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a  b  s  t  r  a  c  t

Computer  viruses  are  major  threats  to Internet  security  and  privacy,  therefore  many  researchers  are
addressing  questions  linked  to  virus  propagation  properties,  spreading  models,  epidemic  dynamics,  tip-
ping points,  and control  strategies.  We  believe  that  two important  factors  –  resource  limitations  and  costs
– are  being  overlooked  in  this  area  due  to an  overemphasis  on  power-law  connectivity  distributions  of
scale-free  networks  affecting  computer  virus  epidemic  dynamics  and  tipping  points.  The  study  show
(a)  a significant  epidemic  tipping  point  does  exists  when  resource  limitations  and  costs  are  considered,
with  the  tipping  point  exhibiting  a lower  bound;  (b)  when  interaction  costs  increase  or  usable  resources
ower-law connectivity distributions
mall-world networks
pidemic dynamics
gent-based simulation model

decrease,  epidemic  tipping  points  in  scale-free  networks  grow  linearly  while  density  curves  decrease  lin-
early;  (c)  regardless  of  whether  Internet  user  resources  obey  delta,  uniform,  or  normal  distributions,  they
retain the  same  epidemic  dynamics  and  tipping  points  as  long  as the average  value  of those  resources
remains  unchanged  across  different  scale-free  networks;  (d) it is possible  to  control  the spread  of a  com-
puter  virus  in  a scale-free  network  if resources  are  restricted  and  if  costs  associated  with  infection  events
are significantly  increased  through  the  use  of  a throttling  strategy.
. Introduction

Computer viruses are major threats to Internet security and pri-
acy leading to economic loss and psychological distress (Yuan
t al., 2009; Luiijf, 2012). They contain small bits of malicious and
elf-replicating program code that are capable of erasing software
nd data stored on hard disks, gathering personal and address book
nformation from email programs, launching distributed denial of
ervice attacks against remote servers, and disrupting network sys-
ems (Hughes and DeLong, 2007; Jose et al., 2008). The destructive
apability of computer viruses is a source of concern for gov-
rnments, corporations, and anti-virus professionals, and large
mounts of resources are being used to identify virus propagation
roperties, epidemic dynamics, tipping points, and control strate-
ies.
According to Pastor-Satorras and Vespignani, whose ideas
ave inspired numerous studies on epidemic dynamics and
nti-virus controlling strategies (Watts, 2003; Boguñá and Pastor-

∗ Corresponding author at: Department of Geography, National Taiwan Univer-
ity, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC. Tel.: +886 2 3366 5847;
ax: +886 2 3366 5847.

E-mail address: wenthung@ntu.edu.tw (T.-H. Wen).

164-1212/$ – see front matter ©  2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.11.027
© 2012 Elsevier Inc. All rights reserved.

Satorras, 2002; Moreno et al., 2002), Internet-based computer
viruses do not have positive epidemic tipping points (Pastor-
Satorras and Vespignani, 2001a,b, 2002a,b, 2003). Accordingly,
many researchers argue that regardless of spreading capability,
all Internet viruses have high stability and survival probabilities
(Dezsö and Barabási, 2002; Liu et al., 2003; Moreno et al., 2003;
Volchenkov et al., 2002). However, upon closer inspection, the large
majority of epidemic studies are based on the assumption that
daily Internet-based interactions and communication processes are
cost-free. While this assumption is suitable for studying simple sce-
narios consisting of malicious scripts spread by email attachments
sent to large numbers of recipients, it loses accuracy in situations
where viruses are spread via attachments sent to small numbers
of recipients (e.g., phishing emails), peer-to-peer digital resource
sharing, free uploads/downloads of large Internet files, or via mul-
timedia messaging services. The purpose of this study is to take
a more detailed look at daily Internet-based interaction and com-
munication process limitations among network users rather than
the power-law connectivity distribution properties of scale-free
communication networks that are at the center of most research

efforts.

The structure of this paper is as follows: in the next section we
will describe five network resource properties associated with daily
Internet-based interaction and communication process limitations

dx.doi.org/10.1016/j.jss.2012.11.027
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:wenthung@ntu.edu.tw
dx.doi.org/10.1016/j.jss.2012.11.027
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mong network users. These properties will be used to propose an
gent-based computer virus spreading model for simulating and
nalyzing how resource limitations and interaction costs influence
he epidemic dynamics and tipping points of computer viruses in
cale-free communication networks. In Section 4 we will discuss
ur main findings: (a) a significant epidemic tipping point does
xists when resource limitations and costs are considered, with the
ipping point exhibiting a lower bound; (b) when interaction costs
ncrease or usable resources decrease, epidemic tipping points in
cale-free networks grow linearly while density curves decrease
inearly; (c) regardless of whether Internet user resources obey
elta, uniform, or normal distributions, they retain the same epi-
emic dynamics and tipping points as long as the average value
f those resources remains unchanged across different scale-free
etworks; (d) it is possible to control the spread of a computer virus

n a scale-free network if resources are restricted and if costs asso-
iated with infection events are significantly increased through the
se of a throttling strategy.

