
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 26 April 2014, At: 00:15
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization: A Journal of
Mathematical Programming and
Operations Research
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gopt20

A heuristic algorithm for the
optimization of a retrial system with
Bernoulli vacation
Jau-Chuan Ke a , Chia-Huang Wu b & Wen Lea Pearn b
a Department of Applied Statistics , National Taichung Institute of
Technology , Taichung , Taiwan , ROC
b Department of Industrial Engineering and Management ,
National Chiao Tung University , Taiwan , ROC
Published online: 25 May 2011.

To cite this article: Jau-Chuan Ke , Chia-Huang Wu & Wen Lea Pearn (2013) A heuristic
algorithm for the optimization of a retrial system with Bernoulli vacation, Optimization:
A Journal of Mathematical Programming and Operations Research, 62:3, 299-321, DOI:
10.1080/02331934.2011.579966

To link to this article:  http://dx.doi.org/10.1080/02331934.2011.579966

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gopt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2011.579966
http://dx.doi.org/10.1080/02331934.2011.579966


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

0:
15

 2
6 

A
pr

il 
20

14
 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions
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Taiwan, ROC; bDepartment of Industrial Engineering and Management, National Chiao
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(Received 12 November 2010; final version received 6 April 2011)

In this study, we consider an M/M/c retrial queue with Bernoulli vacation
under a single vacation policy. When an arrived customer finds a free
server, the customer receives the service immediately; otherwise the
customer would enter into an orbit. After the server completes the service,
the server may go on a vacation or become idle (waiting for the next
arriving, retrying customer). The retrial system is analysed as a
quasi-birth-and-death process. The sufficient and necessary condition of
system equilibrium is obtained. The formulae for computing the rate matrix
and stationary probabilities are derived. The explicit close forms for system
performance measures are developed. A cost model is constructed to
determine the optimal values of the number of servers, service rate, and
vacation rate for minimizing the total expected cost per unit time.
Numerical examples are given to demonstrate this optimization approach.
The effects of various parameters in the cost model on system performance
are investigated.

Keywords: Bernoulli vacation schedule; matrix-geometric method;
quasi-Newton method; retrial; single vacation policy

1. Introduction

Retrial queueing system is characterized by the feature that the arriving customers
who, on encountering the busy server, join a retrial queue called orbit. An arbitrary
customer in the orbit generates a stream of repeated requests that is independent of
the rest of customers in the orbit. This situation arises in telephony, where an
arriving call is not allowed to await the termination of a busy signal. Such queueing
systems play important roles in the analysis of many telephone switching systems,
telecommunication networks and computer systems. Review of retrial queue
literature could be found in Yang and Templeton [44], Falin and Templeton [23]
and Artalejo [2]. A number of applications of retrial queues in science and
engineering can be found in Kulkarni and Liang [28].
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Apart from its practical interest, due to its more accurate representation of

several congestion phenomena, the multi-server retrial queue raises interesting

mathematical and computational remarks. The investigation of the multi-server

retrial queues is essentially more difficult than those with single server. Explicit

formulae for the stationary distribution of M/M/c retrial queue are known only

when the number of servers c is no more than two. Most multi-server retrial queues

can be modelled by a level-dependent quasi-birth-and-death (QBD) process. The

main feature of its infinitesimal generator is the spatial heterogeneity caused by

transitions due to repeated attempts. This lack of homogeneity supports the

analytical complexity of retrial models. Many interesting studies were devoted to an

approximate approach of the stationary probabilities for system states (Falin [22],

Bright and Taylor [9], Neuts and Rao [36], Stepanov [38], Artalejo and Pozo [7],

Breuer et al. [8], Chakravarthy and Dudin [10]). Recently, Gomez-Corral [24] gave a

detailed bibliographical guide to the analysis of retrial queues through matrix

analytic techniques.
It is worth noting that the truncation models seem to be the most convenient

method for obtaining reliable numerical solutions for the M/M/c retrial queue. For

example, Falin [22] assumed that the retrial rate becomes infinite when the number of

customers in orbit exceeds a level M. It means that, when the number of customers in

the system is greater than M, the system performs as an ordinary M/M/1 queue with

arrival rate � and service rate c�, so that �5 c� is a sufficient and necessary

condition for system ergodicity. Neuts and Rao [36] and Artalejo and Pozo [7]

proposed several models in this direction and provided efficient approximate

solutions to the stationary distribution of the M/M/c retrial queue. As related works,

a number of studies investigated the computation of the other system characteristics,

such as the distributions of busy period, successful and blocked (unsuccessful)

retrials, for the multi-server retrial queue of type M/M/c. The readers can refer to

Artalejo et al. [4], Amador and Artalejo [1] and others. Artalejo et al. [5,6] presented

an algorithmic analysis of the maximum number of customers in orbit (and in the

system) during a busy period for the M/M/c retrial queue. The multi-server retrial

queueing problems are extensively studied as mentioned earlier. However, in the

literature, there are no detailed studies on multi-server retrial queue with a vacation

at each service completion instantly.
Alternatively, queueing models with server vacations are practical models for

performance analysis of manufacturing systems, local area networks and data

communication systems. Past works on vacation queueing models include those with

single-server and multiple-server systems. Surveys on the single-server vacation

models have been reported by Doshi [21] and Takagi [41]. The variations and

extensions of these vacation models were developed by several researchers such as

Lee et al. [31,32], Krishna Reddy et al. [27], Choudhury [13,14], Shomrony and

Yechiali [37], Ke and Chu [26] and many others. For the multiple-server vacation

models, there are only a limited number of studies due to the complexity of the

systems. The M/M/c queue with exponential vacations was first studied by Levy and

