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SUMMARY

In this paper, we are concerned with the computation of a few eigenpairs with smallest eigenvalues in
absolute value of quadratic eigenvalue problems. We first develop a semiorthogonal generalized Arnoldi
method where the name comes from the application of a pseudo inner product in the construction of a
generalized Arnoldi reduction for a generalized eigenvalue problem. The method applies the Rayleigh–
Ritz orthogonal projection technique on the quadratic eigenvalue problem. Consequently, it preserves the
spectral properties of the original quadratic eigenvalue problem. Furthermore, we propose a refinement
scheme to improve the accuracy of the Ritz vectors for the quadratic eigenvalue problem. Given shifts,
we also show how to restart the method by implicitly updating the starting vector and constructing
better projection subspace. We combine the ideas of the refinement and the restart by selecting shifts upon
the information of refined Ritz vectors. Finally, an implicitly restarted refined semiorthogonal generalized
Arnoldi method is developed. Numerical examples demonstrate that the implicitly restarted semiorthogonal
generalized Arnoldi method with or without refinement has superior convergence behaviors than the
implicitly restarted Arnoldi method applied to the linearized quadratic eigenvalue problem. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of finding scalars � 2C and nontrivial vectors x 2Cn such that

.�2M C �D CK/xD 0 (1)

where M , D and K are n � n large and sparse matrices is known as the quadratic eigenvalue
problem (QEP). The scalars � and the associated nonzero vectors x are called eigenvalues and
(right) eigenvectors of the QEP, respectively. Together, .�, x/ is called an eigenpair of (1).

The QEP arises in a wide variety of applications, including electrical oscillation, vibro-acoustics,
fluid mechanics, signal processing, the simulation of microelectronical mechanical system, and so
on. A good survey of applications, spectral theory, perturbation analysis, and numerical approaches
can be found in [1, section 11.9], [2], and the references therein.

In practice, some eigenvalues of a QEP near a target � are interested. Hence, we may apply the
shift transformation and consider the corresponding shifted QEP�

�2�M� C ��D� CK�
�

xD 0
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where �� D ��� ,M� DM ,D� D 2�MCD, andK� D �2MC�DCK . For simplicity, we assume,
without loss of generality, that � D 0. Therefore, throughout this paper, we focus on the problem of
finding eigenvalues near the zero (i.e., those small ones in modulus) under the assumption that 0 is
not an eigenvalue of the QEP (1) or, equivalently, that K is nonsingular.

Through the so-called “linearization” process, one may first construct a suitable matrix pair
.A,B/ of size 2n and a vector ' in C2n to rewrite the QEP (1) equivalently into a generalized
eigenvalue problem (GEP)

A'D 1
�
B'. (2)

If B is chosen to be nonsingular, one can further reduce (2) as a standard eigenvalue problem (SEP)

.B�1A/'D 1
�
' (3)

or

.AB�1/ D 1
�
 (4)

where  D B'. We call (3) and (4) the left-inverted SEP (`-SEP) and the right-inverted SEP
(r-SEP), respectively. After transforming a QEP equivalently to an SEP, the standard Krylov
subspace projection methods such as the Arnoldi algorithm can be applied to solve it [2].

The way of linearization is not unique [2]. Here, we consider the second companion form of
linearization [3] for the QEP (1)�

�D In
�M 0

� �
xex
�
D
1

�

�
K 0
0 In

� �
xex
�

. (5)

where ex D ��Mx. The computational advantage of using the second companion form will be
revealed in Section 3.

Because K is nonsingular, from (5), the corresponding `-SEP and r-SEP of (1) are, respectively,
given by �

�K�1D K�1

�M 0

� �
xex
�
D
1

�

�
xex
�

(6)

and �
�DK�1 In
�MK�1 0

� �
Kxex
�
D
1

�

�
Kxex
�

. (7)

In addition to solving the QEP (1) by SEP (6) or (7), one may also work with the GEP (5)
to find the desired eigenpairs of (1). The QZ algorithm [4] is the most popular algorithm for
solving the dense GEP of the form (2). This procedure reduces the matrix pair .A,B/ equivalently
to a Hessenberg-triangular pair .H ,R/ via unitary transformations in a finite number of steps.
This truncated QZ method proposed by Sorensen [5] is one of the approaches for solving large-
scale GEPs. The method generalizes the idea of the Arnoldi algorithm to construct a generalized
Arnoldi reduction, which is a truncation of the QZ iteration and computes the approximated
eigenpairs of the original large-scale GEP from the corresponding reduced Hessenberg-triangular
pair. Furthermore, in [6], the generalized >-skew-Hamiltonian implicitly restarted shift-and-invert
Arnoldi (G>SHIRA) algorithm is discussed for solving the palindromic QEP arising from vibration
of fast trains. The generalized >-isotropic Arnoldi process also produces the generalized Arnoldi
reduction for a GEP whose coefficient matrices are >-skew-Hamiltonian; however, a further
>-bi-isotropic property is required.

However, the linearization technique will double the size of the problem, and in general,
matrix structures and spectral properties of the original QEP are not preserved. More importantly,
a backward stable technique for linear eigenvalue problems applied to the linearized QEP is not
backward stable for the original QEP [7].
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To avoid these disadvantages, numerical methods are applied to the large-scale QEP directly. In
these methods, the QEP is projected onto a properly chosen low-dimensional subspace to reduce a
QEP directly with matrix dimension of low order and solve the reduced QEP by a standard dense
matrix approach. Methods of this type include the residual iteration method [8–10], the Jacobi–
Davidson method [11,12], a Krylov-type subspace method [13], the nonlinear Arnoldi method [14],
the second-order Arnoldi method [15–17], and an iterated shift-and-invert Arnoldi method [18].
Although these methods use a similar projection process, the main difference is the selection of
projection subspaces.

In this paper, we introduce a semiorthogonal generalized Arnoldi (SGA) algorithm for the
particular linearized problem (5) to generate an SGA decomposition. The SGA algorithm is a
variation of the generalized Arnoldi reduction [5]. We then propose an orthogonal projection
approach termed as the SGA method to solve the QEP (1) where the projection subspace is defined
through its orthonormal basis obtained from the SGA decomposition.

For SEPs, it has been revealed that even though the approximate eigenvalues computed by
orthogonal projection methods tend to converge, the corresponding approximate eigenvectors may
converge very slowly and even fail to converge. To deal with this problem, Jia [19] proposed a
refined Arnoldi method to compute refined approximate eigenvectors. See also [20]. We will extend
this idea and use the SGA decomposition to propose a refinement scheme for QEPs.

