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a b s t r a c t

In this work, theoretical formulas for the H-polarization electromagnetic propagation in a cylindrical

multilayer structure (CMS) are given. The relationships between two modes, H- and E-polarization are

pointed out. With the derived formulae, we present the numerical results for three model structures

such as the single cylindrical interface, the single cylindrical slab, and the cylindrical photonic crystal

(CPC). In the single cylindrical interface, it is found that there exists a Brewster starting radius at which

a minimum reflectance is attained in H-polarization. In the single cylindrical slab, the result illustrates

that the reflectance response in the wavelength domain contains the oscillating and nonoscillating

regions. As for the CPC, we find the PBG structure at zero azimuthal mode number is very similar to that

of planar photonic crystal. The PBG, however, can be strongly influenced by increasing the azimuthal

mode number in a CPC.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The propagation of electromagnetic waves in dielectric strati-
fied structures has been studied for a long time [1,2]. Such an
issue has been of much interest to the optical and electromagnetic
communities again in 1987 since the concept of the photonic
crystals (PCs) was introduced by two pioneering works of
Yablonovitch and John [3,4]. Since then a flood of research topics
in PCs were triggered in the past two and half decades. At present,
research in PCs, which also are called the photonic band gap (PBG)
materials, continue to be hot in the communities of photonics,
electromagnetics, and material physics.

A simple periodic dielectric multilayer structure known as a
one-dimensional (1D) PC is easier to fabricate compared to the
two- and three-dimensional PCs. In addition, 1D PCs can be used
to explore many fundamental and interesting optical properties,
such as the existence of PBGs as well as the feature of omnidirec-
tional mirror [5,6]. In 1D PCs the wave propagation properties can
be analytically investigated by the familiar transfer matrix
method (TMM) in Cartesian coordinates [1,2,7]. The TMM
described in Ref. [7] is generally referred to as the Abeles theory.

In addition to the usual planar 1D PC, wave propagation in a
cylindrical multilayer structure (CMS) has also received much
attention in recent years [8–17]. A PC with a periodic CMS is called
a cylindrical photonic crystal (CPC) or cylindrical Bragg reflector
(CBR). The reflection or transmission response of a CPC can be
analytically investigated based on another version of TMM. In fact,
such cylindrical wave TMM has been developed by Kaliteevski et al.
ll rights reserved.
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.

[18]. They developed an elegant TMM in cylindrical coordinates
which, in fact, is an analogous version of Abeles theory in Cartesian
coordinates. With this cylindrical TMM, the reflection response for
the CPC can be studied and then a comparison with planar 1D PC
can be made [19]. Moreover, based on the use of such TMM, studies
of photonic band structures in metallic and superconducting CPCs
have also been available [20,21].

In a CMS, it is known that there will be two possible propaga-
tion modes called the E-polarization and the H-polarization as
well [18]. Previous studies [18–21] were all focused in the
E-polarization only, which is partially because the formulae of
the H-polarization for the reflection and transmission in a CMS
still remain unavailable. The purpose of this paper is thus to give a
detailed theoretical description on the wave propagation in a CMS
under the condition of H-polarization. We shall derive the
formulae of reflection and transmission for a CMS. With these
formulae, we next give some numerical studies on three model
structures, including the single cylindrical interface, the single
cylindrical slab, and the CPC. The first structure is similar to
Fresnel’s formulae in a planar interface between two different
media. The study of second structure is reminiscent of the Airy
slab problem in optics. The third one, the CPC, is of particular
interest in this work because of the current interest. For the
purpose of comparative study, all the numerical results of these
three structures are given for both E- and H-polarization.
2. Transfer matrix method in cylindrical system

In this section, we first derive the transfer matrix method
(TMM) for the electromagnetic propagation in the CMS as shown
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Fig. 1. A portion of CMS, in which the m-layer system/1/2/y/m/ is bounded by

the media of refractive indices, n0 and nf. The subscript ‘‘0’’ is known as the

starting medium, whereas the final medium is indexed by the subscript ‘‘f’’. The

dimension in z direction is assumed to be much larger than the dimensions in x

and y directions.
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in Fig. 1.We assume that the temporal part of all the fields is
expðjotÞ. In what follows, the SI-unit will be used in this work. For
a given layer with permeability m¼ mrm0 and permittivity e¼ ere0,
Maxwell’s curl equations are written as,

r � E¼�jomH, ð1Þ

r �H¼ joeE ð2Þ

In cylindrical coordinate, (r, f, z), Eq. (1) can be expanded as

1

r
@Ez

@f
�
@Ef
@z
¼�jomHr, ð3aÞ

@Er
@z
�
@Ez

@r ¼�jomHf, ð3bÞ

1

r
@ rEf
� �
@r �

@Er
@f

� �
¼�jomHz, ð3cÞ

and expansion of Eq. (2) gives

1

r
@Hz

@f
�
@Hf

@z
¼ joeEr, ð4aÞ

@Hr

@z
�
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@r
¼ joeEf, ð4bÞ
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� �
¼ joeEz ð4cÞ

Let us first consider the propagation of cylindrical wave
diverging from or converging to the axis of symmetry r¼0
(z axis). In this case, the derivatives of the fields with respect to
z can be omitted and hence Eq. (3) can be reduced to