Yechiali [33]. Chao and Zhao [11] investigated a GI/M/c vacation system and

provided an algorithm to compute the performance measures. Tian et al. [42] gave a

detailed study of the M/M/c vacation systems in which all servers take
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multiple vacation policy when the system is empty. Zhang and Tian [45,46] and Xu

and Zhang [43] analysed the M/M/c vacation systems with a ‘partial server multiple

vacation policy’ in which some servers (only the idle ones) take single or multiple

vacations.
Studies on various queueing models in the past are characterized by common

feature; servers always serve the waiting customers in the queue until all customers

are served exhaustively or the number of the waiting customers is dropped to

predetermined level. In reality, however, it may occur that the service process

requires to be temporarily stopped for overhauling at the end of a service. This

overhauling can be utilized as a vacation in the presented model. For example,

consider a production process with a number of machines (or cmachines). A number

of investigations (Madan et al. [34], Choudhury and Madan [18,19], Tadj et al.

[39,40], and Choudhury et al. [20]) have recently appeared in queueing literature in

which the single server provides to each service with Bernoulli schedule vacation

(BSV). The so-called BSV means that when the service of a unit is completed, the

server may leave for a vacation of random length with probability p to serve the next

unit with probability 1� p (Choudhury and Madan [18,19]). Analytic steady-state

solutions of a multi-sever retrial queue with Bernoulli schedules under a single

vacation policy (BSV) have not been found. Multi-server vacation models are more

flexible and applicable in practice than the queueing models with single server.

Existing research works, including those mentioned above, have not addressed the

analytical study and optimization issue in the multiple-server retrial queues in

which the server may take a vacation upon his each service completion. This

motivates us to discuss an M/M/c retrial queue with BSV by applying matrix analytic

approach.
Recently, Choudhury [15,16] investigated the M/G/1 and M[x]/G/1 queue with

two phases of heterogeneous service and Bernoulli vacation schedule which operate

under various retrial policies. Some extensive stationary analyses of the queueing

system were carried out including the system size distribution and orbit size

distribution. In the following year, Choudhury and Deka [17] dealt with the

steady-state behaviour of M[x]/G/1 retrial queue with second optional service,

unreliable server and Bernoulli admission mechanism. The above-mentioned model

generalizes both M[x]/G/1 retrial queue with server breakdown and Bernoulli

admission mechanism as well as M[x]/G/1 queue with second optional service and

unreliable server. Furthermore, Ke and Chang [25] derived the mathematical model

of M[x]/(G1,G2)/1 retrial queue under Bernoulli vacation schedules with general

repeated attempts and starting failures. A practical mail system example was

presented. Later, Langaris and Dimitriou [29] investigated a single-server queueing

with n-phases of service and (n� 1) types of retrial customers. Some numeri-

cal results under exponentially distributed service time were provided.

Artalejo [3] presented a bibliography on retrial queues made during the past

decade 2000–2009.
This study considers an M/M/c retrial queue where primary customers arrive as a

Poisson process with parameter �. An arriving primary customer finding one or more

servers available (free) gets service immediately. On the other hand, if the primary

customer finds all servers busy, he joins the orbit and tries to get the service later.
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There are c channels (servers) that provide service for the arrivals and the service

times are assumed to be exponentially distributed with mean 1=�. Each server can

serve only one customer at a time. At each service completion instant of a server,

the server may take a vacation of random length with probability p or wait to serve

the next arrival with probability q(¼1� p). The vacation times follow an exponen-

tially distributed with a parameter �. Furthermore, each customer staying in the orbit

makes repeated attempts independently and the inter-retrial time is assumed to be

exponentially distributed with parameter �. Upon requesting service from the orbit,

customer who finds all c servers busy always rejoins the orbit; this manner continues

until he is eventually served. It is assumed that the number of customers in the orbit

that is allowed to conduct retrials have an upper bound N (Neuts and Rao [36] and

Artalejo and Pozo [7]). This implies that the probability of a repeated attempt during

ðt, tþ dtÞ, given that j customers in the orbit at time t, is �j dtþ oðdtÞ, where

�j ¼ minf j,Ng� Moreover, the process of primary arrivals, service times, and

inter-retrial times are assumed to be mutually independent. Conveniently, we

represent this multi-server system with Bernoulli vacation as M/M/c/BSV retrial

queue.
This article is organized as follows. In Section 2, the QBD model of the M/M/c/

BSV retrial queue is set up. The computable form of the rate matrix is derived and

the stable condition is obtained using the matrix-geometric property. In Section 3, an

efficient algorithm is developed to find the stationary probabilities by

matrix-geometric method. In Section 4, some system performance measures are

derived. In Section 5, a cost model is developed to determine the optimal number of

servers, service rate and vacation rate, simultaneously, in order to minimize the total

expected cost per unit time. The quasi-Newton method and direct search method are

implemented to deal with the optimization tasks. Some numerical examples

are provided to illustrate the optimization procedures. In Section 6, conclusions

are made with some remarks.