Because of the storage requirements and computational costs, the order of the SGA decomposition
cannot be large and shall be limited. Therefore, it is necessary to restart the SGA method. On the
basis of the implicitly shifted QZ iterations proposed by Sorensen in [5], we develop a restart
technique for the SGA method called the implicitly restarted SGA (IRSGA) method. Moreover,
according to the information of refined approximate eigenvectors (Ritz vectors), we will propose a
procedure for selecting better shifts, termed as refined shifts, for the implicitly shiftedQZ algorithm
to develop an implicitly restarted refined SGA (IRRSGA) method. Compared with the implicitly
restarted Arnoldi (IRA) method applied on the linearized problems (6) and (7), the SGA-type
methods, namely IRSGA and IRRSGA, demonstrate better convergence behaviors and require less
CPU time in numerical experiments.

The paper is organized as follows. In Section 2, we first introduce the SGA algorithm associated
with the GEP (5). In Section 3, we propose an orthogonal projection method on the basis of
the orthonormal basis generated by the SGA algorithm for solving the QEP (1). In Section 4,
we present a refinement scheme to get better Ritz vectors by taking advantage of the SGA
decomposition. In Section 5, we develop a restart technique for the SGA-type methods and discuss
the selection of shifts according to the information of refinement so that the faster the methods may
converge. Numerical examples are presented in Section 6, and the concluding remarks are given
in Section 7.

Throughout this paper, we use the capital letters to denote matrices and the boldface lowercase
letters to denote vectors. I denotes the identity matrix, ej is the j th column of the identity matrix
I , and 0 denotes zero vectors and matrices. The dimensions of these vectors and matrices are
conformed with dimensions used in the context. We adopt the following MATLAB notations:
v.i W j / denotes the subvector of the vector v that consists of the i th to the j th entries of v.
A.i W j ,k W `/ denotes the submatrix of the matrix A that consists of the intersection of the rows
i to j and the columns k to `, and A.i W j , W/ and A.W, k W `/ select the rows i to j and the columns
k to `, respectively, of A. We use �> and �H to denote the transpose and conjugate transpose. k � k2
and k � kF denote the 2-norm and the Frobenius norm, respectively, for a vector or a matrix.

2. THE SGA DECOMPOSITION

In this section, we first give the definition of the SGA decomposition and then discuss the existence
and uniqueness of the SGA decomposition in Section 2.1. In Section 2.2, we will propose an SGA
algorithm to generate the SGA decomposition. Subsequently, we discuss the possibility of the early
termination of the SGA algorithm.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:259–280
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Definition 2.1 (The SGA decomposition)
Given M ,D,K 2 Cn�n, and m� n, we define the mth order SGA decomposition of the QEP (1)
to be the relation of the form�

�D In
�M 0

� �
Qm

Pm

�
D

�
Vm
Um

�
HmC

�
gm
fm

�
e>m, (8a)

�
K 0
0 In

� �
Qm

Pm

�
D

�
Vm
Um

�
Rm, (8b)

QH
mQm D Im, V Hm Vm D Im and V Hm gm D 0. (8c)

where Qm,Pm,Vm,Um 2 Cn�m, gm, fm 2 Cn, and Hm,Rm 2Cm�m are upper Hessenberg matrix
and upper triangular matrix, respectively.

Remark 2.1
(i) The orthogonality requirements in (8c), referred to as the semiorthogonality of the

SGA decomposition, guarantee the linear independence of columns of
h
Qm
Pm

i
and

h
Vm
Um

i
,

respectively.
(ii) If the semiorthogonality (8c) is replaced byQH

mQmCP
H
m Pm D Im, V Hm VmCU

H
m Um D Im,

and V Hm gmCUHm fm D 0, we actually obtain a generalized Arnoldi reduction [5] associated
with the GEP (5). Therefore, the SGA decomposition can be also viewed as a variation of the
generalized Arnoldi reduction.

2.1. Existence and uniqueness

Given an N � N matrix C , N D 2n, a nonzero vector b 2 CN and a positive integer m 6 n, the
Krylov matrix of C with respect to b and m is defined by

KŒC , b,m�D
�
b Cb � � � Cm�1b

�
.

In the following equations, for convenience, for a matrix G 2 CN�j , we usually partition G of the

form G D
h
G1
G2

i
with G1 DG.1 W n, W/ and G2 DG.nC 1 W 2n, W/.

From (8), if we set

AD

�
�D In
�M 0

�
, B D

�
K 0
0 In

�
, (9)

and

Zm D

�
Qm

Pm

�
, Ym D

�
Vm
Um

�
, �m D

�
gm
fm

�
, (10)

then the SGA decomposition (8) can be compactly written as

AZm D YmHmC �me>m (11a)

BZm D YmRm (11b)

QH
mQm D V

H
m Vm D Im, V Hm gm D 0. (11c)

Using Equations (8)–(10) of the SGA decomposition (11) and on the basis of the proof technique
of Theorem 3.3 in [21], we give the following theorem.

Theorem 2.2
Given z1 �

h
q1
p1

i
2 CN with kq1k2 D 1 and set Bz1 D �1y1 � �1

h
v1
u1

i
with kv1k2 D 1 and

�1 > 0. Let

K` DKŒB�1A, z1,m��
�
K`,1

K`,2

�
and Kr DKŒAB�1, y1,m��

�
Kr ,1

Kr ,2

�
.
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Suppose that K`,1 is of full column rank and K`,1 D QmR`,m is the QR factorization with
Qme1 D q1 and diagonal entries of R`,m are chosen to be positive. Here and hereafter, we use
the QRC factorization to indicate such a QR factorization. Then

(i) Kr ,1 is of full column rank and ifKr ,1 D VmRr ,m is theQRC factorization, then Vme1 D v1.
(ii) Let Pm DK`,2R

�1
`,m and Um DKr ,2R

�1
r ,m. Then, there exists an unreduced upper Hessenberg

matrix Hm with positive subdiagonal entries and an upper triangularRm with positive
diagonal entries satisfying the SGA decomposition (11).

(iii) The SGA decomposition (11) is uniquely determined by Zme1 D
h

q1
p1

i
with kq1k2 D 1.

Proof

(i) Because �
Kr ,1

Kr ,2

�
DKŒAB�1, y1,m�D

�
y1 AB�1y1 � � � .AB�1/m�1y1

�
D

1

�1
B
�
z1 B�1Az1 � � � .B�1A/m�1z1

�
D

1

�1
BK` D

1

�1

�
K 0
0 In

� �
K`,1

K`,2

�
D

1

�1

�
KK`,1

K`,2

�
, (12)

the matrix Kr ,1 D
1
�1
KK`,1 is of full column rank and has the unique QRC factorization

Kr ,1 D VmRr ,m with Vme1 D v1.