1

r
@Ez

@f
¼�jomHr, ð5aÞ

@Ez

@r ¼ jomHf, ð5bÞ
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Likewise, Eq. (4) can be reduced to

1

r
@Hz

@f
¼ joeEr, ð6aÞ
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¼�joeEf, ð6bÞ
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¼ joeEz ð6cÞ

Solutions for Eqs. (5) and (6) can be classified as two modes.
One is called the E-polarization which has three non-zero com-
ponents, Ez, Hf, and Hr. The other is H-polarization having non-
zero components Hz, Ef, and Er. The solutions for E-polarization
have been available [18]. Thus, in this work, we shall limit to the
H-polarization. In this case, with Eqs. (6a) and (6b), Eq. (5c)
becomes the governing equation for Hz, namely

@

@r
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which can be further expressed as
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For E-polarization, the above differential equation is read
as [18]
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It is seen that the governing differential equations for
E-polarization can be obtained from H-polarization by using
H-E and e-m, and vice versa.

To solve Eq. (8), we let Hz ¼ VðrÞFðfÞ. Then the angular part
takes the form,

d2F
df2
þm2F¼ 0, ð10Þ

which has a solution

F� ejmf, ð11Þ

where m can be zero, or a positive or negative integer. The radial
part of Eq. (8) is,

r d

dr
rdV

dr

� �
�r2 1

e
de
dr

dV

dr
þo2mer2V�m2V ¼ 0 ð12Þ

If the permittivity is homogeneous, @e=@r¼ 0, Eq. (12)
reduces to

r d

dr
rdV

dr

� �
þ k2r2�m2
� 	

V ¼ 0, ð13Þ

which is a standard Bessel’s equation with a solution expressible
as,

VðrÞ ¼ AJmðkrÞþBYmðkrÞ, ð14Þ

where Jm is a Bessel function, Ym is a Neumann function and A, B

are constants. Here,

k¼
o
c

n ð15Þ

is the wave number in medium where c is the speed of light in
free space and n is the refractive index of medium. Based on
Eqs. (11) and (14), the magnetic field can be written as

Hz r,f
� �

¼ VðrÞejmf ¼ ½AJmðkrÞþBYmðkrÞ�ejmf ð16Þ

For the non-zero electric fields, Eq. (6a) leads to

Er ¼
m

oe
VðrÞ
r ejmf, ð17aÞ

and Eq. (6b) becomes

Ef ¼
1

�joe
@V

@r
ejmf �U r

� �
eimf, ð17bÞ
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where UðrÞ and VðrÞ are related by

dV

dr
¼�joeU r

� �
ð18Þ

With Eq. (14), the function U can be found to be

UðrÞ ¼ jp AJ0mðkr
� �

þBY 0mðkrÞÞ,, ð19Þ

where

p¼

ffiffiffiffi
m
e

r
, ð20Þ

is known as the intrinsic impedance of medium (p¼377 O for free
space). We see that V in Eq. (14) and U in Eq. (19) can be used to
respectively determine the non-zero electric field components Er
and Ef according to Eqs. (17a) and (17b).

In the transfer matrix formalism, it is convenient to set the
column vector Vðr

� �
,UðrÞÞT at a radial position r from the above

solutions and relate it to the corresponding vector at some other
point, say r0 (assuming r0or), by the matrix multiplication [18]:

VðrÞ
UðrÞ

 !
¼M

V r0

� �
U r0

� � !
¼

M11 M12

M21 M22

 !
V r0

� �
U r0

� � !
, ð21Þ

This matrix equation relates the two non-zero electric fields at
two distinct radial positions r0 and r. The elements of transfer
matrix M can be found with the help of Eqs. (14) and (19) when
the vector V r0

� �
,U r0

� �
Þ

�
has been set at a special value of (1,0) or

(0,1) [18]. These two choices are similar to those in the Abeles
theory in dealing with the planar multilayer structure [7]. With
V r0

� �
,U r0

� �
Þ ¼ 1,0ð Þ

�
, Eq. (21) leads to

M11 ¼ VðrÞ, M21 ¼UðrÞ ð22Þ

The explicit expressions for M11 and M21 can be further
obtained as follows. Eqs. (14) and (19) under this special values
can be written by

AJm kr0

� �
þBYm kr0

� �
¼ 1, ð23aÞ

AJ0m kr0

� �
þBY 0m kr0

� �
¼ 0 ð23bÞ

It is easy to have

A¼
Y 0m kr0

� �
2= pkr0

� � , B¼�
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� �
2= pkr0

� � : ð24Þ

Therefore, M11 and M21, can be expressed as

M11 ¼ V r
� �
¼
p
2
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Jm kr
� �
�J0m kr0

� �
Ym kr
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, ð25Þ

M21 ¼U r
� �
¼ j

p
2
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J0m kr
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� �
Y 0m kr
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: ð26Þ

Similarly, with V r0

� �
,U r0

� �
Þ ¼ 0,1ð Þ

�
, we have

M12 ¼ VðrÞ, M22 ¼UðrÞ ð27Þ

Again, from Eqs. (14) and (19), we can solve for A and B,
namely

A¼
j

p

Ym kr0

� �
2= pkr0

� � , B¼
�j

p

Jm kr0

� �
2= pkr0

� � ð28Þ

The other two matrix elements are thus given by

M22 ¼U r
� �
¼
p
2

kr0 Jm kr0

� �
Y 0m kr
� �
�Ym kr0

� �
J0m kr
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, ð29Þ

M12 ¼ V r
� �
¼�j

p
2

k

p
r0 Jm kr0
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Ym kr
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�Ym kr0

