors involved in fitting both E I X )  and 
S(X) are given by E E  = mina.&{ll E:=, cr;G - Ell} and 
E S  = minp,*{(( cy=l pj5’j - SI(}. Let z;, 1 5 i 5 m and 
z1 = 1, and let yj, 1 5 j I n be those values of a;  and ,i3j 

so that a best fit is provided for the color signal: 

If all the product-pair functions ei(X)sj(X), 1 5 i I m, 
1 2 j 5 n are linearly independent, then there exist constants 
C and D such that 

II m II 

and 

II 
where E’ = [E(X1), E(X2), . . . , E ( X N ) ] ~ ,  3 = [S(X1), S(Az), 
. . . , S(X,)IT, e‘; = [ei(Xl),ei(An), . . . , e i ( ~ N ) ] ~ ,  $j = [ s j  

( A I ) ,  9 j ( X 2 ) ,  . . .? s j ( X ~ ) ] ~ ,  e3ij = [ei(X1)sj(Al), . . . , ei(AN) 

3 j ( X , ) I T ,  and Qi = Qi (al=l . 
Theorem 1 implies that the modelling errors of the linear 

models to both E(A) and S(X) based on the coefficients zi 
and y; tend to zero when the spectral power distribution of the 
illuminant and the surface spectral reflectance are exactly rep- 
resented by the finite-dimensional linear models. Otherwise, 
these modeling errors are bounded by the weighted sums of 
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the error bounds for linear model approximations to both E 
and S. Note that theorem 1 is valid if the illuminant involved 
in the given color signal I( A) is normalized. Throughout this 
paper, we assume that both I( A) and E( A) are normalized such 
that their a1’s are identical to unity. In the next section, we 
will provide an systematic approach to obtain these optimal 
coefficients xi and yj. 

111. SUPERLINEARLY CONVERGENT 
MINIMIZATION FORMULATION 

Ritter [15] proposed an extension of the superlinearly con- 
vergent method for minimization problems with linear inequal- 
ity constraints that is suitable for the implementation of the 
color signal separation optimization problem. It can be applied 
under the same general assumptions as any method of steepest 
descent, even if the superlinear convergence assumptions [ 151 
are not satisfied. The general assumptions of steepest descent 
methods are recognized such that cost function F(u)  should 
be twice continuously differentiable over a convex region. 
Under these fairly general assumptions, the algorithm gener- 
ates a sequence of points that converges near-superlinearly 
to a minimizer of F ( u )  without computation of second- 
order derivatives. Certainly, the superlinear convergence is 
achieved when the stringent assumptions on the second-order 
derivatives [ 151 are satisfied. 

To implement the color signal separation problem, the 
constrained nonlinear least-squares of (6) and its associated 
variables should be restated 

rnin F ( U) 
U 

m m+n 

subject to 

where U = [uT,uTIT = [aT,BTlT, - ul = [q, u2,. . . ,umIT, 

and there are two different explicit triple matrix-vector product 
expressions for representing <(U), which are given by 

+(U) = E(U1)S0U2 (18.a) 

and 

= S(u2)E0u1 (18.b) 

where E(u1) = diag(CEl u i e i ( h ) ,  
CEl u i e i ( A N ) ) ,  S(u2) = diag(CLz+, u i s i - m ( A l ) ,  

. . . , d ~ )  is meant to be the N x N diagonal matrix whose 
(i,i)-entry equals d; for 1 5 i < N .  

By comparing (18.a) and (18.b), we observe that there is 
a definite symmetry (i.e., that these equations are similar but 
not quite identical in form). In fact, this symmetry leads to a 
property of duality between these two expressions. 

The strategy of the superlinearly convergent method is based 
on the following gradient-like iterative algorithm of the form 

(19) Uj+l = uj - ajvj 

where aj and vj are the adjustable scalar step size and 
direction vector of descent, respectively, and j is the index 
of iteration. 

A method for selecting the suitable aj and uj in order to 
minimize F(u) over the convex polytope U is discussed in 
[29], particularly as the algorithm is applied to color signal 
separation. In other words, the sequence {uj} generated by 
(19) converges to U*, minimizing F ( u ) .  

Ritter’s superlinearly convergent method is proven as a 
computationally superior algorithm of finding the minimum 
points over a convex polytope. Unfortunately, this gradient- 
like algorithm sometimes will end up in a local minimum. 
The effect is that the algorithm appears to stop searching for 
the better minimum point. In the next section, we shall present 
one method for reducing the possibility of falling into a local 
minimum. That method is called simulated annealing because 
of its strong analogy to the physical annealing process done 
to metals and other substances. 