. Agent-based computer virus spreading model

The agent-consumable resources in our proposed model have
ve properties:

they are finite (e.g., daily CPU/network usage time and commu-
nication bandwidth for file uploads/downloads);
they can be temporarily exhausted (e.g., one gigabyte download
capacity per day);
they are non-reproducible;
they can recover or regenerate;
consumption of one kind can entail consumption of other kinds,
thus reducing the total amount of available resources (e.g., large
attachments require large amounts of upload/download time and
communication bandwidth).

Based on these properties, we designed the core algorithm of
ur model to reflect how resource limitations and interaction costs
nfluence the epidemic dynamics and tipping points of computer
iruses in communication networks:
s and Software 86 (2013) 801– 808

According to experimental requirements, a specific complex
network G(N, E) must be built (either Watts and Strogatz’s small-
world (Watts and Strogatz, 1998) or Barabási and Albert’s scale-free
(Barabási and Albert, 1999)), consisting of n = |N| agents (agent set
N = {a1,a2,. . .,an}, with ai representing a computer in a commu-
nication network G) and m = |E| links (indicating interactions and

contacts between two computers, with those having direct connec-
tions labeled “neighbors”). Each agent can have one of two possible
epidemiological statuses: susceptible or infected. Two  infected agent
characteristics are (a) it is infected at time (t − 1), and (b) it is
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apable of infecting others. A susceptible agent is vulnerable to a
omputer virus but has not yet been infected. Only a small number
f agents are designated as infected at the beginning of each simu-
ation run; all others are designated as susceptible. At the beginning
f each time step, usable resources ai·R for each agent ai are reset
o Resource(ai), where 0 ≤ ai·R ≤ Rmax, meaning that all agents are
ither renewed and/or receive supplemental resources. The sta-
istical distribution of usable resources can be delta (fixed value
constant), uniform, normal, or power-law, as long as the average 〈r〉
alue of agent resources satisfies 〈r〉 = rconstant.

Agents randomly interact with multiple neighbors during each
ime step, with usable resources and costs consumed in every inter-
ction. Each agent ai interacts with a randomly selected neighbor
gent aj. Regardless of the interaction result, agents ai and aj expend
nteraction costs ai·c, aj·c, where 0 ≤ ai·c ≤ ai·R and 0 ≤ aj·c ≤ aj·R,
nd resources decrease accordingly. If ai·R < ai·c after an interac-
ion, that agent cannot interact with other neighbors; otherwise,
gents continue to randomly select other neighboring agents for
nteractions until their resources are depleted.

When an infected agent ai and adjacent susceptible agent aj inter-
ct, whether or not aj is infected by ai is determined by infection rate
, and agent ai recovery and return to susceptibility is determined
y recovery rate � . Spreading rate � is defined as �/�; generally,

 = 1 and � = �. We  defined �(t) as the density of infected agents
resent at time step t; when time step t becomes infinitely large, �
epresents a steady infected density.

Our proposed model is written as a general-purpose and
xtendable Java application that is suitable for detailed simulation
xperiments and classroom demonstrations of computer immu-
ization and anti-virus control strategies. For source code and
inary executables for specific research requirements, please con-
act the corresponding author.

. Model analysis

Our proposed model is expressed as

d�k(t)
dt

= −�k(t) + �Sk[1 − �k(t)]�[{�k(t)}] (2)

here Sk is the minimum value for the ratio between an agent’s
esources (R) in relation to interaction costs (c) and its connectivity
k). With the exception of Sk, the symbols used here are consistent
ith those used by Pastor-Satorras and Vespignani in their discuss-

ons of spreading dynamics. �k(t) � 1 is the probability that a node
ith k links is infected at time t ≥ 0 (neglecting the higher order). �

s a pre-determined constant representing the spreading capabil-
ty of specific computer viruses, defined as the ratio between the
ates at which healthy agents in a population become infected and
nfected agents recover. The term {�k(t)} denotes the set containing
ll �k(t) for all positive k, as well as the alternative representation
�1(t), �2(t), �3(t),. . .}. Accordingly �[{�k(t)}] is the probability that
ny given agent will be linked to an infected agent. According to
astor-Satorras and Vespignani, this probability is proportional to
he infection rate, and can therefore be reduced to �(�).