� �
Jm kr
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, ð30Þ

In the case of E-polarization, the matrix elements are of the
same form as, (25), (26), (29), and (30), but with a replacement
ofp¼

ffiffiffiffiffiffiffiffi
e=m

p
[18].
Finally, it is worth knowing the determinant of the transfer
matrix M. With Eqs. (25), (26), (29), and (30), it is direct to get the
determinant, namely

detM¼M11M22�M12M21 ¼
r0

r ð31Þ

In obtaining the above result, the following identity has been
used,

Jm kr0

� �
Y 0m kr0

� �
�J0m kr0

� �
Ym kr0

� �
¼

2

pkr ð32Þ

It is noted that the determinant is simply equal to the ratio of
the initial and final radii. Based on Eq. (21), we arrive at the
conclusion that the transfer matrix for a region containing two or
more different layers is simply the product of the transfer
matrices that correspond to all layers. Furthermore, Eq. (31)
reveals that the determinant of the total transfer matrix for a
CMS is given by the ratio of its internal and external radii.
3. Propagation waves as basic functions

As shown in previous section, we have known that the field
solution for the cylindrical wave can be made of the radial and
angular parts. The radial part is described by the Bessel function
Jm as well as the Neumann function Ym. However, for the problem
of wave propagation, it is convenient to express the field solution
as the sum of two contrary propagating waves, i.e., a super-
position of ingoing (converging) and outgoing (diverging) waves.
These two waves are generally represented by two Hankel
functions. For H-polarization, the magnetic and electric fields of
outgoing cylindrical wave take the form

Hz
þ
¼ AHð2Þm ðkrÞexpðjmfÞ, ð33Þ

Ef
þ
¼ jpAHð2Þ0m ðkrÞexpðjmfÞ, ð34Þ

where Hð2Þm is the Hankel function of the second kind. On the other
hand, the ingoing wave is the Hankel function of the first kind,
namely

Hz
�
¼ BHð1Þm ðkrÞexpðjmfÞ ð35Þ

Ef
�
¼ jpBHð1Þ0m ðkrÞexpðjmfÞ, ð36Þ

For a field with azimuthal variation specified by m, the total
field of both Hz and Ef can be written as

Hz ¼Hz
þ
þHz

�, ð37Þ

and

Ef ¼ Ef
þ
þEf

�
¼ jpCð2Þm Hz

þ
þ jpCð1Þm Hz

�, ð38Þ

where

C 1,2ð Þ

m ¼H 1,2ð Þ0
m ðkrÞ=H 1,2ð Þ

m ðkrÞ ð39Þ

In order to refer to the layer where the field exists, we
introduce the layer label as a second subscript on the coefficient
C 1,2ð Þ

m , and as a subscript of the wavevector k, namely

C 1,2ð Þ

ml ¼H 1,2ð Þ0
m klr

� �
=H 1,2ð Þ

m klr
� �

, ð40Þ

For a layer, say l.
Next, we would like to relate the magnetic fields at the two

boundaries for a single layer. The relationship can be described by
a matrix P which plays the similar role as the propagation matrix

in a standard TMM in usual planar geometry [2]. This matrix can
be constructed as follows. From Eq. (33), the outgoing magnetic
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field is rewritten by

Hz
þ r
� �
¼

Hð2Þm ðkrÞ
Hð2Þm kr0

� �AHð2Þm kr0

� �
exp jmfð Þ ¼

Hð1Þm ðkrÞ
Hð1Þm kr0

� �Hz
þ r0

� �
,

ð41Þ

And the ingoing magnetic field is expressed as

Hz
� r
� �
¼

Hð1Þm ðkrÞ
Hð1Þm kr0

� �BHð1Þm kr0

� �
exp jmfð Þ ¼

Hð1Þm ðkrÞ
Hð1Þm kr0

� �Hz
� r0

� �
ð42Þ

Eqs. (41) and (42) can be combined as a matrix equation,
namely

Hz
þ
ðrÞ

Hz
�
ðrÞ

 !
¼ P

Hz
þ r0

� �
Hz
� r0

� �
 !

, ð43Þ

where the propagation matrix is diagonal and given by

P¼

Hð2Þm ðkrÞ
Hð2Þm kr0ð Þ

0

0 Hð1Þm ðkrÞ
Hð1Þm kr0ð Þ

0
BB@

1
CCA ð44Þ

This matrix converts the magnetic field at inner boundary
r¼r0 to a point of r¼r inside the layer. It should be mentioned
that this matrix P is exactly the same as that for the E-polarization.