2. M/M/c/BSV retrial queue

For M/M/c/BSV retrial queue system, the state of the system can be described by

the pair ði, j, kÞ, i ¼ 0, 1, 2, . . . , c, j ¼ 0, 1, 2, . . . and k ¼ 0, 1, 2, . . . , c� i, where i

denotes the number of busy servers, j the number of customers in orbit (sources of

repeated demands) and k the number of vacation servers. According to system

assumptions, the number of customers in orbit allowed to conduct retrials is

restricted to an appropriate number N (N4c), so the retrial rate is �j¼min{ j, N}�,
j � 0 and one server would go on vacation with probability p ( p40) or resumes

service with probability q¼ 1� p at a service completion instant. The cus-

tomers upon the server get services immediately as iþ k5c. The new arriving

customer who finds all c servers busy (iþ k� c) always rejoins the retrial group

(orbit).
In steady state, the steady-state probability is defined as

Pk
i,j � probability, that is, there are i busy servers, j customers in orbit and k

vacation servers, where 0 � iþ k � c and j ¼ 0, 1, 2, . . ..

J.-C. Ke et al.302
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2.1. Matrix representation of M/M/c/BSV retrial queue

The infinitesimal generator Q of the QBD describing the M/M/c/BSV retrial

queueing system is

Q ¼

A0 B

C1 A1 B

C2 A2 B

. .
. . .

. . .
.

CN AN�1 B

CN�1 AN B

CN AN B

. .
. . .

. . .
.

2
6666666666664

3
7777777777775
: ð1Þ

The entries B, Aj ð j4 0Þ and Cj ð j4 1Þ are block-diagonal matrices of order

ðcþ 1Þðcþ 2Þ=2 defined by

B¼

b0

b1

. .
.

bc�1

bc

2
66664

3
77775 and Cj¼

c0j
c1j

. .
.

cc�1j

ccj

2
6666664

3
7777775, j¼ 1,2, . . .

where sub-matrices bi and cij are ðcþ 1� iÞ � ðcþ 1� iÞ square matrices with

elements

bi½cþ 1� i, cþ 1� i� ¼ �

0 e:w

(
and

cij½k, kþ 1� ¼ �j, 1 � k � c� i

0 e:w

�

Aj ¼

Y0
j X0

Z1 Y1
j X1

Z2 Y2
j X2

. .
. . .

. . .
.

. .
. . .

. . .
.

Zc�1 Yc�1
j Xc�1

Zc Yc
j

2
666666666666664

3
777777777777775
, j ¼ 0, 1, 2, . . .

where Xi is a ðcþ 1� iÞ � ðc� iÞ matrix with Xi½kþ 1, k� ¼ kp�, 1 � k � c� i, Zi

a ðc� iÞ � ðcþ 1� iÞ matrix with Zi½k, k� ¼ i�, 1 � k � c� i and Yi
j a square matrix

of order ðcþ 1� iÞ with elements

Yi
j½k, kþ 1� ¼ �, 1 � k � c� i

Yi
j½kþ 1, k� ¼ kð1� pÞ�, 1 � k � c� i

Yi
j½1, 1� ¼ �½�þ ði� 1Þ�þ �j �

Yi
j½k, k� ¼ �½�þ ðkþ 1Þ�þ i�þ �j �, 2 � k � c� i

Yi
j½cþ 1� i, cþ 1� i� ¼ �½�þ i�þ ðc� iÞ��

8>>>>><
>>>>>:

:
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The detailed descriptions of the above matrices (for c¼ 3) are given in the

Appendix.
Let & ¼ ½&0,&1,&2, . . .� with &i ¼ ½P

0
0,i,P

0
1,i, . . . ,P0

c,i,P
1
0,i,P

1
1,i, . . . ,P1

c�1,i,

P0
0,i, . . . ,Pc�1

0,i ,P
c�1
1,i ,P

c
0,i�, i ¼ 0, 1, 2, . . . be the unique solution to &Q ¼ 0 and

&e ¼ 1, where e is a column vector with all elements equal to 1. It is noted that

the vector & ¼ ½&0,&1,&2,&3, . . .� with the following properties

&Nþk ¼ &NR
k, for k � 1: ð2Þ

The matrix R is the unique non-negative solution with spectral radius less than 1

of the equation

Bþ RAN þ R2CN ¼ 0: ð3Þ

From Neuts [35] and Latouche and Ramaswami [30], it is known that R is given

by limn!1 Rn, where the sequence {Rn} is defined by

R0 ¼ 0, and Rnþ1 ¼ �BA
�1
N � R2

nCNA
�1
N , for n � 0: ð4Þ

The sequence {Rn} is monotone so that R could be evaluated from (4) by

successive substitutions.

2.2. Stability condition

It is also known (Theorem 3.1.1 of Neuts [35]) that the steady-state probability

vector exists if and only if

xBe5 xCNe, ð5Þ

where x is the invariant probability of the matrix F ¼ CN þ AN þ B. Here, x satisfies

xF ¼ 0 and xe ¼ 1. First we solve xF ¼ 0, where x ¼ ½x00, x
0
1 . . . , x0c , . . . ,

xc�10 , xc�11 , xc0�. We can get the following ðcþ 1Þðcþ 2Þ=2 equations:
For k ¼ 0,