(ii) By assumptions and (10), we get K` D
h
Qm
Pm

i
R`,m D ZmR`,m. From (i) and (10), we also

have Kr D
h
Vm
Um

i
Rr ,m D YmRr ,m. It follows from (12) that

BZm D BK`R
�1
`,m D �1KrR

�1
`,m D Ym

�
�1Rr ,mR

�1
`,m

�
� YmRm

where Rm is upper triangular with positive diagonal entries. On the other hand, it holds that

B�1AKŒB�1A, z1,m�DKŒB�1A, z1,m�H0 C .B
�1A/mz1e>m (13)

where H0 is the lower shift matrix, that is, a matrix with ones below the main diagonal and
zeros elsewhere. From (13) and (12), we have

AZm D BZmR`,mH0R
�1
`,mCB.B

�1A/mz1e>mR
�1
`,m

D Ym
�
�1Rr ,mH0R

�1
`,mC

eYHm zme>m
�
C
��
I � YmeYHm � zm

�
e>m

� YmHmC �me>m

where zm D R�1
`,m.m,m/B.B�1A/mz1 �

h
zm,1
zm,2

i
and eY Hm D �

V Hm 0m,n
�
. Because H0 is

unreduced Hessenberg with subdiagonal entries “1”, R`,m and Rr ,m are upper triangular
with positive diagonal entries, and Vm is orthogonal, it is easily seen that Hm is unreduced
Hessenberg with positive subdiagonal entries and V Hm gm D V Hm

��
In � VmV

H
m

�
zm,1

�
D 0.

(iii) By (i) and (ii), we know that Ym, �m, Rm, and Hm are uniquely determined by Zm so we

only need to show that Zm is unique for given Zm.W, 1/D
h

q1
p1

i
with kq1k2 D 1. From (11),

we have AZm D BZm
�
R�1m Hm

�
C �me>m. Let Zm D eZmTm be the QRC factorization of

Zm. Then, we have the standard Arnoldi decomposition

B�1AeZm D eZmeHmCe�me>m (14)

where eHm D
�
TmR

�1
m HmC eZHmB�1�me>m

�
T �1m ande�m D �Im � eZmeZHm �B�1�me>mT

�1
m .

Note that the standard Arnoldi decomposition (14) is unreduced; it is essentially unique. It

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:259–280
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follows that Qm and T �1m of the QRC factorization eQm D QmT
�1
m are unique, and then

Pm D ePmTm is unique. This concludes the proof.

�

Theorem 2.3
If the mth order SGA decomposition (11) exists, then

K` DKŒB�1A, z1,m�DZm
h
e1 R�1m Hme1 � � �

�
R�1m Hm

�m�1
e1
i

, (15a)

Kr DKŒAB�1, y1,m�D Ym
h
e1 HmR�1m e1 � � �

�
HmR

�1
m

�m�1
e1
i

. (15b)

Proof
It suffices to show

K` D Œz1 B
�1Az1 � � � .B�1A/m�1z1�DZm

h
e1 R�1m Hme1 � � �

�
R�1m Hm

�m�1
e1
i

. (16)

Because Zme1 D z1, we suppose .B�1A/i�1z1 D Zm
�
R�1m Hm

�i�1 e1, for i < m, and prove (16)
by induction. From (11), we have�

B�1A
�i

z1 D
�
B�1A

�
Zm

�
R�1m Hm

�i�1
e1

D
�
Zm

�
R�1m Hm

�
CB�1�me>m

� �
R�1m Hm

�i�1
e1

DZm
�
R�1m Hm

�i
e1CB�1�m

�
e>m
�
R�1m Hm

�i�1
e1
	

DZm
�
R�1m Hm

�i
e1 (17)

because of e>m
�
R�1m Hm

�i�1 e1 D 0, for i < m. On the other hand, from (11) follows

AB�1Ym D Ym
�
HmR

�1
m

�
Ce�me>m, (18)

wheree�m D Rm.m,m/�1�m. Similar to (17), (15b) follows from (18) immediately. �

Remark 2.2
Theorem 2.2 shows that K`,1 has the QRC factorization, K`.1 DQmR`,m; then, the SGA
decomposition (11) exists and unique up to Yme1 D y1. Theorem 2.3 shows that if the SGA
decomposition (11) exists, then K` and Kr have the QRC factorizations (15a) and (15b),
respectively.

2.2. The SGA algorithm

We now derive an algorithm termed as the SGA algorithm for the computation of the SGA
decomposition (9). Given q1, p1 2Cn with kqk1 D 1, let

R1 D kKq1k2 ¤ 0, v1 DKq1=R1, u1 D p1=R1,

H1 D vH1 .�Dq1C p1/, g1 D�Dq1C p1 � v1H1 and f1 D�Mq1 � u1H1,

then q1, p1, v1, u1, g1, f1,R1, and H1 satisfy the SGA decomposition (8) withmD 1.
Suppose that we have computed the j th order .j < m/ SGA decomposition�

�D In
�M 0

� �
Qj

Pj

�
D

�
Vj
Uj

�
Hj C

�
gj
fj

�
e>j , (19a)

�
K 0
0 In

� �
Qj

Pj

�
D

�
Vj
Uj

�
Rj , (19b)

QH
j Qj D Ij , V Hj Vj D Ij and V Hj gj D 0. (19c)
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To expand the SGA decomposition to order j C 1, we first assume that the residual vector gj ¤ 0.
The case gj D 0 will be discussed later. Our goal is to find suitable updating vectors and scalars
satisfying the SGA decomposition of order j C 1�

�D In
�M 0

� �
Qj q
Pj p

�
D

�
Vj v
Uj u

� �
Hj h
�e>j ˛

�
C

�
gjC1
fjC1

�
e>jC1 (20a)�

K 0
0 In

� �
Qj q
Pj p

�
D

�
Vj v
Uj u

� �
Rj r
0 �

�
(20b)

QH
jC1QjC1 D IjC1, V HjC1VjC1 D IjC1 and V HjC1gjC1 D 0 (20c)

where QjC1 D ŒQj q� and VjC1 D ŒVj v�. Comparing the leading j columns of (20a) with (19a),
we get

� D kgj k2 ¤ 0, vD gj =� ¤ 0 and uD fj =� . (21)

Equating the .j C 1/st column on both sides of (20b) and noting (20c), the vector q must satisfy

KqD Vj rC v� and QH
j qD 0 (22)

Premultiplying (22) by QH
j K

�1 and applying the relation KQj D VjRj give

0DQH
j K

�1Vj rCQH
j K

�1v�DR�1j rCQH
j K

�1v�

and it follows that

rD�RjQH
j K

�1v�. (23)

Substituting (23) into (22), we have

qDK�1Vj rCK�1v�

D
�
QjR

�1
j

� �
�RjQ

H
j K

�1v�
�
CK�1v�D

�
Ij �QjQ

H
j

�
K�1v�

where �� k
�
Ij �QjQ

H
j

	
K�1vk�12 so thatQH

j qD 0 and kqk2 D 1. Note that � is well defined;

otherwise, k
�
Ij �QjQ

H
j

	
K�1vk2 D 0 implies K�1v 2 spanfQj g and hence v D KQj c D

VjRj c for some constant vector c. However, V Hj v D 0 implies v D 0, which contradicts to the
fact (21). After determining u, r, and �, (20b) shows that p can be directly computed by

pD Uj rC u�.