In the usual planar TMM, there is another important matrix
called the dynamical matrix D that relates the boundary condi-
tions between two media [2]. Similarly, there also exists a
corresponding matrix in the CMS. To derive this, let us consider
the interface between two layers. Based on the continuity of the
tangential components of the electric and magnetic fields ðHz,EfÞ,
we can express the interface conditions in terms of Hz

þ ,Hz
�

� �
. To

this end, we introduce matrix D that can convert the basis
Hz
þ ,Hz

�
� �

to ðHz,EfÞ, namely

Hz

Ef

 !
¼D

Hz
þ

Hz
�

 !
, ð45Þ

where D is written by

D¼
1 1

jpCð2Þm jpCð1Þm

 !
ð46Þ

Eq. (46) can be easily seen from Eqs. (37) and (38). For the
E-polarization, the D-matrix in Eq. (46) still holds with a replace-
ment of j-�j. In addition, for the nonmagnetic medium, mr¼1,
the determinant of D is found to be

detD¼�
1

er

ffiffiffiffiffiffi
m0

e0

r
4

pKr
1

Hð2Þm ðkrÞH
ð1Þ
m ðkrÞ

, ð47Þ

where K¼o/c is the wave number of free space and, in arriving at
Eq. (47), we have used the following Wronskian

W Hð1Þn ðzÞ,H
ð2Þ
n ðzÞ

h i
¼Hð1Þn zð ÞHð2Þ0n zð Þ�Hð1Þ0n zð ÞHð2Þn zð Þ ¼�

4j

pz
ð48Þ

Also, the inverse of D can be calculated to be

D�1
¼ er

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm kr
� �

Hð1Þm kr
� � �jpCð1Þm 1

jpCð2Þm �1

 !
ð49Þ

Next, from Eq. (45) together with the condition of continuity of
the tangential field components at the interface of two layers
labeled 1 and 2, we have

D1

Hz1
þ

Hz1
�

 !
¼D2

Hz2
þ

Hz2
�

 !
ð50Þ
Eq. (50) can be rewritten by

Hz2
þ

Hz2
�

 !
¼D2

�1D1

Hz1
þ

Hz1
�

 !
¼D21

Hz1
þ

Hz1
�

 !
¼

d11 d12

d21 d22

 !
Hz1

þ

Hz1
�

 !

ð51Þ

The matrix D21 ¼D2
�1D1 is regarded as transmission matrix

that links the amplitudes of the waves on the two sides of the
interface. With Eqs. (46) and (49), the matrix elements of D21 can
be obtained, with the results

d11 ¼�jer

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �

p2Cð1Þm �p1Cð2Þm

h i
, ð52aÞ

d21 ¼�jer

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �

p1Cð2Þm �p2Cð2Þm

h i
,, ð52bÞ

d12 ¼�jer

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �

p2Cð1Þm �p1Cð1Þm

h i
, ð52bÞ

d22 ¼�jer

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �

p1Cð1Þm �p2Cð2Þm

h i
ð52dÞ
4. Reflection and transmission in a single cylindrical interface

We are in the position to determine the wave reflection and
transmission in a cylindrical interface. These formulae of wave
reflection and transmission between two media are analogous to
the usual Fresnel’s equations in the planar geometry. Let us
consider a diverging wave incident from medium 1 on the inter-
face between layers 1 and 2. Based on Eq. (51), it is direct to have
the reflection coefficient rd and the transmission coefficient that
should satisfy the following relation,

td

0

� �
¼D21

1

rd

 !
ð53Þ

It can be seen from Eq. (53) that rd and td are respectively
expressed as

rd ¼�
d21

d22
¼

p2Cð2Þm2�p1Cð2Þm1

p1Cð1Þm1�p2Cð2Þm2

, ð54Þ

and

td ¼ d11þd12rd ¼ d11�d12
d21

d22
¼

detD21

d22
ð55Þ

Here, the determinant of D21 can be calculated from Eqs. (51)
and (47), namely

detD21 ¼ detD2
�1detD1

¼ er

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �h i2 �jp2Cð1Þm2 1

jp2Cð2Þm2 �1
















U
�4

pKr
1

Hð2Þm k1r
� �

Hð1Þm k1r
� � ð56Þ

To simplify Eq. (56), we first consider the fact that

I¼D2D2
�1
¼ er

ffiffiffiffiffiffi
e0
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r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �

�
�jp2Cð1Þm2þ jp2Cð2Þm2 0

0 �jp2Cð1Þm2
þ jp2Cð2Þm2

0
@

1
A,

which indicates that

er

ffiffiffiffiffiffi
e0

m0

r
p
4

KrHð2Þm k2r
� �

Hð1Þm k2r
� �

�jp2Cð1Þm2þ jp2Cð2Þm2

h i
¼ 1 ð57Þ
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By making use of Eq. (57), Eq. (56) becomes

detD21 ¼
Hð2Þm k2r

� �
Hð1Þm k2r

� �
Hð2Þm k1r

� �
Hð1Þm k1r

� � ð58Þ

Therefore, the transmission coefficient in Eq. (55) can be cast
as

td ¼
�j4e�1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
pKrHð2Þm k1r

� �
Hð1Þm k1r

� �
p2Cð2Þm2�p1Cð1Þm1

h i ð59Þ

Eqs. (54) and (59) are the reflection coefficient and transmis-
sion coefficient for the diverging wave. Similarly, if we are
interested in the converging wave, expressions for reflection
coefficient and transmission coefficient can be obtained, with
the results

rc ¼
p2Cð1Þm2�p1Cð1Þm2

p1Cð1Þm1�p2Cð2Þm2

, ð60Þ

tc ¼
�j4e�1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
pKrHð2Þm k2r

� �
Hð1Þm k2r

� �
p2Cð2Þm2�p1Cð1Þm1

h i ð61Þ

The reflection coefficient and transmission coefficient described in
Eqs. (54), (59), and (60), (61) are the Fresnel-like equations in the
cylindrical interface between the media 1 and 2. In addition, these
four equations are of the same forms as in the E-polarization with
different definitions in parameter p.
5. Reflection and transmission in a cylindrical slab