�ð�þN�Þx00 þ q�x01 þ �x
1
0 ¼ 0, ð6-1aÞ

ð�þN�Þx0i�1 � ð�þ i�þN�Þx0i þ ðiþ 1Þq�x0iþ1 þ �x
1
i ¼ 0, 1 � i � c� 1, ð6-1bÞ

ð�þN�Þx0c�1 � c�x0c ¼ 0: ð6-1cÞ

For 1 � k � c� 1,

p�xk�11 � ð�þN� þ k�Þxk0 þ q�xk1 þ ðkþ 1Þ�xkþ10 ¼ 0, ð6-2aÞ

ð�þN�Þxki�2 þ ip�xk�1i � ½�þN� þ ði� 1Þ�þ k��xki�1

þ iq�xki þ ðkþ 1Þ�xkþ1i�1 ¼ 0, 2 � i � c� k, ð6-2bÞ

ðcþ 1� kÞ p�xk�1cþ1�k þ ð�þN�Þxkc�k�1 � ½ðc� kÞ�þ k��xkc�k ¼ 0: ð6-2cÞ
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For k ¼ c,

p�xc�11 � c�xc0 ¼ 0: ð6-3aÞ

Using a effective Maple software to solve Equations (6-1a)–(6-2c), the following

results are derived

xki ¼
c!�c�k

i!k!ð�þN�Þc�i�k�ipc�k
xc0, 0 � iþ k � c: ð7Þ

Then, using the normalization condition xe ¼ 1, xc0 can be determined as

xc0 ¼
Xc
k¼0

Xc�k
i¼0

c!�c�k

i!k!ð�þN�Þc�i�k�ipc�k

" #�1
ð8Þ

Substituting B and CN into Equation (5) and doing some routine manipulations,

then we have

N�ð1� PFÞ4 �PFull, ð9Þ

where

PFull ¼
Xc
i¼0

xc�ii ¼
Xc
i¼0

c!�i

i!ðc� iÞ!�ipi
xc0

¼ 1þ
�

p�

� �c Xc
k¼0

Xc�k
i¼0

c!�c�k

i!k!ð�þN�Þc�i�k�ipc�k

" #�1
, ð10Þ

which is referred to the probability that all normal working (non-vacation) servers

are busy (i.e. iþ k ¼ c). That is, the system will be stable if the expected successful

retrial rate is greater then the expected arrival rate of ‘orbit’.

3. Steady-state solution

Under the stability condition, the stationary probability vector & exists. We deal

with the steady-state equations using matrix technique. The steady-state equations

are given by

&0A0 þ&1C1 ¼ 0, ð11aÞ

&i�1Bþ&iAi þ&iþ1Ciþ1 ¼ 0, 1 � i � N� 1, ð11bÞ

&N�1Bþ&NAN þ&NRCN ¼ 0, ð11cÞ

&NR
i�1�NBþ&NR

i�NAN þ&NR
iþ1�NCN ¼ 0, Nþ 1 � i, ð11dÞ

X1
i¼0

&ie ¼ 1: ð12Þ
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After doing some routine manipulations to Equations (11a)–(11c) recursively,
we have

&0 ¼ &1C1ð�A0Þ
�1
¼ &1�1,

&i�1 ¼ &iCi½�ð�i�1Bþ Ai�1Þ�
�1
¼ &i�i, 2 � i � N,

ð13Þ

and

&N�NBþ&NAN þ&NRCN ¼ 0: ð14Þ

Consequently, &ið0 � i � N� 1Þ in Equation (13) can be written in terms of
&N as &0 ¼ &N �1

i¼N �i, &1 ¼ &N �2
i¼N �i, . . . ,&N�1 ¼ &N �N

i¼N �i and the rest
steady-state vector ½&N,&Nþ1,&Nþ2, . . .� can be determined recursively as
&i ¼ &N Ri�N, for i � N. Therefore, once the steady-state probability &N is
obtained, the steady-state solutions ½&0,&1,&2, . . . ,&N�1,&N,&Nþ1, . . .� are deter-
mined. The steady-state probability &N can be solved by Equation (14) with the
following normalization equation

X1
i¼0

&ie ¼ ½&0 þ&1 þ � � � þ&N�1 þ&N þ&Nþ1 þ&Nþ2 þ � � ��e

¼ ½&N �
1

i¼N
�i þ&N �

2

i¼N
�i þ � � � þ&N �

N

i¼N
�i þ&N þ&NRþ&NR

2 þ � � ��e

¼ &N

XN
k¼1

�
k

i¼N
�i þ ðI� RÞ�1

" #
e ¼ 1: ð15Þ

where I denotes the identity matrix with suitable size. Solving Equations (14) and
(15) in accordance with Cramer’s rule, &N can be obtained. Then, the prior state
probabilities ½&0,&1,&2, . . . ,&N�1� are computed from (13) and
½&Nþ1,&Nþ2,&Nþ3, . . .� are gained by the formula &i ¼ &NR

i�N, i � Nþ 1. The
solution procedure of steady-state probabilities is summarized as follows:

Algorithm Recursive Solver

Step 1 Set �1 ¼ C1ð�A0Þ
�1

Step 2 For i from 2 to N, set �i ¼ Ci½�ð�i�1Bþ Ai�1Þ�
�1.

Step 3 For k from 1 to N, set (k ¼ �
k

i¼N
�i.

Step 4 Solving &N�NBþ&NAN þ&NRCN ¼ 0, &N½
PN

k¼1(k þ ðI� RÞ�1�e ¼ 1
and obtain steady-state probability &N.