~ 7 1  

IV. LINEARLY CONSTRAINED 
SIMULATED ANNEALING APPROACHES 

Simulated annealing is a recently developed but promising 
approach to solving the combinatorial optimization problem. 
Kirkpatrik et al. [20] first recognized a strong analogy between 
physical annealing and solving large combinatorial optimiza- 
tion problems. In simulated annealing, the possible solutions 
of a combinatorial optimization problem are analogous to the 
states of a physical system, the cost of a given solution is 
analogous to the energy of a given state, and the control 
parameter T, is analogous to the temperature of a heat bath. 
The annealing algorithm has been successfully applied to a 
variety of hard optimization problems in operational research 
[23], source coding [24], and image processing [25]. 

An instance of a combinatorial optimization problem [26] 
can be formalized as a pair (U, F), where the solution stare 
space U denotes the finite set of possible solutions, and the 
costfunction F is a mapping defined as F : U 3 92. Hence, 
the goal of combinatorial minimization is to find the solution 
%,t E U such that F ( W , ~ ~ )  5 F(uj)  for all uj E U. This goal 
may be achieved by using the following proposed simulated 
annealing algorithm. 

Simulated annealing is a smart random search technique 
that is often more efficient than an exhaustive search yet more 
robust than gradient descent. Its behavior is controlled by an 
externally specified parameter, which is usually called effec- 
tive temperature T,, with the same unit as the cost function. 
When T, is relatively large compared with the maximum 
value of the cost functon, simulated annealing explores the 
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entire solution space using a uniformly generated random 

uj with cost F(uj)) to the proposed state (state U with cost 

T, gets smaller, this undirected exploration changes. When 
T, is small enough, simulated anneahg becomes a descent 

with a uniform random distribution 
perturbation, which is a transition from the current state (state AF = F(U) - F(uj)  

IF AF < 0 THEN Accept 
F(U))  and with no preference for lower cost function. As 

algorithm. At intermediate values of T,, the simulated anneal- 
ing moderates its behavior between these two extremes: The 
transition is immediately accepted if F(U) is less than or equal 

decreasing T,, the search is systematically concentrated into 

Uj+l = U 
ELSE IF e-AFITe(M) > RANDOM [0, 11 
THEN Accept 
Uj+l = uj 

END IF 

END Do-Block Of step 2 
j = j + l  

to F(uj); otherwise, it is accepted with-a probability given 
by the Bol~man distribution e ( F ( u ~ ) - F ( U ) ) I z .  By gradually 

regions likely to contain a global minimum but still random 
enough to escape most local -mum. Corana [26] showed 
that the convergence to the global minima is provable with 
probability one sense. 

In the following procedure, it is observed that there are two 

Step 4: [cooling Schedule] T,(t + 1) = dT,(t) 
t = t + l  
END Do-Block of Step 1 

It should be mentioned that the condition of reaching an 
equilibrium point at the nth iteration can be determined by 
the following equations: 

(21) 
nested loops involved in the simulated annealing algorithm. cn - en-1 
The outer one will be terminated when T, reaches the lowest I cn I<( 
effective temperature. In addition, the inner loop stops if 
the equilibrium condition [211 is satisfied. Moreover, Hajek 
[22] indicates that a cooling schedule process used to control 
the decrement of T, would provide the conditions to ensure 

where ( is a specific criterion, and C,, is given by 

n 

the convergence to the global minimum. The conditions are c n  = exp{[AVEaccept - ~(uj)l/~e)/n (22) 
described as follows: j=1 

Lemma 2: A sequence of states generated according to the 
simulated annealing algorithm converges the global minimum 
for F(o)  with probability one if and only if T,(t) = *, 
where t is the index of the outer loop. 

Unfortunately, the simulated annealing algotithm based on 
the cooling schedule of Lemma 2 converges to the desired 

where ~xP(.)  is a exponential function, and AVEwcept is the 
estimate of the average of the accepted cost functions and is 
given by 

naccept 

solution extremely slowly. To overcome this difficulty, a AVEaccept = F(uj)/naccept (23) 
pratical implementation is given by T,(t+ 1) = 6T,(t), where j=1 

t is the index of the iteration for the outer loop, and the control 
parameter reduction factor 6 is between 0.95 and 1. 

Simulated Annealing Procedure 
where naccept is the number of acceptions. 

The last problem remaining to be solved is a criterion that 
will terminate the outer loop and decide when the lowest 
temperature (or the global minimum) has been reached. Since 
the estimate of the lowest temperature is hard to find, the 
easiest way consists of stopping when the cost function has not 
significantly changed over a reasonable amount of temperature 
steps [21]. Specifically, the cost function value F(w) is 
recorded in the current equilibrium point ut immediately 
before each temperature reduction from T( t )  to T(t+l ) .  When 
each cycle at temperature T(  t) is made, the search is stopped if 

(24) 

where A is a termination criterion, and NA is the number 
of temperature reductions to test for termination. A and N A  
are the parameters that control the termination test. N A  has 
been kept equal to 5:  a value found in exhaustive tests 
continuous optimization [28]. A is a classical “termination 

Step 2: [Start the procedure to reach the equilibrium point] test” of optimization algorithms, and its value depends on the 
particular problem. In our opinion, a good pratice is to set A 
to a very low value (say 10-1 - and observe at the 
temperature at which there is no further improvement: This 
will be the appropriate value of the lowest temperature. 