Let us now focus on the wave reflection and transmission in a
single cylindrical slab. This issue is reminiscent of the case of Airy
formula for a single slab in the usual planar geometry. Fig. 2
depicts a single layer of index n1 and of thickness r1–r0. Here, for
the purpose of illustration, we have intentionally plotted the
straight line to represent the cylindrical interface. Reflection
coefficient r and transmission coefficient t can be derived as
follows. Let us denote the transmission and reflection coefficients
at the second interface r ¼r1 as t1d and r1d. In addition, the
coefficients of the first interface r¼r0 as t0d, t0c , r0d, and r0c , the
subscripts d and c mean the outgoing and incoming waves,
respectively. The explicitly expression for r and t are given by

r¼
r0dþ t0ct0d�r0cr1dð Þr1dY

1�r0cr1dY
, ð62Þ

t¼
t0dt1d

1�r0cr1dY
Hð2Þm k1r1

� �
Hð2Þm k1r0

� � , ð63Þ

where
Fig. 2. A circular single layer of index n1 and of thickness r1–r0 bounded by media

0 and 2. Here, the curved interfaces are intentionally plotted as straight lines for

convenience of illustration.
Y¼
Hð1Þm k1r1

� �
Hð2Þm k1r1

� �Hð2Þm k1r1

� �
Hð1Þm k1r1

� � , ð64Þ

and k1 is the wave vector in layer 1.
The derivation of Eqs. (62)–(64) can be described as follows.

Referring to Fig. 2, at the first boundary r¼ r0, we have

CHð2Þm k1r0

� �
¼ 1Ut0dþr0cUDHð1Þm k1r0

� �
, ð65Þ

1Ur¼ 1Ur0dþt0cUDHð1Þm k1r0

� �
, ð66Þ

Similarly, at the second boundary r¼ r1, we have

tU1¼ t1dUCHð2Þm k1r1

� �
, ð67Þ

DHð1Þm k1r1

� �
¼ r1dUCHð2Þm k1r1

� �
ð68Þ

Eliminating D from Eqs. (65) and (68) leads to

C Hð2Þm k1r0

� �
�r1d

Hð2Þm k1r1

� �
Hð1Þm k1r1

� � r0cHð1Þm k1r0

� �" #
¼ t0d ð69Þ

Again, eliminating D from Eqs. (66) and (68) gives

r�r0d ¼ Cr1d

Hð2Þm k1r1

� �
Hð1Þm k1r1

� � t0cHð1Þm k1r0

� �
ð70Þ

From Eqs. (69) and (70), it is direct to have the reflection
coefficient given in Eq. (62). Similarly, with Eqs. (67) and (69), we
can arrive at the result of transmission coefficient given in Eq. (63).
In addition, Eqs. (62)–(64) are of the same from as those in the
E-polarization.
6. Reflection and transmission in cylindrical multilayer
structure

We now turn attention to the main issue of this work, that is,
the wave propagation in the CMS as depicted in Fig. 1. We would
like to derive the analytical expressions for reflection and trans-
mission coefficients. Using these formulae, we shall examine the
wave properties in a periodic cylindrical multilayer structure,
which is also known as a circular photonic crystal (CPC) or a
circular Bragg reflector (CBR).

Referring to Fig. 1, an outgoing wave is incident on the
interface, r¼ r0, between 0 and 1, and then propagates into the
final medium f, which is assumed to extend from r¼ rf to r¼1.
The amplitudes of the magnetic field and electric fields at r0 and
rf can be written in terms of the amplitude reflection and
transmission coefficients rd and td together with the transfer
matrix M defined in Eq. (21), with the results

1þrd

jp0Cð2Þm0þ jp0Cð1Þm0rd

 !
¼M�1

td

jpf Cð2Þmf td

 !
ð71Þ

The inverse matrix in the right hand side of Eq. (71) is
denoted by

M�1
¼

M11 M12

M21 M22

 !�1

¼
1

detM

M22 �M12

�M21 M11

 !
�

M011 M012

M021 M022

 !

ð72Þ

Eqs. (71) and (12) gives expressions for reflection coefficient rd

and transmission coefficient td can be determined, namely

rd ¼
M021�jp0Cð2Þm0M011

� 	
þ jpf Cð2Þmf M022�jp0Cð2Þm0M012

� 	
jp0Cð1Þm0M011�M021

� 	
þ jpf Cð2Þmf jp0Cð1Þm0M012�M022

� 	 , ð73Þ
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td ¼
�4e�1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
pKr0Hð2Þm k0r0

� �
Hð1Þm k0r0

� �
jp0Cð1Þm0M011�M021

� 	
þ jpf Cð2Þmf jp0Cð1Þm0M012�M022

� 	h i
ð74Þ

Eqs. (73) and (74) can be used to analyze the photonic
band gap structure in a periodic CMS. Finally, it is worth
mentioning that Eqs. (73) and (74) can be reduced to those for
the E-polarization with a replacement of j-�j.
7. Numerical results and discussion

In the analysis that follows, we would like to study the
reflectance responses for three model structures. The first is a
simple geometry of single cylindrical interface. This problem is
similar to a single planar interface, from which the reflectance can
be calculated by the familiar Fresnel reflection formula. The
second geometry is a single cylindrical slab. This issue is remi-
niscent to the problem of Airy slab in the planar geometry. The
third structure we are interested in is the circular photonic crystal
(CPC). The photonic band gap structure will be investigated.
a.
Fig. 3. The calculated reflectance as a function of the radius of the interface r0.