Step 5 Construct steady-state probability &i as follows:

(a) if 0 � i � N, assign &i ¼ &N(iþ1,
(b) if N � i, assign &iþ1 ¼ &iR,

4. System performance measures

There are several system descriptors (system performance measures) of the
M/M/c/BSV retrial queue, such as the expected number of busy servers (denoted
by E½B�), the expected number of vacation servers (denoted by E ½V�) and the
expected number of customers in orbit (denoted by E ½Orbit�), which can be
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evaluated from the steady-state probabilities. The explicit expressions for E ½B�, E ½V�,

and E ½Orbit� are given by

E ½B� ¼
X1
j¼0

&jv ¼
XN�1
j¼0

&jvþ&Nvþ&NRvþ&NR
2vþ � � �

¼
XN�1
j¼0

&N(jþ1vþ&Nvþ&NRvþ&NR
2vþ � � �

¼ &N

XN
j¼1

(j þ ðI� RÞ�1

" #
v ð16Þ

E ½V � ¼
X1
j¼0

&ju ¼
XN�1
j¼0

&juþ&Nuþ&NRuþ&NR
2uþ � � �

¼
XN�1
j¼0

&N(jþ1uþ&NðI� RÞ�1u

¼ &N

XN
j¼1

(j þ ðI� RÞ�1

" #
u ð17Þ

E ½Orbit� ¼
X1
j¼1

j&je ¼
XN�1
j¼1

j&N(jþ1eþN&Neþ ðNþ 1Þ&NReþ ðNþ 2Þ&NR
2eþ � � �

¼
XN
j¼2

ð j� 1Þ&N(jeþ&N½NðI� RÞ�1 þ RðI� RÞ�2�e

¼ �N

XN
j¼2

ð j� 1Þ(j þNðI� RÞ�1 þ RðI� RÞ�2

" #
e ð18Þ

where

v ¼ 0, 1, . . . , c|fflfflfflfflfflffl{zfflfflfflfflfflffl}
#¼cþ1

, 0, 1, . . . , c� 1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#¼c

, . . . , 0, 1|{z}
#¼2

, 0

2
4

3
5 and

u ¼ 0, 0, . . . , 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
#¼cþ1

, 1, 1, . . . , 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
#¼c

, . . . , c� 1, c� 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
#¼2

, c

2
4

3
5

are column vectors with dimension ðcþ 1Þðcþ 2Þ=2.

4.1. System performance versus system parameters

For an M/M/c/BSV retrial queue, the numerical results of E ½Orbit� are obtained by

considering the following four cases with different values of c.

Case 1 N¼ 30, �¼ 5, �¼ 10, p¼ 0.5, �¼ 5, varying � from 10 to 15.
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Case 2 N¼ 30, �¼ 5, �¼ 10, p¼ 0.5, �¼ 10, varying � from 10 to 15.

Case 3 N¼ 30, �¼ 15, �¼ 15, p¼ 0.5, �¼ 10, varying � from 5 to 10.

Case 4 N¼ 30, �¼ 5, �¼ 15, �¼ 15, p¼ 0.5, varying � from 10 to 15.

Results of E ½Orbit� are depicted in Figures 1–4 for Cases 1–4, respectively. One
sees from Figures 1 and 2 that E ½Orbit� drastically decreases as � or � increases for
c ¼ 1, while E ½Orbit� is not sensitive to � or � for c � 2. It reveals from Figure 3 that
E ½Orbit� increases violently as � increases for c ¼ 1, while E ½Orbit� slightly increases
as � increases for c � 2. Figure 4 reports that E ½Orbit� decreases as � increases for
c ¼ 1, while E ½Orbit� is not sensitive to � for c � 2.

Figure 2. The expected number of customers in orbit E[Orbit] versus �.

Figure 1. The expected number of customers in orbit E[Orbit] versus �.
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There are several general descriptors of retrial queues, some of which are listed

below:

(1) The overall rate of retrials

�	1 ¼
XN
j¼1

j�
Xc
k¼0

Xc�k
i¼0

Pk
i,j þ

X1
j¼Nþ1

N�
Xc
k¼0

Xc�k
i¼0

Pk
i,j ¼

XN
j¼1

j��jeþ
X1

j¼Nþ1

N��NR
j�Ne

¼
XN
j¼1

j�&jeþN�&NRðI� RÞ�1e ¼ �
XN
j¼1

j&j þN&NRðI� RÞ�1

" #
e:

¼ �&N

XN�1
j¼1

j(jþ1 þNðI� RÞ�1

" #
e ð19Þ

Figure 3. The expected number of customers in orbit E[Orbit] versus �.

Figure 4. The expected number of customers in orbit E[Orbit] versus �.
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(2) The rate of retrials that are successful

�	2 ¼
XN
j¼1

j�
Xc
k¼0

Xc�k�1
i¼0

Pk
i,j þ

X1
j¼Nþ1

N�
Xc
k¼0

Xc�k�1
i¼0

Pk
i,j: ð20Þ

(3) The fraction of retrials that are successful

F ¼
�	2
�	1
: ð21Þ

(4) The marginal distribution of the number of busy serversX1
j¼0

Pk
i,j, 0 � iþ k � c: ð22Þ

(5) Busy period: The busy period T of a retrial queue is defined as the period that
starts at the epoch when an arriving customer finds an empty system (all
servers are idle and no customer in the orbit) and ends at the departure epoch
at which the system is empty again.

The mean busy period

EðT Þ ¼
1

�

1

P0
0,0

� 1

 !
¼

1

�

1

&N(1½1�
� 1

� �
ð23Þ

where the symbol ‘&N(1½1�’ denotes the first element of the column
vector &N(1.

(6) Vain retrials: A vain retrial is an unsuccessful retrial when all servers are
busy.

The steady-state probability of vain retrial PV

PV ¼

P1
j¼1

P
iþk¼c P

k
i,jP1

j¼1

Pc
k¼0

Pc�k
i¼0 P

k
i,j

¼

P1
j¼1

P
iþk¼c P

k
i,j

1�&0e
: ð24Þ

4.2. System performance versus truncated parameters

To understand how system performance measures listed above vary with N, we also
perform a numerical investigation to the measures based on changing the value of N
from 5 to 25, which is based on � ¼ 5, � ¼ 15, p ¼ 0:5, � ¼ 10, and � ¼ 10.
The numerical illustration is graphically presented in Figures 5–8.