Step 0: [Initialization] 
- t = O .  

The initial effective temperature T, is chosen so that 
the initial transition-acceptance ratio is very high [23]. 
Skiscim [21] suggested that the initial temperature can be 
chosen a value greater than the maximal cost function by 
an order of magnitude. 
Randomly generate an initial state uo in the feasible 
solution state space U. 

Step 1: [Start the effective temperature decremnt procedure] 
IF(ut) - F(ut-e)l < A ,  e = 1,2, .  . . , N A  WHILE (The lowest temperature is not reached) 

BEGIN 

i f t = O  
U0 = { equilibrium point if t > 0 (20) U0 

and set j = 0 

WHILE (Equilibrium-Condition is not satisfied) 
BEGIN 

Step 3: [State transition] 
Generate a new state 6 which belongs to U 
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A. Color Signal Separation by Simulated Annealing 
To implement the simulated annealing algorithm in- 

corporated with the problem of color signal separation, 
three things are required. First, we need to specify the 
solution state as an (m + n) dimensional column vector 
U = [u1,u2,. . .,um+,IT = [ ~ ~ , j ' 3 ~ ] ~ ,  where ui = ai, 
1 5 i 5 m and ui = m + 1 5 i 5 m + n. Second, the 
associated cost function is given by 

Finally, we need a method that can generate the feasible 
solution states belonging to the state space U with a uniform 
distribution. The state space U is given by 

U = {U I AU 5 b} = 8 n  Q (26) 

(S+)T]T,  and A is a (4N + 2) x (m + n) where b = 
matrix given by 

It has been shown in Lemma 1 that U forms a convex 
polytope. A process of generating feasible candidate states 
from U is identical to finding the interior points. The strategy 
is based on a hit-and-run algorithm [ 121 and introduced below. 

B.  Method of Generating the Interior Points of a Polytope 
The hit-and-run algorithm is the attractive method used to 

generate a random sequence of interior points whose limiting 
distribution is uniform. The process of finding a new feasible 
interior point is done on the basis of searching in the direction 
of a random vector U, from the current point (or feasible 
solution state) uj and then choosing a new interior point C 
uniformly on the line segment between the two hitpoints, i.e., 
the points where the line uj + 7u, intersects the boundary of 
U and 7 is any real scalar number and is known as the the 
line parameter. It is shown that the random direction vector U, 

can be generated by both the hypersphere direction algorithm 
[ 121 and coordinate direction method [ 121. In the hypersphere 
direction algorithm, the direction vector is drawn from a uni- 
form distribution on a hypersphere. The coordinate direction 
method generates one of the unit coordinate vectors or their 
negation with equal probability as the direction vector. Berbee 
et al. [12] showed that the coordinate direction method is the 
computationally superior algorithm in generating the random 
direction vectors. The algorithm consists of the following 
steps: 

Algorithm HAR ( H i d n d - U u n )  
Step 0: [Initialization] 

Step 1: [Direction Vector] 
i) Given an interior point uj. 

Generate a direction vector U, with equal probablity 
from one of (m + n) coordinate vectors and their 
opposite vectors 

Step 2: [Line Parameters] 
Determine: 

i) 7i = (b; - a~uj)/(a~u,), i =  1,2,. . . ,4N + 2 
ii) r+ = minl<ig~+2{7i I 7i > 0) 

iii) -y-= maxl<i54~+2{7i 17; < 0}, where UT and bi is the ith 
row and ith entry of A and b, respectively, and -yi is the 
line parameter for the ath constraint aTu 5 bi. 
Step 3: [New Interior Point] 

i) Generate t9 from a uniform distribution on [0, 13 
ii) k t  6 = uj + [r- + 0(7+ - 7-)]ur 

Step 4: [Output and Terminate] 
It is known that the computational complexity of cal- 

culations involved in simulated annealing algorithm is in 
proportion to the exponential of the dimensionality of its 
associated state space. Hence, the convergence of annealing 
algorithm becomes extremely slow while the dimensionality 
grows larger. To tackle this undesired effect, one of the 
possible methods is to divide the large-scale state space 
into several small-scale state spaces. Each of them can be 
performed in an efficient way individually. As a consequence, 
the subresults derived from these small-scale problems can 
then be combined in order to yield a result that is identical to 
that of the original problem. To achieve this goal, we adopt 
a method proposed by Golub and Pereyra [ 111. They showed 
that the nonlinear least squares problem can be reduced to 
be a small-scale nonlinear least squares problem when their 
variables are separable. More detail about this method will be 
discussed in the next section. 