Here, r0 is normalized to the wavelength of the incident wave. The left panel is for

the E-polarization wave and the H-polarization is shown in the right panel. The

refractive indices of inner and outer media are taken to be n0 ¼1 and n1¼ 3,

respectively.
Reflection properties in a single cylindrical interface
To present the numerical results, we first investigate the
reflection properties in a single cylindrical interface that
separates two regions of refractive indices n0 (internal med-
ium) and n1 (external medium). Unlike in the usual planar
interface, the starting radius r0 in Fig. 1 may play an important
role in the study of wave properties in a cylindrical system. In
the problem of a single cylindrical interface, the starting radius
is simply the radius of interface. Fig. 3 depicts the reflectance,
R¼ 9r92

, versus the starting radius r0 at different azimuthal
mode numbers m¼0, 1, 2, and 4, respectively. Here, n0¼1 and
n1¼3 are used, and the results of E- and H-polarization
are respectively given in the upper and lower panels. For
E-polarization, the reflectance at m¼0 is small. The reflectance
first increases with r0 near the region of r0o0.2l, and then
remains nearly a constant. However, the reflectance is decreas-
ing function of r0 for m40. A quick drop in reflectance can be
seen at m¼1. At m41, the reflectance first is unity and then
decreases with the increase in r0. At sufficiently large value of
r0, the reflectance at m40 converges to that of m¼0.
The reflectance in the H-polarization is quite different from
E-polarization. For m¼0, it is a decreasing function of r0.
However, at m40, the reflectance exhibits a dip, as marked by
the arrow. This dip with a minimum in reflectance can be
regarded as an effective Brewster effect. The dip radius is thus
defined as an effective Brewster radius, which is shifted to a
larger value as m increases. In addition, at large radius, r0 * l,
both polarizations have the same behavior in reflectance, that
is, they remain nearly a constant and approach the limit of
m¼0. Conclusively, the reflectance for both polarization
modes can be significantly changed as a function of the
starting radius when r0ol.
Fig. 4 shows the E-polarization reflectance at distinct refractive
index of the medium 1. The left panel is for m¼0, whereas the
right one is for m¼4. It can be from the figures that the overall
reflectance will be increased as n1 increases. Such an increase
in reflectance can be ascribed to the impedance mismatch as in
the case of planar boundary between two media. The same
behavior is also seen in H-polarization, as illustrated in Fig. 5.
The Brewster radius at m¼4 has been slightly shifted to the
right when n1 is decreased. It means that the Brewster effect
can be controlled by n1 at a fixed azimuthal mode number.
In Fig. 6, we fix the index ratio n1/n0 with different combina-
tions of (n0,n1). We see that the overall reflectance has been
shifted to the left as the index difference, n1�n0, increases. The
Brewster dip in the H-polarization is narrowed down and
moves toward the shorter radius of r0.
b.
 Reflection properties in a single cylindrical slab
Referring to Fig. 1, we now consider a single cylindrical slab
occupying the space of r0oror1. The slab, which is assumed
to be immersed in free space (n0¼1), has a refractive index of
n1 and a quarter-wavelength thickness of d¼r1�r0 ¼l0/4n1,
where l0 is called the design wavelength. By taking n1 ¼3,
r0¼100 nm and l0¼500 nm, the wavelength-dependent
reflectance is depicted in Fig. 7, where different azimuthal
mode numbers, m¼0, 2, and 4 are taken, and the left and right
panels are for E- and H-polarization, respectively. It can be
seen that the reflectance in the wavelength domain is divided
into two regions. The first region located at l/r0o2 shows an
oscillating behavior. The other nonoscillating region occurs at
l/r042. It means that the starting radius r0 has a strong
influence in the reflectance even the thickness of slab is fixed.
For both polarizations, at higher m-number, say m¼4, the
wave is completely reflected because of the unity reflectance.
If we keep the thickness unchanged and increase the starting
radius to a large value of r0¼1000 nm, the reflectance is
shown in Fig. 8. In this case, the oscillating region has been
squeezed to a small region of l/r0o0.4, i.e., lo400 nm. In the



Fig. 4. The calculated E-polarization reflectance as a function of the radius of the interface r0 at n0¼1 for different values in n1¼ 2, 3, 4, and 5, respectively. The left panel is

at m¼0, whereas the right one is at m¼4.

Fig. 5. The calculated H-polarization reflectance as a function of the radius of the interface r0 at n0¼1 for different values in n1. The left panel is at m¼0, whereas the right

one is at m¼4.

