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Abstract-The dynamics of a tool shaft are usually simplified to that of a second order lumped mass system 
for cutting process. This approach does not apply for deep hole drilling because of its extraordinary shaft 
length. This paper established the equations for lateral and longitudinal shaft motion of a BTA drill based 
on the Euler beam theory. Free-free boundary conditions are used in order to solve the eigenproperties of 
the shaft. Experiments to determine properties of the shaft, the shaft with internal static fluid and the shaft 
with cutting head were performed. The agreements between the theoretical and experimental natural 
frequencies and mode shapes confirmed the proposed equations. Some effects, including those of static fluid 
and the cutting head were clarified. This study has shown the existence and importance of the BTA tool 
shaft dynamics which were often overlooked or oversimplified in the past. 

1. INTRODUCTION 

OWING TO the extraordinary shaft length of the deep hole drill, the dynamics of the 
shaft itself become important to the cutting quality, so realization of shaft behavior in 
deep hole drilling is necessary for the operation, design and control of this machining 
process. Previous research into deep hole drilling has mostly discussed the relationship 
between cutting quality and machining conditions such as feed rate, cutting force, 
cutting speed and the design of the tool head or tried to find the optimum of the 
relationships [ 1, 2 ] but a discussion of shaft behavior was rarely provided. The dynamics 
of the tool shaft are usually simplified to that of a second order lumped mass system 
for cutting process [3]. This approach does not apply for deep hole drilling since the 
shaft is long enough to claim its own complex dynamics. No rigorous work has ever 
been carried out regarding this problem. 

The purpose of this paper is to study the eigenproperties of the shaft for a BTA 
deep hole drill. Since the shaft behavior of deep hole drilling is coupled with the effect 
of pressurized fluid which is pumped into the shaft during machining, this fluid effect 
is also taken into consideration. 

General discussions on this are found in Refs [l] and 121. Some closely related 
previous work is discussed as follows: Chandrashekhar et al. (1987) [4] established a 
three-dimensional physical model of the BTA machining system which considered the 
interaction between the workpiece and cutting tool. The Lagrange equations were used 
to obtain lateral and torsional vibration equations to represent the influence of axial 
force and torque. Chandrashekhar et al. [5] then found the solutions and predicted 
the helical grooves which were observed on the drilled workpiece and made the 
comparison between theoretical and experimental results. In the above papers, the 
shaft behaviors were not discussed. Corney and Griffiths [6] proposed the experimental 
analysis of the combined cutting and burnishing action in BTA drilling. El-Khabeery 
et al. [7] observed the surface integrity-surface roughness, hardness, micro hardness 
and plastic deformation of the surface under different machining conditions. Sakuma 
et al. [8-lo] proposed simple formulas to describe the burnishing action of guide pads 
and the influence on hole accuracies for different cutting force, cutting torque, depth 
of deformation waves on a burnished surface in BTA drilling and conducted experiments 
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to prove these theories. In their study, the relationship between cutting quality and 
machining conditions was studied, but shaft behavior was not considered. Sakuma et 
al. [8-lo] found the bending vibration of the boring bar induced by the holes corre- 
sponded to the number of the corners of the hole during machining. In their study, a 
simple model of the support and boring bar was proposed, but the influence of fluid 
flow was ignored. 

In this paper, the shaft behavior of the BTA drill is studied and the mathematical 
equations for lateral and longitudinal vibration are established based upon the 
Bernoulli-Eulerian theory. A series of experiments are designed and performed to 
investigate the eigenbehavior of shaft and extensive comparisons between experimental 
and theoretical results are made. 

2. ANALYSIS OF SHAFT DYNAMICS 

The element of the shaft is shown in Fig. 1. The equilibrium of forces yields: 

V + f(s,t)d.s - (V+dV) = psA,d.s $ , (1) 

where the inertia force of the element is: 

The equilibrium of moments yields: 

(M+dM) + f(s,t)d.r $ - (V+dV)d.s - M = 0 

and 

Disregarding the terms involving second powers in the equation, we obtain: 

av 
- x + f(s,t) = psA, $ 

aM 
- v. 

ds- 

Substituting equation (4) into (3) gives: 

V+dV i 

t / 

1’ 
M+dM 

(2) 

(3) 

(4) 

FIG. 1. The element of the shaft. 
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a2M 
as2 + psA, as = f(s,t) 

a2x 
and M = EI, __ so 

a9 

EZ, ‘$ + p,A, >; = f(s,t). 