In Eq. (3) we define �k as the steady state of �k(t) by solving the
tationary condition d�k(t)/dt = 0. Substituting �(�) in that equa-
ion:
 = 1〈
k
〉∑

k

kP(k)
�Sk�

1 + �Sk�
(3)

s shown, a trivial solution is � = 0. Next, inequality (4) is derived
ased on the possibility that the right-hand side of Eq. (3) has a
on-singular solution:
 and Software 86 (2013) 801– 808 803

d

d�

(
1〈
k
〉∑

k

kP(k)
�Sk�

1 + �Sk�

)∣∣∣∣∣
�=0

≥ 1. (4)

Without using a concave function as an alternative proof, we show
that Eq. (4) is a contradiction. Assuming that Eq. (4) does not hold,
it should be expressed as

d

d�

(
1〈
k
〉∑

k

kP(k)
�Sk�

1 + �Sk�

)∣∣∣∣∣
�=0

< 1. (5)

After defining

F(�) = � − 1〈
k
〉∑

k

kP(k)
�Sk�

1 + �Sk�
(6)

we observe that a trivial solution for F(0) = 0 is � = 0. Next, note that
the first derivative of F(�) at 0 with respect to � is larger than 0:

d

d�
F(�)
∣∣∣
�=0

= 1 − d

d�

(
1〈
k
〉∑

k

kP(k)
�Sk�

1 + �Sk�

)∣∣∣∣∣
�=0

> 0 (7)

However, this implies that non-trivial solutions for F(�) = 0 do
not exist for any � > 0, which contradicts inequality (5). We  there-
fore obtained �c = 〈k〉/�kkP(k)Sk as a conclusion regarding epidemic
tipping points. By deriving the above conclusion in advance, we
obtained a separate conclusion for the lower epidemic tipping point
boundary, �c ≥ 1/(((R/c)2/〈k〉) + R/c) (as 〈k〉 → ∞,  �c is at minimum
equal to c/R), which also implies that resources and interaction
costs significantly affect epidemic tipping point values.

Since �c represents the tipping point at which a computer virus
becomes epidemic, managing its value should be a primary con-
cern for computer scientists and anti-virus experts. In summary, the
lower bound of epidemic tipping point �c decreases when interac-
tion cost c decreases or average resource R increases. Accordingly,
an agent’s available resources increase when c/R decreases, thereby
enhancing its ability to contact most other agents via underlying
communication networks. This result supports existing knowledge
about immunization and anti-virus controlling strategies: restric-
ting a computer’s resources increases the epidemic tipping point.
Neglecting resources makes R infinitely large, meaning that they are
inexhaustible and that the epidemic tipping point �c will continue
to approach 0 as long as the average number of links is sufficiently
large. Our proposed model is therefore identical to Pastor-Satorras
and Vespignani’s model in that a computer virus has the potential
to achieve epidemic proportions even when the number of infected
agents is very small.

Since an infection event requires sufficient resources, control-
ling the c/R ratio can increase the epidemic tipping point �c and
decrease the steady-state density �. In contrast, computer viruses
can spread very quickly via small email attachments distributed
to a large number of recipients because they can be simultane-
ously transmitted to many sites. Affected areas can be very large
over a short time period, with disastrous results in terms of lost
data, work delays, and money (e.g., the email worm “I LOVE YOU”,
the worst network attack to date, spread over the Internet on 4
May 2000 and inflicted billions of dollars of damage worldwide).
Initially designed to slow the spread of a computer virus, a throt-
tling strategy (Morre et al., 2003) for containing virus infections
places restrictions on uploads/downloads from remote servers (e.g.,
one gigabyte per day) – in other words, resources are purposefully
limited in order to increase the epidemic tipping point. In one form

of this strategy, many P2P services place restrictions on download-
ing to control the resource limitations. Another throttling strategy
is charging upload/download fees for exceeding daily limitations –
in other words, increasing communication costs.
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. Results and discussion

Toward the goals of determining the reliability and robustness
f our results and ensuring the applicability of our conclusions
o scale-free networks whose connectivity distribution probabil-
ties satisfy P(k) ∼ k−˛ where 2 <  ̨ ≤ 3, we built 8 scale-free and 8
mall-world networks (Table 1), all containing different numbers
f nodes and links. All sensitivity analysis experiments1 were simu-
ated using these networks in order to determine the consistency of
ur results; no weakening or side effects were observed when node
nd link numbers were changed. Except for node and link numbers,
ll parameter settings for the 8 scale-free networks were identi-
al. Scale-free network #3 was designated as our default; unless
therwise indicated, it was used to generate all results reported
nd discussed in this paper. According to those results, our conclu-
ions are not limited to our proposed agent-based computer virus
preading model based on the 8 scale-free networks.