From Figures 5–8, it is clear that increasing the retrial rate beyond a certain point
does not result in a commensurate improvement in the system performance, which is
according with the result of Neuts and Rao [36].

5. Optimization analysis

In this section, we construct the total expected cost function per unit time based on
the system performance measures for the M/M/c/BSV retrial queue, in which the
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number of servers (c) is a discrete decision variable, and the service rate (�) and the

vacation rate (�) are continuous decision variables. Let us define the following cost

elements:

Ch � holding cost per unit time per customer present in orbit;

Cs � cost per unit time of providing a service rate �;

Cv � cost per unit time when one server is on vacation;

Cr � cost per unit time of providing a vacation rate �; and

Cp � fixed cost for purchasing one server:

Figure 6. The fraction of successful retrials F versus N.

Figure 5. The expected number of customers in orbit E[Orbit] versus N.
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Based on the definition of the cost parameters, the total expected cost function

per unit time can be expressed as

Fðc,�, �Þ ¼ ChE ½Orbit� þ Cs�þ CvE ½V � þ Cr�þ Cpc ð25Þ

where E ½Orbit� and E ½V � are defined previously.
The main objective is to find the optimal number of servers c	, and the optimal

values of service rate and vacation rate ð�	, �	Þ simultaneously which minimize the

cost function Fðc,�, �Þ. The analytical study of the optimization behaviour of the

Figure 7. The mean busy period E[T] versus N.

Figure 8. The steady-state probability of vain retrial PV versus N.
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expected cost function would have been an arduous task to undertake since the

decision variables appear in an expression which is a highly non-linear and complex

and non-linear in terms of ðc,�, �Þ. Next, two methods are provided to deal with this

problem heuristically.
In the next section, we first use the quasi-Newton method to find the

approximate optimal value of continuous variable ð�, �Þ, say ð�	, �	Þ, and then use

direct search method to search the optimal value of discrete variable c, say c	.

5.1. Quasi-Newton method for optimal ðl, gÞ

For practice situation of purchase budget, the number of servers is bounded by a

positive integer cU � 1. We want to find the joint optimal value (�	,�	) for each given

c in the feasible set {1, 2, . . . , cU}. The cost minimization problem can be illustrated

mathematically as

Fðc,�	, �	Þ ¼ min
and s:t: ð9Þ

Fðc,�, �Þ cj
� �

, c ¼ 1, 2, . . . , cU ð26Þ

For the problem of (26), we should show the convexity of Fðc,�, �Þ in ð�, �Þ.
However, this study is difficult to implement. It is noted that the derivative of the

cost function F with respect to ð�, �Þ indicates the direction at which the cost

function increases. It means that, the optimal value ð�	, �	Þ can be found along this

opposite direction of the gradient (Chong and Zak [12]). That is, for a fixed c, quasi-

Newton method is employed to search ð�, �Þ until the approximate minimum value

of Fðc,�, �Þ is achieved, say Fðc,�	, �	Þ. An effective procedure that makes it possible

to calculate the optimal value ðc,�	, �	Þ is presented as follows:

Algorithm Quasi-Newton Method

Step 1 Set the initial trial solution for ~hð0Þ, and compute Fðc,�ð0Þ, �ð0ÞÞ.

Step 2 Compute the cost gradient ~rFð~hÞ ¼ ½@F=@�, @F=@��T and the cost Hessian

matrix

Hð~hÞ ¼
@2F=@�2 @2F=@�@�
@2F=@�@� @2F=@�2

� 	
at point ~hðiÞ:

Step 3 While j@F=@�j4 " or j@F=@�j4 ", set the new trial solution ~hðiþ1Þ ¼ ~hðiÞ�

½Hð~hðiÞÞ��1 ~rFð~hðiÞÞ and return to Step 2.

To demonstrate the validness and the approximate optimization solution, we

perform some computation and analysis on the examples given in Table 1 by

considering the following cost parameters as

Ch ¼ $25=customer=unit time, Cs ¼ $45=unit time,

Cv ¼ $120=server=unit time, Cr ¼ $90=unit time, Cp ¼ $120=server

From Table 1, it can be seen that the minimum expected cost per unit time of

1474.377 is achieved at ð�	, �	Þ ¼ (11.54626, 6.305710) by using six iterations, which

is based on Case (i) with initial value ðc,�, �Þ ¼ (1, 15, 5). Based on Case (ii) with
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initial value ðc,�, �Þ ¼ (2, 10, 10), the minimum expected cost per unit time of

1968.692 is achieved at ð�	, �	Þ ¼ (12.53093, 8.696281) using six iterations.

5.2. Direct search method for optimal c

After obtaining the joint approximate optimal value ð�	, �	Þ of the continuous

variable ð�, �Þ, we use direct search method to obtain the optimal c such that the

expected cost function Fðc,�	, �	Þ attains a minimum, say Fðc	,�	, �	Þ. Therefore,
the cost minimization problem can be illustrated mathematically as

Fðc	,�	, �	Þ ¼ min
1�c�cU

Fðc,�	, �	Þ
� �

ð27Þ

The procedure to find the optimal solution is described in the following.

A numerical example given in Table 2 is based on (i) ð�, p, �Þ ¼ (10, 0.8, 15) and (ii)

ð�, p, �Þ ¼ (15, 0.5, 20).

Algorithm Direct Search Method

Step 1 Set F	 ¼M which M is a sufficiently large number.