V. A VARIABLE-SEPARABLE NONLINEAR 
LEAST SQUARES APPROACH 

A general nonlinear least squares problem is conducted to 
apply the least squareSAfit techniques to the nonlinear models 
~ ( a , 8 , A ) , w h e r e Q € ~ ~ ! R n a n d 8 € Q  C_!R"areunknown 
parameter vectors to be determined, and A is the independent 
variable. More precisely, given the data (Ak, l (Ak) ) .  k = 
1 , 2 , .  . . , N ,  N 2 m + n, the task is to find the values of 
the parameters a and p that minimize the nonlinear objective 
functional 

N 

4Q,8) = c(wk) - dQ,B; A k N 2  
k = l  

= IF- ii(Q,8)ll2 (28) 

where f = [l(Al),I(A2) ,...,  AN)]^, and i i ( ~ , /? )  = 

The nonlinear least squares is said to be variable separable 
form two completely disjoint sets, 

[71(Q,B, A d ,  dQ,B,  A2), * * 7 V(Q,B,  

if the parameters Q and 
and the nonlinear model V ( Q , ~ ,  A) is expressed as 

n 

dQ, 8; A) = Pjcpj (a; A) (29) 
j=1 

where c p j ( ~ ;  A) is the j th associated nonlinear (or linear) 
functional of Q and A, or equivalently 

i i(a,B) = iwQ)B (30) 



88 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 1, JANUARY 1995 

where B = [PI, P2,. . . , and M ( a )  is an N x n mamx 
function of a with its (Ic,j)-entry ( M ( a ) ) k j  = cpj(a; Ak); 1 5 
k 5 N, and 1 5 j 5 n. Substituting (30) into (28), it becomes 

d ( a , B )  = IF- M(a)B1I2. (31) 

Comparing (29) and (4), it can be found that our nonlinear 
least squares formulation for color signal separation is indeed 
a variable separable problem. It yields 

m .._ 

(M(Q))kj  = ai (e; ( A k ) s j  (Xk)) (32) 
i=l 

where 1 5 IC 5 N and 1 5 j 5 n, or equivalently 

M ( a )  = E(a)SO (33) 

where E(a)  = diag[EEl a i e i ( X l ) ,  ELl a i e i ( X z ) ,  . . . 
a ; e i ( A ~ ) ]  and SO = [Z1,Z2 ,..., Z N ] ~ .  

Lemma3: The N x n matrix M ( a )  has constant rank 
T 5 min(N,n) for a E R(= &l,p), where T = pnk(So) 
and 6llk is a set of feasible vectors a belonging to @ subject 
to the constraint region Q. 

Since E ( a )  is a diagonal matrix with nonzero entries on its 
main diagonal and of full rank for Q E R, it is easily proven 
that the rank of M ( Q )  is identical to that of So. 

In order to perform the variable separable problem, a new 
objective functional of a is required and given by 

&(a) = [If- M ( a ) M + ( a ) l y  (34) 

where M + ( a )  is a pseudoinverse of M ( a ) .  
This new functional is called the variable projection func- 

tional. For y y  given a, the minimal least squares solution to 
M(a)B  Z I is given by 

B*(Q) = M + ( a ) f .  (35) 

Substituting (35) into (31), we obtain 

It turns out that the variable projection functional equals 
the minimum value of d(o,B) with respect to /3 over 9. 
Furthermore, Golub and Pereyra [ 111 showed that once optimal 
parameter vector a* has been obtained by minimizing (34), 
then the paryeter vector B* is obtained as a solution of 
M ( a * ) p  % I .  The relationship between critical points or 
minimal points of the original objective functional d ( a ,  a) and 
those obtained from the functional &(a) is described below. 

Theorem 2 1111: Let d ( a , B )  and d p ( a )  be defined as 
above. M ( a )  is assumed to have constant rank over R. 

If a* is a critical point (or a global minimizer in R) of 
&(a) and 

p* = B*(a*) = M + ( a * ) f  (37) 

then U* = [ ~ * ~ , f l * ~ ] ~  is a critical point (or a global 
minimizer) for U E U and d(a* ,B* )  = &(a*), where 
R = &l,p and U is defined in (26). 

b) Conversely, if U* is a global minimizer of d(a,j?) for 
U E U, then a* is a global minimizer in R, and 
&(a*) = d(a*,p*). Furthermore, if there is a unique 
a* among minimizing pairs of d(a,p), then a* must 
satisfy (35). 

Let P F ( ~ )  and Ph(,) be the orthogonal projection operator 
on the h e a r  subspace spanned by the columns of the matrix 
M ( a )  and the projector on the orthogonal complement of the 
column space, respectively. Expressing 

and 

Ph(a) = I N  - PM(Q)  (39) 

where I N  denotes the N x N identity matrix, and substituting 
(38) into (34), we obtain 

d d a )  = ll~h(a)flI2 (40) 

Moreover, one can avoid evaluating the nonlinear func- 
tional da(a) from Ph(a) directly in order to reduce the 
computational burden of calculations involved in determining 
Ph(a) by using the complete orthogonal decomposition on 
both M ( a )  and [lo]. 