The equation for the unforced shaft with damping can be established as follows: 

(5) 

3. EIGENPROPERTIES OF SHAFT WITHOUT FLUID 

3.1. Lateral motion 

The shaft of a BTA drill is seen as an Euler beam and the equation of motion can 
be written as: 

B.C. 

s = 0, 
a2x a3x -----_ 
as2 - as3 0 

a2x a3x 
s=l, -=s=o 

as2 

let 

X(sJ) = 9(s) 4(t). 

The mode shape function +(s) for the Euler beam is: 

+j(S) = COSh BjS + COS PjS - lY.j (sinh PjS + sin /3jS) 

(6) 

(7) 

and 

Gosh PjI - COS pjI 

Oli = sinh pi1 - sin pi1 

COsh pjf COS PjI = 1. 

The values of Pjl are listed in Table 1. 
Giving an impulse to the shaft, the equation of motion of the Euler beam becomes: 

Doing the Fourier Transform of the above equation and solving for the closed form 
solution, we can obtain: 
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TABLE 1. THE VALUES OF f.S,i 
(coti pi1 cos pjr = 1) 

Pjr The values of pii 

4.730040789 
7.853204489 

10.995607853 
14.137165546 
17.278759956 
20.420351982 
23.561944008 
26.703537941 
29.845129967 
32.986722946 
36.128316879 
39.269906998 

(8) 

The theoretical natural frequency is equal to: 

The frequency response function is: 

H(ss, sr, W) = ,zI 4ji(ss)4ji(sr)Hj(w) . 
3.2. Longitudinal motion 

Following analysis similar to that in section 2, the equation for longitudinal motion 
can be obtained: 

B.C. 

let 

es70 = 4(s) 4(t)? 

the mode shape function can be obtained from the boundary condition. 

(9) 

4j(s) = cod?. (10) 
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Giving an axial impulse to the shaft, the equation of motion becomes: 

EA,$-p,A,$-C$=h(t). 

Doing the Fourier Transform of the above equation and solving for the closed form 
solution, we can obtain: 

Hi(W) 
1 

W2 

j2E,rr2 

PSI2 

(11) 

The theoretical natural frequency is: 

The frequency response function is: 

3.3. Experiments 

The arrangements of this experiment are shown in Fig. 2. 
The method of experiment: 
(1) For lateral motion: the accelerometer is placed at point 4 and the hammer strikes 

the shaft from point 1 to point 15. 
(2) For longitudinal motion: the hammer strikes the end of the shaft horizontally 

and the accelerometer is placed at points 4, 6, 8, 10 and 12. 
3.3.1. Frequency response. Figures 3 and 4 show the experimental lateral and 

longitudinal frequency response, respectively. 
3.3.2. Natural frequency. 

3.3.2.1. Lateral. The theoretical and experimental natural frequencies of modes l-8 
are listed in Table 2 which reveals that the theoretical values of the Euler beam are 
close to the experimental values. 
3.3.2.2. Longitudinal. Comparisons of the experimental natural frequencies of modes 
1 to 3 with those of the theory are listed in Table 3. It is seen that both results stand 
in good agreement. 

3.3.3. Mode shape. 

,// “,1 
,., 

, ,/ Y/ H 

,‘,” 
,‘/j,,. .,,/ 

T 
/,/ /’ 

I , ,,/,,.</:;, “‘ : / ,: ; ’ I,‘/: *,,’ ;@2(*;: 
,, / /,’ ,‘,’ , , ,‘/‘,X i, , , , , / 

1 St?.ilLg stl.ingl 

FIG. 2. The arrangement of the experiment (shaft without fluid). 
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HlT rmr_Fun CHa/CHl X: 693.750 Y: 495.092 curror: On 

FIG. 3. The experimental frequency response for lateral vibration (shaft without fluid, B.C. free-free, 
measured position s = 0.4 m, exciting position s = 0.4 m). 

HlTrmnsJun CHB/CHI X: 1.62Sk Y: 146.037 curror: On 

FIG. 4. The experimental frequency response for longitudinal vibration (shaft without fluid, B.C. free-free, 
measured position s = 0.6 m, exciting position s = 0 m. 