Fig. 6. The calculated E- and H-polarization reflectance as a function of the radius of the interface r0 at m¼4 for different values in (n1,n2).
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Fig. 7. The calculated E- and H-polarization reflectance as a function of the wavelength (normalized to the starting radius r0) at m¼0, 2, and 4, respectively. Here,

l0¼500 nm and r0¼100 nm.

Fig. 8. The calculated E- and H-polarization reflectance as a function of the wavelength (normalized to the starting radius r0) at m¼0, 2, and 4, respectively. Here,

l0¼500 nm and r0¼1000 nm.
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nonoscillating region, the reflectance is influenced substan-
tially at m¼0, and 2 compared to Fig. 7.
We now investigate the thickness-dependent reflectance. The
thickness d can be changed by varying the design wavelength
l0 when the starting radius r0 is fixed. The reflectance as a
function of d is plotted in Fig. 9, where the staring radius is
fixed at r0¼100 nm and the operating wavelength is at
l¼500 nm. Here, the left and right panels are for E- and
H-polarization, respectively. It can be seen from the figure
that the reflectance will oscillate as a function of slab thickness
at m¼0, and 2. The reflectance is enhanced at a larger m-value.
At m¼4, the magnitude in reflectance has been highly raised



Fig. 9. The calculated E- and H-polarization reflectance as a function of the slab thickness (normalized to the starting radius r0) at m¼0, 2, and 4, respectively. Here,

l¼500 nm and r0¼100 nm.

Fig. 10. The calculated E- and H-polarization reflectance as a function of l/l0 at m¼0 for three different numbers of periods, N¼2, 4, and 8, respectively. Here, l0¼ 550 nm

and r0¼400 nm.
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up to unity. The results shown in Fig. 9 are quite different from
those of the planar slab, where the reflectance is a decreasing
function of slab thickness [2].
c.
 Reflection properties in a cylindrical photonic crystal
For the third case study, we present the reflectance response
for a periodic cylindrical multilayer structure, the cylindrical
photonic crystal (CPC). The structure is air/(H/L)N/air, where
H and L are the high- and low-index layers, respectively, and N

is number of periods. The refractive indices and the thick-
nesses of H and L are denoted by nH, nL, and dH, dL, respectively.
In the following results, we shall take H as TiO2 with nH¼2.40
and L as MgF2 with nL¼1.38 [22]. In addition, both H and L are
taken to be quarter-wavelength layers, i.e., nHdH¼nLdL ¼l0/4.
The wavelength-dependent reflectance for E-polarization (left)
and H-polarization (right) at m¼0 is plotted in Fig. 10. Here,
l0¼ 550 nm and r0¼400 nm are taken. It is seen that, in the
visible region, there is a high-reflectance region (HRR) or
photonic band gap (PBG) at a number of periods of N¼8. For
N¼2 and 4, the PBG cannot be clearly opened up. At m¼0,
there is no obvious difference between the E- and H-polariza-
tion. In addition, the reflectance spectra shown here for the
CPC are very similar as those in a planar 1D PC [22]. In other
words, at m¼0, the study of PBG structure in a CPC can be
effectively replaced by the simple planar 1D PC. At m¼0, The
PBG structure does not related to the geometric curvature in
the interfaces.
However, the PBG structure in a CPC can be affected by the
nonzero azimuthal mode number. In Figs. 11 and 12, we
respectively plot the reflectance spectra of E- and H-polariza-
tion at m40 and N¼8. The PBG structure at m¼0 in Fig. 10 is
now apparently influenced by m40. In E-polarization
(Fig. 11), the overall PBG is red-shifted. In addition, the



Fig. 11. The calculated E-polarization reflectance as a function of the wavelength

(normalized to the starting radius l0) at N¼8 for four different azimuthal mode

numbers of periods, m¼2, 4, 6 and 8, respectively. Here, l0¼ 550 nm and r0¼400 nm.

Fig. 12. The calculated H-polarization reflectance as a function of the wavelength

(normalized to the starting radius l0) at N¼8 for four different azimuthal mode

numbers of periods, m¼2, 4, 6 and 8, respectively. Here, l0¼ 550 nm and

r0¼400 nm.
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bandwidth of PBG is nearly unchanged as m increases. A
pronounced influence in the side lobes (pass bands) can be
seen at a large value of m. For example, at m¼8, the right band
edge becomes more sharp and the pass band behind the band
edge is highly raised up. In Fig. 12, we can see a salient
influence in the PBG structure in H-polarization as m increases.
The bandwidth of PBG at m¼4 is smaller than that at m¼2. At
m ¼6, a small dip with reflectance of 0.8 is generated and
consequently the size of PBG is reduced. At m¼8, the right
pass band, like in E-polarization, has been lifted up to become
a stop band, leading to an enhancement of PBG, except the
sharp deep near l/l0¼1.1.
Before going into the conclusion, it is worth mentioning the
potential applications for the CPC. It can be used to design an
annular Bragg reflector (ABR) useful in laser systems [23]. By
surrounding a radial defect layer, annular Bragg lasers (or
resonators) have been realized and demonstrated [24]. Recently,
CPC-based circular-grating microcavity has been available [25].
Moreover, the CPC is an attractive and useful structure in the
recent emerging field of transformation optics [26,27].