By applying the simulated annealing technique to find the 
minimum point of &(a) over the state space R = @Ilk, the 
suggested efficient calculation of d2(a) is required to speed 
up the convergence. Once the global minimum point a* is 
found, then p* is obtained by replacing o by a* in (35). Apart 
from the linearly constrained simulated annealing discussed in 
the above section, the state space R = @l,p has nonlinear 
constrain?. One cannot generate the interior points belonging 
to R = @I* by the original hit-and-run algorithm directly. 
Before in-troducing the modifications, the nonlinear constraints 
in R = @l,p are derived from 9 and given by 

0 5 Z?i?*(a)(= S(X;)) 5 1 (41) 

or equivalently 

0 5 $TM+(a) f<  1 (42) 

where s';T = [ s l (A i ) , s2 (X ; ) ,  . . . ,sn(X;)], and 1 5 i 5 N .  

rephrased as a set of 2N inequality constraints 
Mathematically, those nonlinear constraints can be 

or 

where fk(a) is the kth nonlinear constraint function from an 
m-dimensional Euclidean space 92" into a set of real number. 
In the case of nonlinear constraint functions, only Step 2 of 
the hit-and-run algorithm changes. 
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A. Method of Finding the Line Parameters of 
Nonlinear Constraint Functions 

The strategy to find the line parameter of a prescribed 
nonlinear constraint function is based on determining the 
intersection between the line aj + <U, and the curve f k ( a ) ,  

where aj and U, are the given current point and direction 
vector, respectively, and c is the line parameter for the nonlin- 
ear constraint. An alternative way of finding this intersection 
effectively is to define a new parametric function in terms of 
the nonlinear constraint functions 

where gk(o) is a real-valued function from 92 to R. 
Then, the Newton's method [ 171 could be applied to find the 

root <k of gk(<), i.e, gk(<)IC=Fls = 0. The Newton's iteration is 

(45) <n+1 = 71 - [g'(c">l- l9k (e") 

where gh(c") = 
As shown in (43.a) and (43.b), there are two expressions for 

gk (e), First, we would like to derive the explicit expression for 
the first order derivative of the parametric function of (43.a) 
with respect to e. The parametric function can be expressed as 

(46) gk(c) = $M+(a j  +CUT)?- 1. 

Its derivative is given by 

(47) 

where 1 5 k 5 N .  
In order to obtain the expression for the first-order derivative 

of a specific pseudoinverse with respect to c, one should follow 
from the following results. Let B = A + dA, where dA is an 
arbitrary incremental matrix. Wedin [ 181, [ 191 has shown that 

B+ - A +  
= -B+dAA+ + P$dATA'TA+ + B+B+TdATPi 

(48) 

where P g  = I, - B+B is defined as the projector on the 
orthogonal complement of the row space of B, and I, denotes 
the n x n identity matrix. 

Let A(<) = M ( a j  + cur) and B = A(< + dc) ,  where dc 
is a small scalar increment. From (33), it can be shown that 
M ( z )  is a linear mapping satisfying 

-1 

M ( z  + = M ( z )  + W ( Y >  (49) 

where z and y are arbitrary vectors, and ( is any scalar number. 
Using this, we obtain 

B = A(c + de)  = M { ( a j  + cu,) + dw,} 
= M ( a j  + cu) + dcM(v,) 
= A(c) + dA (50) 

where dA = dcM(v,). 

Finally, the first-order derivative of A(<) with respect to s 
can then be derived by letting de -+ 0. It yields 

- -M+(aj  td + cu,) = -A+(<) d C k  de 
= - A + M ( ~ , ) A +  + P ~ M T ( ~ , ) A + ~ A +  

+ A + A + ~ M T ( ~ , ) P ~ .  (51) 

Similiarly, the first-order derivative of the other expression 
becomes 

where N + 1 5 IC 5 2N and 
Hence, the roots of g k ( c )  for N +  1 5 k 5 2N can be found 

by the Newton's iteration based on the first-order derivative 
of (52). 

Following step 2 of algorithm HAR, two essential param- 
eters are made for the nonlinear constraint functions and are 
given by 

e+ = min{ck I <k > O , g k ( c k )  = 0) 

is defined in (51). 

(53.a) 

and 

= "{Ck I Q < o,gk(Sk) = 0). (53.b) 

To accomplish the generation of the interior points be- 
longing to @')*, both the parameters e+ and e- should be 
incorporated with the *parameters -y++ and 7-  derived from 
the linear constraints @ = {Ea 5 E+} .  The parameters that 
satisfy both the linear and nonlinear constraints are defined as 

++ = min(7+, e+) (54.a) 

and 

$- = max(y-, e-). (54.b) 

It can be shown that these new parameters can make the 
interior points fall in the region @I*. 