We  used the first simulation experiment to show that a com-
uter virus spreading in a scale-free network has a nonzero,
ositive, and significant epidemic tipping point if resources and

nteraction costs are taken into consideration – a conclusion that
onflicts with those reported by past researchers (Pastor-Satorras
nd Vespignani, 2001a,b, 2002a,b, 2003; Dezsö and Barabási, 2002;
iu et al., 2003; Moreno et al., 2003; Volchenkov et al., 2002).
o evaluate how node and link numbers in scale-free networks
ffect epidemic tipping points, all experiments were simulated
sing scale-free or small-world networks with different numbers
f nodes and links. The value of usable resources per agent was
eset to 16 units at the beginning of each time step. Daily interac-
ion and communication process costs were designated as one unit,
ccounting for 6.25% of an agent’s total usable resources.

We used three types of complex networks to analyze rela-
ionships between effective spreading rate and steady density for
ur proposed model: small-world; scale-free without interaction
osts ((Pastor-Satorras and Vespignani, 2001a,b, 2002a,b, 2003)
odel); scale-free with limited resources and interaction costs.
s shown in Fig. 1, the 8 simulation suites generated consistent
esults that did not become contradictory when node and link num-
ers were adjusted, suggesting that our results can be applied to
ifferent scale-free networks used to simulate computer virus dif-
usion scenarios. The curves marked with triangles indicate that
astor-Satorras and Vespignani’ cost-free model reached a 0 level
f steady density in a continuous and smooth manner when the
ffective spreading rate was decreased, indicating the absence of
n epidemic tipping point without interaction costs. The curves
arked with squares indicate that computer viruses do have epi-

emic tipping points small-world homogeneous networks. In a
imilar manner, the curves marked with circles also indicate that
omputer viruses have significant epidemic tipping points in scale-
ree networks when resources and interaction costs are considered.
ccording to these results, resources, interaction costs, and aver-
ge vertex degree impact epidemic dynamics and tipping points in
cale-free networks to a much greater degree than node and link
umbers.

Our second simulation focused on relationships among epi-
emic tipping point, steady density curve, and the ratio of

nteraction costs to an agent’s usable resources. To analyze the
nfluences of the ratio on the other two factors, we employed 10
sable resource values and assigned daily interaction and commu-

ication process costs as one unit. As shown in Fig. 2a, the epidemic
ipping point significantly increased as the ratio grew. For instance,
hen the value of an agent’s usable resources was set at 8 units at

1 In the interest of robustness, all epidemic dynamics and tipping points discussed
n  this paper represent average values for 30 runs. Ta
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Fig. 1. Relationship between effective spreading rate � and steady density � according to three types of complex networks: small-world, scale-free without costs, and
scale-free with resource limitations and interaction costs.
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esources affected epidemic steady density curves and tipping points. (b) Linear rela-
ionship between the ratio of interaction costs to an agent’s resources and epidemic
ipping point.
he beginning of each time step, the epidemic tipping point was
pproximately 0.22 – significantly larger than for a small-world
etwork with the same number of nodes and links and same aver-
ge vertex degree. The opposite was also true: when the value of an

ig. 4. Simulation results for scale-free network #3. (a) Effects of different statistical distr
oints  of computer viruses spread within scale-free networks. (b) Uniform (n = 5, r = 2) an
r〉 value  of 16. (c) Power-law distribution (degree = 3) of agent resources.
Fig. 3. As a function of the c/R (interaction costs/agent resources) ratio in scale-free
networks, epidemic tipping point �c was used to analyze results from a simulation
and  three mathematical analyses.

agent’s usable resources was set at 40 units at the beginning of each
time step, the shape of the density curve was  very close to that of the
scale-free network without interaction costs (Fig. 2a, solid line); in
addition, the epidemic tipping point decreased to 0.09. As shown in
Fig. 2b, we  observed (a) a linear correlation between the epidemic
tipping point and the ratio, and (b) that the density curve grew at
a slower rate as the ratio increased (Fig. 2a) – that is, the ratio and
density exhibited a negative linear correlation when the effective
spreading rate exceeded the epidemic tipping point. According to
these results, when interaction costs increased or agent resources
decreased, the epidemic tipping point of a computer virus spread
via the Internet grew linearly, and density curve shrank linearly.