Equating the .j C 1/st column on both sides of (20a), we know that if we take�
h
˛

�
D

�
V Hj .�DqC p/
vH .�DqC p/

�
and

�
gjC1
fjC1

�
D

�
�D In
�M 0

� �
q
p

�
�

�
Vj v
Uj u

� �
h
˛

�
(24)

then V HjC1gjC1 D 0, and this completes the .j C 1/st expanding of the SGA decomposition.

Breakdown and deflation. As we encounter gj D 0, there are two possibilities, which are called

breakdown and deflation. A breakdown occurs if the vector sequence
nh

v1
u1

i
, : : : ,

h
vj
uj

i
,
h

0
fj

io
is

linearly dependent. In this case, both Kj .B�1A, q1/ and Kj .AB�1, v1/ are invariant subspaces
simultaneously, and hence the expanding process terminates. On the other hand, it may happen thatnh

v1
u1

i
, : : : ,

h
vj
uj

i
,
h

0
fj

io
is linearly independent. This situation is called deflation, and the expanding

process of the SGA decomposition should continue with modified orthogonality requirements.
When a deflation is detected at step j , we assign � any nonzero number (say � D 1), vD gj D 0,

and u D fj =� ¤ 0 to start the .j C 1/st expanding process of the SGA decomposition. Without
repeating the discussions earlier, it is easy to see that v, u, and � satisfy the j th column of (20a) but

V HjC1VjC1 D
h
Ij

0

i
.
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Equating the .j C 1/st column on both sides of (20b) shows that q D K�1Vj r D Qj

�
R�1j r

	
(because KQj D VjRj ), and the orthogonality requirement fq1, : : : , qj , qg in (20c) enforces rD 0
and qD 0. Again, by taking � any nonzero number (say �D 1) and then setting pD u�D fj��1�,

the updating q, p, r, and � satisfy the .j C 1/st column of (20b), but QH
jC1QjC1 D

h
Ij

0

i
.

This indicates that if the expanding process of the SGA decomposition encounters deflation at a
certain step, then the updating v-vector and q-vector will be zero simultaneous in the next expanding
process. Therefore, the zero vectors of the V -matrix and the Q-matrix in a deflated SGA
decomposition appear in the same columns.

To accomplish the .j C 1/st expanding process of the SGA decomposition, the equations in (24)
are given by �

h
˛

�
D

�
V Hj p
0

�
and

�
gjC1
fjC1

�
D

�
�D In
�M 0

� �
0
p

�
�

�
Vj 0
Uj u

��
h
0

�
.

In summary, if deflations occur at step 1 < j1, : : : , jd 6 m, then we have the mth order deflated
SGA decomposition �

�D In
�M 0

�"
VQm

VPm

#
D

"
VVm
VUm

#
VHmC

�
gm
fm

�
e>m (25a)

�
K 0
0 In

�"
VQm

VPm

#
D

"
VVm
VUm

#
VRm (25b)

VQH
m
VQm D Jm, VV Hm

VVm D Jm and VV Hm gm D 0 (25c)

where VQm.W, ji /D VVm.W, ji /D 0, VRm.1 W ji�1, ji /D 0, VHm.ji , ji /D 0, VRm.ji , ji /, VHm.ji , ji�1/
are nonzero numbers and

Jm.s, t /D


1 if s D t ¤ ji ,
0 otherwise,

i D 1, : : : , d .

The following theorem distinguishes the deflation and breakdown.

Theorem 2.4 ([15], Lemma 3.2)

For a sequence of linearly independent vectors fy1, : : : , ymg with partition yi D
h

vi
ui

i
, if there exists

a subsequence fvi1 , : : : , vij g of the v vectors that are linearly independent and the remaining vectors

are zeros, vijC1 D � � � D vim D 0, then a vector y D
h

0
u

i
2 spanfy1, : : : , ymg if and only if

u 2 spanfuijC1 , : : : , uimg.

The pseudocode for the SGA algorithm that iteratively generates an mth order (deflated) SGA
decomposition is listed in Algorithm 2.1.

Remark 2.3
The following remarks give some detailed explanations of the SGA algorithm.

(i) At each expanding process of the SGA decomposition, we need to solve a linear system
(see line 6 of the SGA algorithm). To make the computation more efficient, a factorization
of K , such as the LU factorization, should be made available outside of the first for-loop of
the SGA algorithm.

(ii) At lines 8 and 15 of the SGA algorithm, we additionally store the vectors Dqj and Mqj
at each expanding step and output two n�m matrices

�m WD ŒDq1 � � � Dqm�DDQm and �m WD ŒMq1 � � � Mqm�DMQm.
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The pre-stored matrices �m and �m save computational costs in the subsequent projection
process for solving the QEP.

(iii) From (8b), we know that Pm can be completely determined by Um, that is, for j D 1, : : : ,m,
pj can be replaced by the relation pj D Um.W, 1 W j /Rm.1 W j , j /. See line 9 of the SGA
algorithm. Hence, we only need to evaluate and store Qm, Vm, gm, Um, fm, Hm, and Rm as
we implement the SGA algorithm.

(iv) At line 12 of the SGA algorithm, we decide whether the expanding process encounters a
deflation or a breakdown. In practice, we use the modified Gram–Schmidt procedure to
check it as suggested in [15].

3. THE SGA METHOD FOR SOLVING QEPS

In this section, we use the unitary matrix Qm produced by the SGA algorithm to develop an
orthogonal projection technique to solve the QEP. For simplicity, we assume that the deflation does
not occur and hence QH

mQm D Im. When the deflation occurs, the same orthogonal projection

technique is applied with the modification of replacing Qm with the nonzero columns of VQm

shown in (25).

3.1. The SGA method

The SGA method applies the Rayleigh–Ritz subspace projection technique on the subspace
Qm � spanfQmg with the Galerkin condition

.�2M C �DCK/� ? Qm,
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that is, we seek an approximate eigenpair .� ,�/ with � 2C, � 2Qm such that

!�.�2M C �DCK/�D 0 for all ! 2Qm (26)

where �� denotes the transpose �> when M ,D,K are real or complex symmetric; otherwise,
�� denotes the conjugate transpose �H of matrices. Because � 2 Qm, it can be written as �DQm�

and (26) implies that � and � must satisfy the reduced QEP:

.�2MmC �DmCKm/� D 0 (27)

where

Mm DQ
�
mMQm, Dm DQ

�
mDQm, Km DQ

�
mKQm. (28)

The eigenpair .� , �/ of the small-scale QEP (27) defines a Ritz pair .� ,Qm�/ of the QEP (1) whose
accuracy is measured by the norm of the residual vector r� ,� D .�

2M C �DCK/Qm�.
Note that by explicitly formulating the matrices Mm, Dm, and Km, essential structures of M ,

D, and K are preserved. For example, if M is symmetric positive definite, so is Mm. As a result,
essential spectral properties of the QEP will be preserved. For example, if the QEP is a gyroscopic
dynamical system in which M and K are symmetric, one of them is positive definite, and D is
skew-symmetric, then the reduced QEP is also a gyroscopic system. It is known that in this case, the
eigenvalues are symmetrically placed with respect to both the real and imaginary axes [22]. Such a
spectral property will be preserved in the reduced QEP.