Step 2 For each i from 1 to cU, set a initial trial solution ð�, �Þ and use

Quasi-Newton method to find the optimal value ð�	, �	Þ and the cost function

Fðc,�	, �	Þ.

Step 3 If the quasi-Newton method diverges, try another initial trial solution and

back to Step 1.

Step 4 If Fðc,�	, �	Þ5F	, set F	 ¼ Fðc,�	, �	Þ and S	 ¼ ðc,�	, �	Þ.

It is noted that the optimal value is ðc	,�	, �	Þ ¼ (4, 5.999552, 5.046493) and the

corresponding minimum cost is F	 ¼ 1708.284 for Case (i). For Case (ii),

ðc	,�	, �	Þ ¼ (4, 8.099802, 5.265980) and F	 ¼ 1819.241 are optimal.

Table 2. The optimal value ð�	, �	Þ and the corresponding minimum expected cost.

c Initial value Coverage value ð�	, �	Þ Iteration Cost*

Case (i) ð�, p, �Þ ¼ (10, 0.8, 15)
1 [25, 15] [25.13488, 16.43305] 6 3118.635
2 [10, 10] [12.53093, 8.696281] 6 1968.692
3 [10, 5] [8.214208, 6.210196] 6 1725.728
4 [5, 5] [5.999552, 5.046493] 7 1708.284
5 [5, 5] [4.652035, 4.414643] 7 1779.094

Case (ii) ð�, p, �Þ ¼ (15, 0.5, 20)
1 [30, 20] [33.17698, 17.35916] 6 3601.021
2 [15, 10] [16.60255, 9.183037] 5 2210.467
3 [10, 5] [10.97471, 6.530226] 10 1882.075
4 [6, 6] [8.099802, 5.265980] 8 1819.241
5 [5, 5] [6.347280, 4.561196] 7 1861.652
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4
2
0
]

F
ðc
	
,�
	
,�
	
Þ

9
0
1
.7
2
9
6

1
2
4
5
.8
0
6

1
7
2
7
.2
0
1

1
3
2
5
.5
2
3

1
7
1
6
.8
7
3

2
3
8
6
.6
0
2

E
[O

rb
it
]

2
.8
2
5
3
7
2

3
.1
9
9
2
8
0

4
.1
9
9
7
1
0

1
.6
2
6
4
7
2

3
.1
2
5
3
1
2

4
.4
9
7
0
4
7

E
[V
]

0
.4
7
0
8
7
3

0
.7
1
9
5
0
5

1
.0
0
6
4
0
0

1
.3
3
3
9
2
7

1
.5
7
6
2
1
2

2
.0
8
0
7
8
1

ð�
,p
,�
Þ

(5
,0
.2
,1
0
)

(5
,0
.5
,1
0
)

(5
,0
.8
,1
0
)

(1
0
,0
.2
,1
5
)

(1
0
,0
.5
,1
5
)

(1
0
,0
.8
,1
5
)

c*
2

3
4

3
3

4
ð�
	
,�
	
Þ

[4
.9
6
5
6
9
5
,2
.1
2
3
7
1
4
]

[3
.7
7
4
1
1
1
,2
.6
8
9
4
2
7
]

[2
.9
9
7
9
9
5
,2
.9
9
8
6
6
4
]

[6
.3
4
7
7
4
4
,2
.7
6
7
4
2
7
]
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5
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2
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4
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7
]
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9
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5
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2
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6
4
9
3
]
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,�
	
,�
	
Þ
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5
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3
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7
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5
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1
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8
4

E
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2
.8
2
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3
7
2

2
.1
2
2
0
6
0

1
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2
6
4
7
2

3
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2
4
2
0
7

3
.6
6
2
6
2
6

2
.9
5
5
5
2
8

E
[V

]
0
.4
7
0
8
7
3

0
.9
2
9
5
6
6

1
.3
3
3
9
2
7

0
.7
2
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6
9
3

1
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5

1
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2
5
9

ð�
,p
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0
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0
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,1
0
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0
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5
)
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0
,0
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,5
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0
,0
.8
,1
0
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0
,0
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5
)
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2

3
3

4
4

4
ð�
	
,�
	
Þ
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0
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8
]
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.4
2
7
3
4
9
,2
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9
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7
7
4
4
,2
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6
7
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2
7
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.2
3
2
8
2
4
,5
.1
5
4
9
1
2
]

[6
.0
6
2
2
9
8
,5
.0
7
5
4
6
0
]

[5
.9
9
9
5
5
2
,5
.0
4
6
4
9
3
]

F
ðc
	
,�
	
,�
	
Þ

1
3
6
1
.5
0
3

1
2
4
5
.8
0
6

1
2
3
7
.0
4
5

1
7
3
9
.9
6
6

1
7
1
6
.8
7
3

1
7
0
8
.2
8
4

E
[O
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]

5
.7
8
9
5
1
4

3
.1
9
9
2
8
0

3
.0
2
4
2
0
7

3
.5
7
2
6
8
1

3
.1
2
5
3
1
2

2
.9
5
5
5
2
8

E
[V

]
0
.5
2
3
5
0
8
4

0
.7
1
9
5
0
5

0
.7
2
2
6
9
3

1
.5
5
1
9
1
8

1
.5
7
6
2
1
2

1
.5
8
5
2
5
9
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Finally, we perform a sensitivity investigation on the optimal values ðc	,�	, �	Þ.
For various values of � and p, the minimum expected cost Fðc	,�	, �	Þ, the system
performance measures Ls and E ½V � at the optimum values ðc	,�	, �	Þ are given in
Table 3.