8. Conclusion

The wave propagation in the cylindrical multilayer structure
has been theoretically treated based on the cylindrical wave
under H-polarization. The transfer matrix method in a cylindrical
coordinates has been described. Formulae such as the reflection
and transmission coefficients have been given and they strongly
related to the azimuthal mode number because of the cylindrical
waves. With the derived formulae, we have investigated the
reflection responses for three basic cylindrical structures.

In a single cylindrical interface, the reflection responses in both
polarizations are strongly dependent on the starting radius as well
as the azimuthal mode number. In H-polarization, there exists a
Brewster radius at which the reflectance attains a minimum. This
Brewster radius will increase as the azimuthal mode number
increases. On the other hand, it will decrease by increasing the
difference in the refractive indices of the two media.

In the single cylindrical slab, the wavelength-dependent
reflectance can be divided into the oscillating and nonoscillating
regions. The ranges of these two regions are strongly dependent
on the starting radius. In the thickness domain, it is found the
reflectance has an oscillating behavior. This oscillation is then
smeared out at a high value of azimuthal mode number.

In the cylindrical photonic crystal, the PBG structure at m¼0 is
very similar to that of the planar 1D PC. The PBG structure can be
significantly changed only at m40. In E-polarization, the PBG
structure is red-shifted when m is increased. In H-polarization,
the PBG can be greatly enhanced at a higher m-value.
Acknowledgments

C.-J. Wu acknowledges the financial support from the National
Science Council of the Republic of China (Taiwan) under Contract
No. NSC-100-2112-M-003-005-MY3 and from the National
Taiwan Normal University under NTNU100-D-01.

References

[1] P. Yeh, A. Yariv, C. Hong, Journal of the Optical Society of America 67 (1997)
423.

[2] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
[3] E. Yablonovitch, Physical Review Letters 58 (1987) 2059.
[4] S. John, Physical Review Letters 58 (1987) 2486.



C.-A. Hu et al. / Optics Communications 291 (2013) 424–434434
[5] Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, L.E. Thomas,
Science 282 (1998) 1679.

[6] J.N. Winn, Y. Fink, S. Fan, J.D. Joannopoulos, Optics Letters 23 (1998) 1573.
[7] M. Born, E. Wolf, Principles of Optics, Cambridge, London, 1999.
[8] A. Jebali, D. Erni, S. Gulde, R.F. Mahrt, W. Bachtold, Journal of the Optical

Society of America B 24 (2007) 906.
[9] D. Ochoa, R. Houdre, M. Hegems, H. Benisty, T.F. Krauss, C.J.M. Smith, Physical

Review B 61 (2000) 4806.
[10] Y.A. Urzhumov, D.R. Smith, Physical Review Letters 105 (2010) 163901.
[11] Z. Liang, J. Li, Optics Express 19 (2011) 16821.
[12] M. Toda, IEEE Journal of Quantum Electronics 26 (1990) 473.
[13] M. Fallahi, F. Chatenoud, I.M. Templeton, M. Dion, C.M. Wu, A. Delage,

R. Barber, IEEE Photonics Technology Letters 4 (1992) 1087.
[14] T. Erdogan, O. King, G.W. Wicks, D.G. Hall, E.H. Anderson, M.J. Rooks, Applied

Physics Letters 60 (1992) 1921.
[15] W.M. Green, J. Scheuer, G. DeRose, Y. Yariv, Applied Physics Letters 84 (2004)

3669.
[16] J. Scheuer, Y. Yariv, Optics Letters 28 (2003) 1528.
[17] J. Scheuer, J.W.M.J. Green, G. DeRose, Y. Yariv, Optics Letters 29 (2004) 2641.
[18] M.A. Kaliteevski, R.A. Abram, V.V. Nikolaev, G.S. Sokolovski, Journal of

Modern Optics 46 (1999) 875.
[19] T.W. Chang, H.-T. Hsu, C.-J. Wu, Journal of Electromagnetic Waves and

Applications 25 (2011) 2222.
[20] M.-S. Chen, C.-J. Wu, T.-J. Yang, Optics Communications 285 (2012) 3143.
[21] M.-S. Chen, C.-J. Wu, T.-J. Yang, Solid State Communications 149 (2009) 1888.
[22] F.L. Pedrotti, L.M. Pedrotti, L.S. Pedrotti, Introduction to Optics, Pearson

Prentice Education Inc., New Jersey, 2007.
[23] M. Fallahi, F. Chatenoud, I.M. Templeton, M. Dion, C.M. Wu, A. Delage,

R. Barber, IEEE Photonics Technology Letters 4 (1992) 1087.
[24] J. Scheuer, W. Green, G. DeRose, Y. Yariv, Proceedings of SPIE 5333 (2004)

183.
[25] A. Jebali, D. Erni, S. Gulde, R.F. Mahrt, W. Batchtold, Journal of the Optical

Society of America B 24 (2007) 906.
[26] Z. Liang, J. Li, Optics Express 19 (2011) 16821.
[27] Y.A. Urzhumov, D.R. Smith, Physical Review Letters 105 (2010) 163901.


	Analysis of optical properties in cylindrical dielectric photonic crystal
	Introduction
	Transfer matrix method in cylindrical system
	Propagation waves as basic functions
	Reflection and transmission in a single cylindrical interface
	Reflection and transmission in a cylindrical slab
	Reflection and transmission in cylindrical multilayer structure
	Numerical results and discussion
	Conclusion
	Acknowledgments
	References