Before we present the SGA method for solving the QEPs, we discuss how to take advantage of
the SGA algorithm to efficiently generate the coefficient matrices .Mm,Dm,Km/ of the projected
QEP (28). As we describe in Remark 2.3(ii), the resultant matrices �m WDMQm and �m WD DQm

produced from the SGA algorithm provide us the necessary multiplications of M ,D with Qm. For
the projected matrix Km, even if the SGA algorithm does not exactly perform the matrix–vector
product of K and qj at each step, j D 1, : : : ,m, we can use the equality KQm D VmRm in (8b) to
reduce the computational costs. The product of VmRm needs about 2nm2 flops, but the product of
KQm needs about 2n2m flops. Therefore, the small-scale matricesMm andDm can be respectively
generated by

Mm DQ
�
m�m, Dm DQ

�
m�m, and Km DQ

�
mVmRm. (29)

Totally, (28) needs about 6n2mC 6nm2 flops to generate the coefficient matrices of the projected
QEP (27); however, the matrix products (29) only need 8nm2 flops. Also note that if we consider
the first companion form linearization of the QEP (1), there is no such an advantage. That is, (28) is
the only way to generate the coefficient matrices of the reduced QEP (27).
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3.2. Projection subspace

In this subsection, we explain the motivation of choosing the projection subspace Qm � spanfQmg

whereQm is generated from the SGA algorithm. We first recall a lemma in the second-order Arnoldi
method [15].

Lemma 3.1 ([15], Lemma 2.2)
Let C be an arbitraryN �N matrix. LetWmC1 D ŒWm wmC1� be anN �.mC1/ rectangular matrix
that satisfies CWm D WmC1Hm for an .mC 1/ �m upper Hessenberg matrix Hm. Then, there is
an upper triangular matrix Tm such that

WmTm D
�
w1 Cw1 � � � Cm�1w1

�
.

Furthermore, if the firstm�1 subdiagonal elements ofHm are nonzero, then Tm is nonsingular and

spanfWmg DKm.C , w1/.

Next, we consider a Krylov subspace associated with the linearized eigenvalue problem (3) and
show that it is embedded into a larger subspace spanned by some column vectors in the SGA
decomposition (8).

Theorem 3.1
Consider the SGA decomposition (8) of orderm. Let

(31)

Then, for A and B defined in (9), we have Km
�
B�1A,

h
q1
p1

i	
� spanfbQbmg.

Proof

From (11b), we have
h
Vm
Um

i
D
h
K
0

0
In

i h
Qm
Pm

i
R�1m . Substituting it into Equation (11a) and then

premultiplying it by ŒK
�1

0
0
In
�, we get�
�K�1D K�1

�M 0

� �
Qm

Pm

�
D

�
Qm q`m
Pm p`m

� �
H `
m

e>m

�
(32)

where H `
m D R�1m Hm is an unreduced upper Hessenberg matrix, q`m D K�1gm and p`m D fm.

By (32) and Lemma 3.1, we know that

Km
�
B�1A,

�
q1
p1

��
�Km

��
�K�1D K�1

�M 0

�
,

�
q1
p1

��
D span


�
Qm

Pm

�
(33)

and the set
nh

q1
p1

i
, : : : ,

h
qm
pm

io
is a nonorthonormal basis of the aforementioned Krylov subspace

(33). Next, we show that �
qi
pi

�
2 spanfbQbmg for i D 1, : : : ,m, (34)

and the conclusion of Theorem 3.1 follows directly from (33) and (34).
To prove (34), it suffices to show that pi 2 spanf�MQm, p1g, 1 6 i 6 m. We prove this

by induction. Clearly, p1 2 spanf�MQm, p1g. Suppose that p1, : : : , pi 2 spanf�MQm, p1g for
1 < i 6m� 1. From the equality (32), we have �MQm D PmH

`
mC p`me>m. Thus,

�Mqi D PmH `
m.W, i/D PiH

`
m.1 W i , i/C piC1H `

m.i C 1, i/
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and it follows that

piC1 DH `
m.i C 1, i/�1.�Mqi �PiH `

m.1 W i , i// 2 spanf�MQm, p1g.

We complete the proof. �

Instead of using the Krylov subspace Km
�
B�1A,

h
q1
p1

i	
, we choose the larger subspace

Km
�
B�1A,

h
q1
p1

i	
to extract approximations of eigenpairs. To project the coefficient matrices of

the GEP (5) onto the subspace span
nbQbmo, we get

(35a)

(35b)

whereMm,Dm,Km are defined in (28) andNm DQ�mM
�MQm. Therefore, the GEP (5) is reduced

to the problem bAsD �bBs (36)

with bA and bB defined in (35). Observe that if we premultiply (36) by the nonsingular matrix

L�

24Im 0 0

0 Im 0

0 p�
1
MQmN

�1
m 1

35
then the coefficient matrices of the resultant GEP .LbA/sD 	.LbB/s are respectively of the forms

(37)

where c D p�1
�
In �MQmN

�1
m Q�mM

�
�

p1. The pencil obtained from the last component of both
matrices in (37) either provides the zero eigenvalue or be a singular pencil. In both cases, the eigen-
values computed from this pencil are not wanted. Therefore, we can simply drop the last column
and row of both matrices in (37) to consider the leading 2m�2m submatrices, which is just the first
companion form linearization [3] of the reduced QEP (27), for solving QEPs.

4. REFINED SGA METHOD

As we obtain a Ritz pair .� ,�� / by the SGA method, a refinement strategy for QEP is to seek a unit
vector �C

�
2Qm D spanfQmg satisfying

�C
�
� arg min
�2Qm, k�k2D1

k.�2M C �DCK/�k2. (38)

Here, we call �C
�

the refined Ritz vector corresponding to the Ritz value � . We next turn to propose
a novel refinement scheme by taking advantage of the SGA decomposition for computing refined
Ritz vectors. For another refinement scheme for QEPs, we refer to [23].
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Let .� , �� / be an eigenpair obtained from the small-scale QEP (27). Then, .� ,�� /D .� ,Qm�� /
is a Ritz pair of QEP (1). To solve the optimization problem (38), we find that�

�2M C �DCK
�
Qm

D �2
�
�UmHm � fme>m

�
C �

�
Pm � VmHm � gme>m

�
C VmRm

D Vm .��HmCRm/C gm
�
��e>m

�
CUm

�
��2HmC �Rm

�
C fm

�
��2e>m

�
D
�
Vm gm Um fm

�
26664
��Hm CRm

��e>m
��2HmC �Rm

��2e>m

37775 , (39)

where we use the SGA decomposition (8) in the first two equalities. Because Vm is a column
orthonormal matrix, theQR factorization of