From Table 3, it can be seen that (1) c	 is insensitive to � or p; (2) �	 increases as
� increases; and (3) �	 increases as � or p increases. Moreover, the minimum expected
cost increases Fðc	,�	, �	Þas � or p increases.

6. Conclusions

An M/M/c retrial queue with Bernoulli vacation (M/M/c/BSV retrial queue) was
investigated using the matrix-geometric method. The queueing system was formu-
lated as a QBD process. The sufficient and necessary condition for the stability of the
system was discussed. The stationary probability vectors were obtained. We also
obtained some system performance in matrix forms. A cost model was constructed to
calculate the optimal number of servers, the optimal service rate and vacation rate,
so that the cost function is minimized. Two methods were provided to deal with the
optimization problem heuristically. We performed a sensitivity analysis of the joint
optimal values ðc	,�	, �	Þ with respect to specific values of �, p and �.
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Appendix

For instance, for c¼ 3, the sub-matrices of B are

b0 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �

2
66664

3
77775, b1 ¼

0 0 0

0 0 0

0 0 �

2
64

3
75, b2 ¼

0 0

0 �

" #
, b3 ¼ �:

The sub-matrices of C1, C2 and C3 are
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c01 ¼

0 � 0 0

0 0 � 0

0 0 0 �

0 0 0 0

2
66664

3
77775, c11 ¼

0 � 0

0 0 �

0 0 0

2
64

3
75, c21 ¼

0 �

0 0

" #
, c31 ¼ 0:

c02 ¼

0 2� 0 0

0 0 2� 0

0 0 0 2�

0 0 0 0

2
6664

3
7775, c12 ¼

0 2� 0

0 0 2�

0 0 0

2
64

3
75, c22 ¼

0 2�

0 0

� 	
, c32 ¼ 0:

c03 ¼

0 3� 0 0

0 0 3� 0

0 0 0 3�

0 0 0 0

2
6664

3
7775, c13 ¼

0 3� 0

0 0 3�

0 0 0

2
64

3
75, c23 ¼

0 3�

0 0

� 	
, c33 ¼ 0:

The diagonal sub-matrices of Aj, where j ¼ 0, 1, 2, 3 are described as follows.
For A0:

Y0
0 ¼

�� �

ð1� pÞ� �ð�þ �Þ �

2ð1� pÞ� �ð�þ 2�Þ �

3ð1� pÞ� �ð�þ 3�Þ

2
6664

3
7775,

Y1
0 ¼

�ð�þ �Þ �

ð1� pÞ� �ð�þ �þ �Þ �

2ð1� pÞ� �ð�þ 2�þ �Þ

2
64

3
75,

Y2
0 ¼

�ð�þ 2�Þ �

ð1� pÞ� �ð�þ �þ 2�Þ

� 	
, Y3

0 ¼ �ð�þ 3�Þ:

For A1:

Y0
1 ¼

�ð�þ �Þ �

ð1� pÞ� �ð�þ �þ �Þ �

2ð1� pÞ� �ð�þ 2�þ �Þ �

3ð1� pÞ� �ð�þ 3�Þ

2
6664

3
7775,

Y1
1 ¼

�ð�þ �þ �Þ �

ð1� pÞ� �ð�þ �þ �þ �Þ �

2ð1� pÞ� �ð�þ 2�þ �Þ

2
64

3
75,

Y2
1 ¼

�ð�þ 2�þ �Þ �

ð1� pÞ� �ð�þ �þ 2�Þ

� 	
, Y3

1 ¼ �ð�þ 3�Þ

For A2:
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Y0
2 ¼

�ð�þ 2�Þ �

ð1� pÞ� �ð�þ �þ 2�Þ �

2ð1� pÞ� �ð�þ 2�þ 2�Þ �

3ð1� pÞ� �ð�þ 3�Þ

2
66664

3
77775,

Y1
1 ¼

�ð�þ �þ �Þ �

ð1� pÞ� �ð�þ �þ �þ �Þ �

2ð1� pÞ� �ð�þ 2�þ �Þ

2
64

3
75,

Y2
2 ¼

�ð�þ 2�þ 2�Þ �

ð1� pÞ� �ð�þ �þ 2�Þ

" #
, Y3

2 ¼ �ð�þ 3�Þ:

For A3:

Y0
3 ¼

�ð�þ 3�Þ �

ð1� pÞ� �ð�þ �þ 3�Þ �

2ð1� pÞ� �ð�þ 2�þ 3�Þ �

3ð1� pÞ� �ð�þ 3�Þ

2
6664

3
7775,

Y1
3 ¼

�ð�þ �þ 3�Þ �

ð1� pÞ� �ð�þ �þ �þ 3�Þ �

2ð1� pÞ� �ð�þ 2�þ �Þ

2
64

3
75,

Y2
3 ¼

�ð�þ 2�þ 3�Þ �

ð1� pÞ� �ð�þ �þ 2�Þ

� 	
, Y3

3 ¼ �ð�þ 3�Þ:

For A0, A1, A2 and A3, the first super-diagonal sub-matrices and the first sub-diagonal
sub-matrices are given by

X0 ¼

0
p�
0
0

0
0

2p�
0

0
0
0

3p�

2
664

3
775, X1 ¼

0
p�
0

0
0

2p�

2
4

3
5, X2 ¼

0
p�

� 	
,

and

Z1 ¼

�

0

0

0

�

0

0

0

�

0

0

0

2
64

3
75, Z2 ¼

2�

0

0

2�

0

0

� 	
, Z3 ¼ 3� 0


 �
,

respectively.
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