B .  Fast Simulated Annealing 
The cooling schedule is critical to the performance of the 

annealing algorithm. For a given random process, cooling 
at too fast at rate will likely "freeze" in a nonglobal mini- 
mium. Cooling at a too slow rate, while reaching the desired 
minimum, is a waste of computational resources. Since the 
classical simulated annealing is derived from the Boltzman 
random process, it has been proven [22] that the cooling 
schedule is inversely proportional to the logarithm of t in 
order to guarantee convergence to the global minimum, where 
t is the index of the outer loop of annealing algorithm. This 
relatively slow convergence is due to the bounded variance 
of the Boltzman process that constrains the neighborhood of 
the successive samples. On the other hand, Szu [29] proposed 
a method based on Cauchy random process whose variance 
is infinite. The Cauchy distribution has the same general 
shape as the Boltzman distribution but does not fall off as 
sharply at large energies. The implication is that the Cauchy 
annealing may occasionally take a rather large jump out of 
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a local minimum. The advantage of this approach is that the 
global minimum can be reached with much shorter annealing 
schedule. For the Cauchy annealing, the temperature should 
follow the inverse of t: 

m 
1 0  

l + t  
T(t)  = - (55 )  

where To is the initial temperature, and t denotes the index 
(or “time”) of outer loop. 

VI. SIMULATION RJSULTS 

To verify the effectiveness of the proposed optimization 
techniques and compare them with the Ho et al. data [3], a 
number of test samples used in their examples are particularly 
considered in our simulation. Ho e? al. tested their algorithm 
by combining each of the 370 available surface reflectance 
functions recorded by Krinov [3] with each of the standard 
daylight illumination spectra given by Judd [5 ] .  The finite- 
dimensional models are based on the first three of Cohen’s 
vectors [6] as basis functions for surface spectral reflectance 
and the first three of Judd’s vectors [5] as basis functions 
for spectral power distribution of ambient light. According 
to Theorem 1, it is shown that any separation algorithm is 
valid when both the color signal and illuminant are assumed to 
be normalized. As an example, Fig. 1 illustrates a normalized 
color signal that has been constructed from the surface spectral 
reflectance of Krinov’s sample 54 multiplied by the normalized 
Judd’s spectrum for 4800’ K correlated color temperature 
daylight. The Krinov’s sample 54 is a standard image of “river 
valley meadow.” This normalized color signal is sampled at 
10-nm intervals from 400 to 650 nm. After performing any 
separation algorithm on the given sampled color signal, we 
would like to evaluate the performance of the algorithm by 
examining the root mean-square error formed by the square 
of the difference between the actual color signal and model’s 
approximation of it in a normalization sense. This error is 
identical to the square root of (5),  i.e., E E S  d m .  While 
reaching the minimum point, tkS m i n a , g d m  = 

4 a ,  B) la=z,g=y- Additionally, we still need to measure 7 e errors in the individual fits to the illumination and surface 
spectral reflectance based on the optimal values z and y. Both 
the errors are assumed to be in a relative and normalization 
sense and defined as 

and 

(57) 

Practically, the variable 01 in our simulation is always 
set to be constant and identical to one. Meanwhile, this 
does not have any influence on the optimization formulation 
discussed above. Hence, the dimensionality of the entire 
solution space is reduced to only five. For the variable- 
separable formulation, the dimensionality of solution space 
equals two. It is believed that the computational complexity 

I 
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Fig. 1 .  Normalized color signal from product of surface spectral reflectance 
of river valley with meadows (Krinov spectrum 54) and Judd et al. spechum 
for 4800’K daylight. 
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Fig. 2. Original Krinov reflectance spectrum 54 and results of Ho. SCM. 
LCSA, VSM, and FVSM separation algorithms applied to the color signal of 
Fig. 1 are denoted by “1,” “2,” “3,” “4,” “5,” and “6,” respectively. 
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Fig. 3. Original Judd et al. normalized spectral power distribution of 
4800°K, and results of Ho, SCM. LCSA, VSM, and FVSM separation 
algorithms applied to the color signal of Fig. 1 are denoted by “1,” “2,” “3,” 
“4,” “5,” and “6,” respectively. 

can then be decreased significantly. Two typical cases of input 
color signals shown in Fig. 1 and Fig. 4 are conducted to 
demonstrate the performance of those optimization techniques 
and are described below. The color signal shown in Fig. 4 and 
of particular interest is constructed from Krinov reflectance 
sample 162 illuminated by 4800’K daylight. Ho et al. [3] 
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TABLE X 
COMPARISON OP SIMULATION RESULTS OF Ho, S C M ,  LCSA. VSM, AND WSM SWARATXON ALGORITHMS. 1) NORMAL CASE, 2) WORST CASE. z = [l, 2 2 ,  23IT 

AND I = [yi , yz , y3lT ARE THE OPl7MAL COpFmClwTs m R  E AM) g, REslW2llWLY. T: C 0 ” I O N  TIME EXXUTED ON IBM PC-486. “-”: NO? AV”. 