�
Vm gm Um fm

�
is of the form

�
Vm gm Um fm

�
D
�
Vm egm eUm efm�

264
Im t12 T13 t14

t22 t23 t24
T33 t34

t44

375 (40)

where
�
Vm egm eUm efm� is unitary. Because the vector 2-norm is invariant under unitary

transformations, (39) and (40) imply

min
�2Qm, k�k2D1

k.�2M C �DCK/�k2 D min
k�k2D1

k.�2M C �DCK/Qm�k2 D min
k�k2D1

kS.m, �/�k2

where

S.m, �/�

264
Im t12 T13 t14

t22 t23 t24
T33 t34

t44

375
26664
��HmCRm

��e>m
��2HmC �Rm

��2e>m

37775 2C.2mC2/�m. (41)

Because the right singular vector V�em of S.m, �/ corresponding to the smallest singular value s� ,min

yields the minimum kS.m, �/V�emk2 D s� ,min, as a consequence, the unit vector �C
�
� QmV�em

is the solution to the minimization problem (38) with minimum s� ,min. In summary, we have the
following theorem.

Theorem 4.1
Let .� ,Qm�� / be a Ritz pair of QEP (1) computed from the SGA method. Let S.m, �/ D
U�˙� .V� /

H be a singular value decomposition of S.m, �/ defined in (41) and s� ,min be its smallest
singular value. Then, the vector �C � QmV�em is the solution to the optimization problem (38)
with minimum s� ,min.

When applying the refinement strategy for several Ritz pairs, we compute the QR factorization
(40) only once and subsequently use the factorization for refining each Ritz pair. Combining
the SGA method with the refinement strategy, we propose the refined SGA (RSGA) method in
Algorithm 4.1.

5. IMPLICIT RESTART OF THE SGA METHOD

Similar to the standard IRA method [24] for SEPs, the SGA/RSGA method also needs restarting to
control storage and orthogonalization expense. In this section, we will apply the implicitly shifted
QZ iteration [5] to implicitly restart the SGA/RSGA method, namely IRSGA/IRRSGA.
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5.1. The IRSGA method and the IRRSGA method

In this subsection, we first briefly discuss the implicitly restarted step of the SGA algorithm on the
basis of the implicitly shifted QZ iteration [5]. For details, see [5,25].

Suppose we have computed the mth order SGA decomposition (11). For given shifts #1, : : : ,#p ,
p D m� k, which are in general the unwanted approximate eigenvalues, let Ei and Fi be unitary
matrices computed by the implicitly shifted QZ iteration with the single shift #i , i D 1, : : : ,p.
Write EC DE1 � � �Ep and FC D F1 � � �Fp. Note that Fi is upper Hessenberg, i D 1, : : : ,p.

Let HCm � .EC/HHmF
C, RCm � .EC/HRmF

C, ZCm � ZmF
C, and Y Cm � YmE

C. Then,
HCm and RCm are again upper Hessenberg and upper triangular, respectively. Let QCm �QmF

C and

V Cm � VmE
C then

�
QCm

�H
QCm D

�
V Cm

�H
V Cm D Im. Postmultiplying (11a) and (11b) by FC,

we get

AZCm D Y
C
m H

C
m C �me>mF

C, (43a)

BZCm D Y
C
m R

C
k

. (43b)

Because e>mF1 D Œ0 � � � 0 ˛1 ˇ1�, by induction, we see that the first k�1 entries of e>mF
C are zeros.

Let � � hC
kC1,kyC

kC1
C FC.m, k/�m. Drop the last m� k columns of (43a) and (43b), and then

set �C
k
� �. Then, by writingZC

k
D

�
Q
C

k

P
C

k

�
, Y C
k
D

�
V
C

k

U
C

k

�
, and �C

k
D

�
gC
k

fC
k

�
, we get the k step SGA

decomposition

AZC
k
D Y C

k
HC
k
C �C

k
e>k , (44a)

BZC
k
D Y C

k
RC
k

. (44b)

.QC
k
/HQC

k
D .V C

k
/HV C

k
D Ik , .V C

k
/HgC

k
D 0. (44c)

Now, we present the IRSGA method and the IRRSGA method in the following algorithm.

Remark 5.1
Note that applying an implicitly restarted process on a deflated SGA decomposition (25) may
not yield a deflated SGA decomposition. We know that the Q-matrix and V -matrix of the SGA
decomposition must adhere to one of the two orthogonality requirements: (1) all column vectors
form an orthonormal set and (2) when deflation occurs, all column vectors form an orthonormal
set except zero columns. In the first case, the resultant QC-matrix and V C-matrix maintain the
same orthogonality requirement as in theQ-matrix and V -matrix of the SGA decomposition. In the
second case, bothQ-matrix and V -matrix contain some zero column(s). Then, the nonzero columns
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of the updatedQC-matrix will be linearly dependent, and the resultant decomposition is not an SGA
decomposition. The same phenomenon occurs on the updated V C-matrix.

To overcome this problem, we only need to perform column compression to make the updated
QC-matrix and V C-matrix of the forms ŒbQC 0� and ŒbV C 0�, simultaneously. On the other
hand, it requires to update HC-matrix and RC-matrix by postmultiplying an upper triangular
matrix as we perform the column compression. The resultant HC-matrix and RC-matrix are still
upper Hessenberg form and upper triangular, respectively. Consequently, the column compression
transforms a decomposition to a deflated SGA decomposition.

5.2. The selection of shifts

The aforementioned scheme involves selection of shifts #1, : : : ,#m�k . A good selection of shift is a
key for success of the implicit restart technique. A popular choice of the shift values for IRA method
[24] is to choose unwanted Ritz values, and these values are called exact shifts in [24]. When we
solve the reduced QEP (27) to get 2m eigenvalues and select k Ritz values as approximations to
the desired eigenvalues, we may directly use the reciprocal values of the remaining unwanted Ritz
values as shifts, which we also call exact shifts. Among the selection of 2m�k shift candidates, we
always take the reciprocal values of them�k unwanted Ritz values that are farthest from the target
as shifts. Applying implicitly shiftedQZ iteration with exact shifts to the SGA method, we have an
IRSGA method.