A comparison of results from our mathematical model and sec-
ond simulation is presented as Fig. 3. We used several probability
degrees for P(k) ∼ k−˛ and found that at an  ̨ of 2.7 or 2.65, the val-
ues for both curves exceeded those derived from the simulation

experiment. The two curves matched at an  ̨ of 2.4.

The motivation for the third simulation was to investigate the
effects of the statistical distribution of an agent’s usable resources
on the epidemic dynamics and tipping points of computer viruses

ibution types for agent resources on the epidemic steady density curves and tipping
d normal (standard deviation = 2) distributions of agent resources with an average
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oints  of computer viruses spread within scale-free networks. (b) Uniform (n = 5, r =
r〉 value  of 16. (c) Power-law distribution (degrees = 3) of agent resources.

pread via the Internet. Our specific goal was to determine how
ifferent statistical distribution types and distribution parameters
ffect the steady density curves of viruses in contexts of limited
gent resources and interaction costs.

The density curves marked with diamonds, crosses, and circles
n Figs. 4a and 5a,  respectively, represent delta (fixed value = 16),
niform, and normal resource distributions; parameters are shown

n Figs. 4b and 5b.  The results indicate nearly identical epidemic
ipping points and overlapping density curves (indicating no sta-
istically significant differences) when the average values of usable
esources were equal. However, as shown in Figs. 4c and 5c,  when
hose same resources represented a power-law distribution and no
orrelation existed between the total amount of an agent’s usable
esources and vertex degree, the resulting dashed density curve
rew more slowly compared to those for the other three distribu-
ion types, even when they all shared the same epidemic tipping
oint.

As shown in Figs. 4 and 5, the same results emerged as long as
he average usable resource values were identical. Note that density
urves and epidemic tipping points were very similar across the dis-
ribution types, regardless of whether the resources had a uniform
istribution with a range of 2 or 3 or a normal distribution with a
tandard deviation of 2 or 3 (Figs. 4b and 5b). According to the den-
ity curves shown in Figs. 4a and 5a,  as long as researchers ensure
hat usable resources do not reflect a power-law distribution, at
he beginning of each time step they can assign usable resources
or each agent as the fixed average value 〈r〉 of the statistical distri-
ution derived from the real-world scenario being studied.

. Conclusion

Research on the epidemic dynamics of computer viruses
as increasingly incorporated Watts and Strogatz’s (Watts and
trogatz, 1998) description of small-world networks (character-

zed by tightly clustered connections and short paths between node
airs) and Barabási and Albert’s (Barabási and Albert, 1999) insights
egarding scale-free networks marked by power-law connectiv-
ty distributions. The list of researchers using network approaches
bution types for agent resources on the epidemic steady density curves and tipping
d normal (standard deviation = 3) distributions of agent resources with an average

to computer virus models and analyses also includes Kuperman
and Abramson (2001), Liu et al. (2009),  Meloni et al. (2012),
Newman (2002, 2003),  Newman and Watts (1999),  Pastor-Satorras
and Vespignani (Watts, 2003; Boguñá and Pastor-Satorras, 2002;
Moreno et al., 2002; Pastor-Satorras and Vespignani, 2001a,b),
and Watts (Pastor-Satorras and Vespignani, 2002a). All of these
investigators have noted that the topological properties under-
lying communication networks exert considerable influence on
computer virus epidemic dynamics and spreading characteristics,
and support subtle analyses that non-network-directed approaches
cannot. To simplify their experiments, researchers have tended to
overlook resource limitations and interaction costs, both of which
exert significant impacts on computer virus epidemic dynamics and
tipping points. In this paper we  described five characteristics of
network user resources, and proposed an agent-based computer
virus spreading model for investigating how resource limitations
and interaction costs influence the epidemic dynamics and tipping
points of computer viruses in scale-free networks. According to
results from our first set of experiments, resource limitations, inter-
action costs, and average vertex degree are among those factors
exerting significant impacts on epidemic tipping points, but node
and link numbers were found to have little impact. Results from our
second experimental set provide insight into how the ratio of single
infection event costs to total amount of an agent’s resources affects
density curves and epidemic tipping points. We  found that when
interaction costs increased, or when the total amount of an agent’s
resources decreased, the epidemic tipping point of an infection
event in a scale-free network grew, and density decreased at cer-
tain transmission rates. Results from our third set of experiments
indicate that – regardless of delta, uniform, or normal distribution
– they have nearly identical density curves and epidemic tipping
points as long as average resource values remain the same across
different networks.
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