400 450 500 5 5 0  600 650 

Rg. 4. Normalized color signal from product of surface spectral reflectance 
of Krinov mflectance 162 and Judd et al. s p e c ”  for 4800’K daylight. 

showed that it is the worst case for their separation algorithm. 
The superlinearly convergent algorithm is applied to the 

color signal separation with initial point U = 0. The parameters 
involved in the algorithm are set to be x = 0.6, -y = 
7’ = 0 . 5 ~ 1 0 - ~ , m ’  = 1O2,m0 = 104,7- = 104,and6 = 0.24. 
In addition, the related sequences are assigned to be m j  = 

the normalized color signal shown in Fig. 1 proceeds iterately 
and stops at a minimum point U* = (a~,a~,Pi,P~,/3~))T = 
(-0.4390,3.0114,0.0248,0.0282, -0.0093)T with €Es = 
2.9911. As shown in Table I, the algorithm results in 
an minimum point that is almost identical to that of the 
other three methods and has the fastest convergence rate. 
According to Lemma 2, this point is regarded as the 
global minimum, but it may fall into a local minimum 
point (= (-0.3389,29.6217,0.0163,0.0818, -0.0472)T) and 
produces the larger error = 12.8755 when the input 
normalized color signal is the second case shown in Fig. 4. 
Moreover, it should be mentioned that the superlinearly 
convergent algorithm will become unstable and be, trapped 
in a undesired point when those parameters and sequences 
involved in the algorithm are not chosen properly. 

The remaining three methods are derived from a stochastic 
annealing-like optimization technique in statistical mechanics. 
The annealing algorithm has been shown as the most 
promising global minimizer applied to a variety of hard 
optimization problems successfully. In constrast to the 
superlinearly convergent method, the global convergence 

m l -  2 3 ,  7. - - -y + 3, 7; = 7’ + 3. The algorithm applied to 

of the annealing algorithm is less sensitive to variation in 
parameters and is always guaranteed. The first approach 
uses the annealing algorithm to find the global minimum 
solutions of the typical two cases over a 5-D convex polytope 
since a1 = 1. The initial temperature is chosen to be a 
very high value that is greater than the maximal value of 
d(a,f3)(maxQ,gd(a,/?) = 0(105)) by anorderofmagnitude, 
i.e., Te(0) = lo6 and reduction factor .9 = 0.98, respectively. 
The algorithm will be terminated at a very low value of 
T,(= 1.05 x lo-’) and yield the global minimum points 
[-.0.4362,3.0730,0.0248,0.0282, -0.0095IT with ekS = 

with eks = 11.3924 for both cases, but the convergence 
of the aleorithm is extremely slow. The computation times for 
both two cases executed on an IBM PC-486 are proportional 
to 104 s. 

To eliminate this unfairly slow convergence, a cost-effective 
and robust approach based on the concept of variable-separable 
formulation is proposed to reduce the dimensionality of its 
solution space and improve its efficiency. The simulated 
annealing is applied to finding the minimum value of variable 
project functional d 2 ( a )  over a(= $I*> of dimension two. 
The initial temperature and reduction factors are set to be 
103 and 0.98, respectively, since max, &(a) = o(102). It is 
found in Table I that the computation times for both cases have 
been improved by an order of magnitude and in proportion 
to I d  s. Moreover, Table I shows that the minimum points 
obtained from variable-separable formulation for both cases 
are almost identical to that of the first approach but with a 
fast convergence rate. To improve the computational efficiency 
further, one may use fast simulated annealing instead of the 
classical annealing algorithm to find the global minimum 
paint of the variable projection functional. As shown in 
Table I, the convergence rate of the fast simulated annealing 
for both cases is m m  fast than twice that of the classical 
annealing algorithm, but it results in the same solution as 
the classical one. On performing the generation of interior 
paints belonging to R during the execution of the annealing 
algorithm, the process of finding the line parameters of the 
nanlinear constraint functions defined in (43.a) and (43.b) is 
worthy of being observed. For the case of input color signal 
shown in Fig. 1, we have found that the nonlinear constraint 
functions defined in (43.a) are strictly less than zero for a1 = 1 
and a = [a2,a.gIT E 82’. This implies that their associated 

2.9914 and [-1.2519, -10.4720,0.0369,0.0290, 0.06001T 

. .  
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inequality constraints are always satisfied. Therefore, only 
the nonlinear constraints defined in (43.b) are considered. To 
illustrate its function, we randomly choose the 438th iteration 
as an example. There are 26 nonlinear constraint functions at 
the 438th iteration of the annealing algorithm. Additionaly, 
the interior point obtained from previous iteration and the 
direction vector generated by coordinate direction method are 
a437 = [1.9312,3.6619IT and vT = [l,0lT, respectively. 
Each line parameter of its associated nonlinear constraint 
function can be found by Newton’s iteration. Fig. 6 shows 
time evolution of six typical functions. One may note that the 
convergence of each curve is very fast. The slowest one is the 
fourth curve, which reaches the horizontal axis at the tenth 
iteration. Its associated line parameter c4 is equal to -8449.8. 
After the line parameters for the 26 nonlinear constraints 
have been determined, c+ and q- become 37.2 and -5.9, 
respectively. Similarly, the parameters r+ and y- for linear 
constraints are found to be 4.4870 and -3.8922, respectively. 
Hence, ?+ = 4.4870, and 5- = -3.8922, It can be easily 
shown that a = a437 + [y+ + e(?+ - r-)]vr is the new 
random interior point belonging to R, where 0 E [0, 11. As a 
result, the minimum point a* has been obtained by performing 
the annealing algorithm on &(a) for first case and found to be 
a* = [-0.4412,2.9816IT. From Theorem 2, the other set of 
optimal variables e* = [/3:,/3;, & I T  can then be determined 
as B‘ = M+(a*)I = [0.0248,0.0281, -0.0092IT. 