For the RSGA method, we can also choose exact shifts. However, the refinement strategy cannot
only improve the accuracy of the Ritz pairs but also provide more accurate approximations to some
of the unwanted eigenvalues. Suppose that .# ,!/D .# ,Qm�/ is a Ritz pair of QEP (1), which we
are not interested in, and the reciprocal of # is one possible candidate of the shifts for the restarting
process. Let !C DQm�

C be the refined Ritz vector corresponding to the Ritz value # as we have
discussed in Section 4. Now, we illustrate how to find better shifts on the basis of the unwanted
refined Ritz vector !C. For an approximate eigenvector ! of the QEP (1), the usual approach to
deriving an approximate eigenvalue � from ! is to impose the Galerkin condition

.�2M C �DCK/!?!
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and this follows that � D �.!/ must be one of the two solutions to the quadratic equation [26]

a2�
2C a1� C a0 D 0 (45)

where a2 D !�M!, a1 D !�D!, and a0 D !�K!. Therefore, as we obtain the unwanted
refined Ritz vector !C, (45) provides us one way to compute more accurate Ritz value beyond our
interests and should be filtered in the restarting process. Because !C D Qm�

C, the coefficients
corresponding to the quadratic equation (45) would be reduced as follows:

a2 D .�
C/�Mm�

C, a1 D .�
C/�Dm�

C, and a0 D .�
C/�Km�

C (46)

where Mm,Dm, and Km are the projections of M ,D, and K onto the subspace spanfQmg,
respectively, as described in (28).

Hence, if #C1 and #C2 are roots of the quadratic equation (45) with coefficients defined in (46),
then their reciprocal values would be better candidates for the restarting process. Consequently, if
.#1,Qm�1/, : : : , .#p ,Qm�p/ are p Ritz pairs that are farthest from our target and if #Ci ,1,#Ci ,2 are the
roots of the quadratic equation (45) with respect to the unwanted refined Ritz vector !Ci DQm�

C
i ,

i D 1, : : : ,p, then we choose the p values from #C1,1,#C1,2, : : : ,#Cp,1,#Cp,2 that are farthest from our
target and take their reciprocal values as the shifts for the restarting process and call them the refined
shifts. In our numerical examples, an IRRSGA method is a restart version of the RSGA method with
refined shifts.

6. NUMERICAL EXAMPLES

The purpose of this section is to present a few numerical experiments to validate that the IRRSGA
method is viable for solving QEP (1). In addition, the examples demonstrate the superior properties
of the IRSGA method and the IRRSGA method than the two versions of the IRA method [24] for
solving the QEP where one IRA method is applied to the `-SEP (6) and the other is applied to the
r-SEP (7), respectively. The abbreviations `-IRA and r-IRA are used to indicate that the IRA
method is applied to `-SEP and r-SEP, respectively.

In our examples, the number m denotes the order of the SGA/Arnoldi decomposition, and k
denotes the number of desired eigenpairs. The starting vector of the SGA method and the standard
Arnoldi method are chosen as a vector with all components equal to 1, and the stopping tolerance
for relative residuals is chosen to be tol D 10�14. The maximum number rmax of restarting process
is set to be rmax D 30.

Example 6.1
This example is obtained from “NLEVP: a collection of nonlinear eigenvalue problem” [27],
namely “damped beam” arising from the vibration analysis of a beam simply supported
at both ends and damped in the middle. In our MATLAB implementation, the command
nlevp(0damped_beam’,2000) is used to construct real symmetric coefficient matrices
M ,D,K with M DM> > 0, D DD> > 0, and K D K> > 0. The matrix size is n D 4000. Ten
eigenvalues nearest the origin (i.e., k D 10) are computed by four methods withmD 20. Figure 1(a)
shows the maximum relative residuals of the 10 desired eigenpairs computed by `-IRA, r-IRA,
IRSGA, and IRRSGA with respect to iterations 1, 2, : : : , 30. We find that the maximum relative
residuals computed by `-IRA and r-IRA stagnate, and those computed by the IRSGA method
oscillate between 10�12 and 10�13. All relative residuals of the desired eigenpairs computed by
the IRRSGA method meet the stopping tolerance in one iteration. To investigate the convergence
behaviors of the 10 eigenpairs computed by `-IRA, r-IRA, IRSGA, and IRRSGA, we depict relative
residual norms of the one-step iteration in Figure 1(b). Compared with that of the IRSGA method,
the refinement strategy of the IRRSGA method significantly improves the accuracy of computed
eigenpairs even up to five digits for the eight computed eigenpairs that do not meet the convergence
criterion. We report the number of iterations and CPU times in Table I. In summary, among the four
methods, the IRRSGA method is the only viable approach that accurately finds desired eigenpairs
within 30 iterations.
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Figure 1. Example 6.1: Convergence histories for `-IRA, r-IRA, IRSGA, and IRRSGA.

Table I. Iteration numbers and CPU times in
Example 6.1.

#Its CPU time

`-IRA 30 32.8563
r-IRA 30 55.4423
IRSGA 30 38.3231
IRRSGA 1 7.3048

Example 6.2
In Example 6.1, we see an amazing effect of the refinement strategy, that is, 10 wanted eigenpairs
converge in one iteration before the restarting process with refined shifts in IRRSGA. This example
illustrates that the refinement strategy with refined shifts introduced in Section 5.2 for the IRRSGA
method accelerate the convergence.

We consider the damped vibration mode of an acoustic fluid confined in a cavity with absorbing
walls capable of dissipating acoustic energy [28]. The fluid domain 
 � R2 is assumed to be
polyhedral, and the boundary @
D �A [ �R, where the absorbing boundary �A is the union of all
the different faces of
 and is covered by damping material. The rigid boundary �R is the remaining
part of @
. Figure 2(a) gives an example of such a setup, where the top boundary is absorbing and
the remaining boundary is rigid. The equations characterizing the wave motion in 
 are8̂̂<̂

:̂
� @

2U
@t2
CrP D 0, P D��c2divU

P D
�
˛U � nC ˇ @U

@t
� n
	

on �A

U � nD 0 on�R,

where the acoustic pressure P and the fluid displacement U depend on space x and time t , � is the
fluid density, c is the speed of sound in air, n is the unit outer normal vector along @
, and ˛,ˇ are
coefficients related to the normal acoustic impedance. The absorbing boundary on �A indicates that
the pressure is balanced by the effects of the viscous damping (the ˇ term) and the elastic behavior
(the ˛ term). The model induces the following QEP

.�2MuC .˛C �ˇ/Au CKu/uD 0,

whereMu andKu are mass and stiffness matrices, respectively, andAu is used to describe the effect
of the absorbing wall.

In this example, we adopt the geometry illustrated in Figure 2(a) and use the following physical
data: � D 1 kg=m3, c D 340 m=s, ˛ D 5 � 104 N=m3, and ˇ D 200 Ns=m3. The same values
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Figure 2. Fluid in a cavity with one absorbing wall and the distribution of the 10 desired eigenvalues.

are used in [28]. The rectangular domain is uniformly partitioned into 384 by 288 rectangles,
and each rectangle is further refined into two triangles. The dimension of coefficient matrices in
this problem is n D .3 � 384 � 1/ � 288 D 331, 488. We compute 10 analytic solutions of the
desired eigenvalues �1, : : : ,�10 plotted in Figure 2(b) with the lowest positive vibration frequencies
satisfying 0 < Im.�i /

2�
< 600 Hz. The order m is set to be m D 20. The shift target is taken

by � D�25C 600�i, iD
p
�1.

Table II and Figure 3 show that compared that of the IRSGA method, the refinement strategy used
in the IRRSGA method reduces the number of iterations and CPU time. Moreover, the IRRSGA
method calculates 10 desired eigenpairs in the smallest number of iterations and the shortest CPU
time among four competitive methods.

Table II. Iteration numbers and CPU time in
Example 6.2.

#Its CPU time

`-IRA 18 806.69
r-IRA 18 836.14
IRSGA 9 777.74
IRRSGA 7 735.38

Figure 3. Example 6.2: Convergence histories for `-IRA, r-IRA, IRSGA and IRRSGA.
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Example 6.3
This experiment consists of six benchmark examples from the NLEVP [27]. In the following
discussions, we describe each example and the choice of parameters for generating the coefficient
matrices of corresponding QEPs. All numerical results show that regardless of iteration numbers or
CPU time, both IRSGA and IRRSGA appear to be more efficient and more competitive than the
traditional Arnoldi methods `-IRA and r-IRA. The standard Arnoldi methods cannot calculate all
desired eigenpairs in 30 iterations, but our IRSGA and IRRSGA methods can effectively find all
desired eigenpairs with high accuracy in less or around 10 iterations. The IRSGA and the IRRSGA
methods have similar convergence behavior, but the latter consumes a slightly more time than the
former. This might be due to the fact that the IRSGA method converges in very few iterations.
Figure 4 depicts the maximum of the k residual norms versus restarts and show the convergence
processes of each example. Correspondingly, Table III lists the iteration numbers and the CPU time
of each method for each example.

(a) Acoustic 1D. This example arises from the finite element discretization of the time harmonic
wave equation�p�.2�f=c/2p D 0 [29]. Here, p denotes the pressure, f is the frequency,
c is the speed of sound in the medium, and � is the (possibly complex) impedance. On the
domain Œ0, 1� with c D 1, the n� n matrices M , D, and K are defined by

M D�4�2 1
n

�
In �

1
2

ene>n
�

, D D 2�i1
�

ene>n , K D n
�
tridiag.�1, 2,�1/� ene>n

�
.

Observe that matrices M ,K are real symmetric and D is complex symmetric. We use
nlevp(‘acoustic_wave_1d’,5000,1) to generate M ,D,K with size n D 5000 and
compute the six eigenvalues nearest origin (i.e., k D 6) with mD 12.

(b) Acoustic 2D. This example is a two-dimensional acoustic wave equation [29] on Œ0, 1��Œ0, 1�.
The coefficient matrices .M ,D,K/ are given by

M D�4�2h2Iq�1˝
�
Iq �

1
2

eqe>q
�

, D D 2�ih
�
Iq�1˝

�
eqe>q

�
,

K D Iq�1˝Dq C Tq�1˝
�
�Iq C

1
2

eqe>q
�

,

where h denotes the mesh size, q D 1=h, ˝ denotes the Kronecker product, � is the
(possibly complex) impedance, Dq D tridiag.�1, 4,�1/ � 2eqe>q 2 Rq�q , and Tq�1 D

tridiag.1, 0, 1/ 2 R.q�1/�.q�1/. We use nlevp(‘acoustic_wave_2d’,90,0.1*1i) to
get the real symmetric matrices .M ,D,K/. The matrix size is given by n D 8010, and we
compute six eigenvalues nearest origin (i.e., k D 6) withmD 12.

(c) Concrete. This problem arises from a model of a concrete structure supporting a machine
assembly [30] and induces the QEP, .�2M C �D C .1 C 	i/K/x D 0, where M is real
diagonal and low rank. D, the viscous damping matrix, is pure imaginary and diagonal,
K is complex symmetric, and the factor 1C 	i adds uniform hysteretic damping. We use
nlevp(‘concrete’,0.04) to generate the complex symmetric coefficient matrices. The
matrix size n D 2472 and we compute 10 eigenvalues nearest the origin (i.e., k D 10) with
mD 20.

(d) Spring dashpot. The QEP arises from a finite element model of a linear spring in
parallel with Maxwell elements [31]. The mass matrix M is rank deficient and symmetric,
the damping matrix D is rank deficient and block diagonal, and the stiffness matrix
K is symmetric and has arrowhead structure. Matrices M ,D,K are generated from
nlevp(‘spring_dashpot’,7850,5000,0) with size n D 10, 002. We compute 50
eigenvalues nearest the origin (i.e., k D 50) with mD 100.

(e) Wiresaw1. We use nlevp(‘wiresaw1’,10000,0.01) to generate the coefficient matrices
of the gyroscopic QEP arising in the vibration analysis of a wiresaw [32]. Here M ,D,K are
n� n matrices defined by

M D
1

2
In, D D�D> D Œdij � and K D diag

16i6n

�
i2�2.1� �2/

2

�
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Figure 4. Example 6.3: Convergence histories for `-IRA, r-IRA, IRSGA and IRRSGA.

where dij D
4ij

i2�j2
� if iC j is odd and, otherwise, dij D 0. The matrix size for this problem

is nD 10, 000, and we compute 10 eigenvalues nearest the origin (i.e., k D 10) withmD 20.
(f) Wiresaw2. When the effect of viscous damping is added to the problem in Wiresaw1, the

corresponding QEP has the form [32]

.�2M C �.D C �In/CK C �D/xD 0

where M , D, and K are the same as in Wiresaw1 and � is a real nonnegative damping
parameter. We take � D 0.5 and use nlevp(‘wiresaw2’,10000,0.01,0.5) to generate

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:259–280
DOI: 10.1002/nla



AN SGA METHOD AND ITS VARIATIONS FOR QEPs 279

Table III. Iteration numbers and CPU time in Example 6.3.

the coefficient matrices. The matrix size is nD 10, 000, and we compute 10 eigenvalues near
the target �0.5 (i.e., k D 10 and � D�0.5) with mD 20.

7. CONCLUSIONS

We have presented the SGA method, an orthogonal projection method, for solving QEPs based on an
SGA decomposition. We have developed a practical algorithm to compute the SGA decomposition.
The application of the SGA decomposition is threefold. First, we compute an orthonormal basis
of the projection subspace in the SGA decomposition. Second, the SGA decomposition (8) has
computational advantage for generating the coefficient matrices of reduced QEP (28). Third, we take
advantage of the SGA decomposition to save some computational costs in the refinement process
resulting in a refined version of the SGA method abbreviated as the RSGA method for solving QEPs.
After applying an implicit restart technique to SGA/RSGA methods, we have restarted versions of
SGA and RSGA, namely, the IRSGA/IRRSGA method. We have reported the numerical results on
computation of the approximate eigenpairs with small eigenvalues in modulus. Compared with the
standard IRA method, both the IRSGA method and IRRSGA method are superior in accuracy and
convergence rate. We also see that the IRRSGA method may significantly improve the accuracy
for obtaining the desired eigenpairs when the standard IRA method and the IRSGA method cannot
converge in a certain number of iterations.
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