Fig. 2 shows the original surface reflectance spectrum given 
by Krinov’s sample 54, along with the results from Ho’s 
and our optimization-based separation algorithms. The sep- 
aration errors €5 defined in (57) for Ho, the superlinearly 
convergent method (SCM), linearly constrained simulated an- 
nealing (LCSA), the variable-separable method (VSM), and 
the variable-separable method based on the fast simulated 
annealing (FVSM) are 15.2, 14.54, 14.47, 14.47, and 14.52%, 
respectively. These four optimization methods result in almost 
the same separation error, which is better than that of Ho. For 
the worst case, Fig. 5 shows Krinov’s reflectance sample 162 
spectrum along with the results from Ho’s and our separation 
algorithms with the separation errors 47.4% for Ho, 47.70% 
for SCM, 46.72% for LCSA, 46.72% for VSM, and 46.70% 
for FVSM, respectively. It is seen that these three annealing- 
based separation algorithms yield the results better than those 
obtained from Ho and SCM. 

Fig. 3 shows Judd’s 4800’K daylight spectrum derived from 
the normalized color signal shown in Fig. 1, along with the 
normalized illuminations calculated by Ho’s and our optimiza- 
tion separation algorithms. The normalized illumination errors 

defined in (56) for Ho, SCM, LSCA, VSM, and FVSM are 
15.94, 15.31, 15.48, 15.41 and 15.47%, respectively. As seen 
in Ho’s paper, their illumination error is not in a normalization 
sense. Here, we convert it (12.8%) into a normalized one 
(15.94%). One may find that our results are slightly better 
than Ho’s results. 

VII. CONCLUSION 
This paper presents the development of a constrained non- 

linear least-squares error formulation for recovering both the 

400 450 5 0 0  550 600 fi50 

Fig. 5. Original Krinov reflectance spectrum 162 and results of Ho, SCM, 
LCSA, VSM, and MSM separation algorithms applied to the color signal of 
Fig. 4 are denoted by “1,” “2,” “3,” “4,” “5,” and “6,” respectively. 
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Fig. 6. T i e  evolution of six typical nonlinear constraint functions are 
denoted by “1,” “2,” “3,” “4,” “5,” and “6,” respectively. 

physically realiable illumination and surface reflectance from 
a given color signal. For ease of performing color-signal 
separation, the formulation should be parameterized according 
to the finite-dimensional linear approximate models. Thus, the 
process of separating a color signal is then reformulated as 
finding the optimal coefficients involved in those linear models 
subject to a number of feasibility constraints. The optimal 
solution can be carrier out by the superlinearly convergent 
method in the fastest convergence rate, but Table I shows that 
the superlinearly convergent method may be trapped in a local 
minimum. Hence, a promising global minimizer known as the 
annealing algorithm is presented and reduces the possibility of 
falling into the local minimum. Unfortunately, its convergence 
is extremely slow. Here, we have developed a cost-effective 
procedure based on the concept of variable separability, which 
leads to.the same global minimum and has a reasonable con- 
vergence rate. The superiority of variable-separability comes 
from the fact that it reduces the dimensionality of solution 
space. Actually, the computational efficiency is further im- 
proved by the fast simulated annealing incorporated with the 
variable-separable method. Computer simulation shows that 
the computation time of the cost-effective method is between 
those derived from the superlinearly convergence method and 
the original annealing algorithm. 
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APPENDIX A 
COMPUTATION OF THE VF’ 

The ith component of the gradient VF(u) can be evaluated 
by taking the first-order partial derivative and chain rule on 
F(u) with respect to ui. 

The expression of &+(U) can be simplified by noting that 
the dependence between U; and both the expressions for +(U) 

defined in (18.a) and (18.b) becomes 

where ( Z m x l ) i  and ( Z n x l ) j  denote the m x 1 and n x 1 
vectors with unity in their ith and jth coordinates, respectively, 
and zeros elsewhere. 

Let MSE = S ( U ~ ) E ’  and MES = E(ul)So be the 
N x m and N x n matrices, respectively. The more compact 
expression for is given by 

where = MsE(Zmxl)i  and 6jEs = MEs(Gxi)j are 

Substituting (A.3) into (A.l), the gradient VF(u) can then 
the ith and j th columns of MSE and MES, respectively. 

be expressed as 

(A.4.a) 

(A.4.b) 
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