TABLE 2. THE NATURAL FREQUENCIES OF LATERAL VIBRATION 
OF THE SHAFC OF THE BTA DRILL (SUPPORTED HORIZONTALLY, 

WITH NO FLUID) 

Mode Theoretical values Experimental values 

1 36.538 Hz 38.752 Hz 
2 100.718 Hz 103.469 Hz 
3 197.447 Hz 199.699 Hz 
4 326.390 Hz 329.396 Hz 
5 487.571 Hz 492.157 Hz 
6 680.987 Hz 693.670 Hz 
7 906.640 Hz 914.559 Hz 
8 1164.528 Hz 1178.076 Hz 

3.3.3.1. Lateral. The mode shape function of the shaft is: 

+j(S) = COSh PjS + COS PjS - 

CoSh @jI - COS PiI 

Sinh pi, _ Sin pi/ (Sinh PjS + Sin pjS)* 

The comparisons of the first five theoretical mode shapes with the corresponding 
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TABLE 3. THE NATURAL FREQUENCIES OF LONGITUDINAL 
VIBRATION OF THE SHAFT OF THE BTA DRILL (SUPPORTED 

HORIZONTALLY, WITH NO FLUID) 

Mode Theoretical values Experimental values 

1 1599.824 Hz 1615.979 Hz 
2 3199.649 Hz 3255.210 Hz 
3 4799.474 Hz 4898.316 Hz 

Normalized displacement 
1 

0.8 - 9 

-0.2 - 

-0.4 - 

-0.6 - 

-0.6 - 

-1 
0 0.2 0.4 0.6 0.6 1.2 1.4 1.6 

Length of the 
shak 

(ml 

- Theory ‘.c.,. Experiment 

FIG. 5. The mode shape of mode 1 for lateral vibration (shaft without fluid, free-free). 

experimental results are shown in Figs 5-9. It is seen that the mode shapes predicted 
by the theory are confirmed by experiment except the mode shape of mode 4. The 
reason may be that the accelerometer is placed at the node of mode 4. In the next 
experiment the accelerometer will be placed at point 6 to examine the results. Point 
6 is a node of mode 5. It can be predicted that the mode shapes predicted by theory 
will be confirmed by experiments except the mode shape of mode 5 in next experiment. 
3.3.3.2. Longitudinal. The mode shape function of the shaft is: 

C$j(S) = COS ‘T e 

Normalized dlaplacement 

0.: I_l. 1 

-0.4 - 

-0.6 - 

-“: :- 
0 0.2 0.4 0.6 0.6 

Length of the shalt (ml 
1.2 1.4 1.6 

- Theory ..w. Experiment 

FIG. 6. The mode shape of mode 2 for lateral vibration (shaft without fluid, free-free). 
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Normalized displacement 

0 0.2 0.4 0.6 0.6 1.2 1.4 1.6 

Length of the 
shdt 

(m) 

- Theory .-a... Experiment 

FIG. 7. The mode shape of mode 3 for lateral vibration (shaft without fluid, free-free). 

Normalized displacement 
1 , 

0.6 

0.6 - 

0.4 - 

0 0.2 0.4 0.6 0.8 shaflt 1.2 1.4 1.6 

Length of the (m) 

- Theory --e-. Experiment 

FIG. 8. The mode shape of mode 4 for lateral vibration (shaft without fluid, free-free). 

Normalized displacement 

0.:: 

-I’ I 
0 0.2 0.4 0.6 0.8 

Length of the shaflt (ml 
1.2 1.4 1.6 

- Theory -O-.,Experiment 

FIG. 9. The mode shape of mode 5 for lateral vibration (shaft without fluid, free-free). 

The experimental mode shape of mode 1 is shown in Fig. 10. Although only five 
points are measured, the cosine shape can still be observed. 

4. EIGENPROPERTIES OF SHAFT WITH STATIC FLUID 

4.1. Lateral motion 

The internal fluid influences the shaft with its mass and force (pressure) effect. Here 
the mass effect is examined. 
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Normalized dieplacemenl 

0.4 - 

0.2 

-0.2 - 

-0.4 

-0.8 

-0.a - 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 

Length of the shaft (ml 

- Theory ..a.,- Experiment 

FIG. 10. The mode shape of mode 1 for longitudinal vibration (shaft without fluid, free-free). 

The equation of motion of the Euler beam with static fluid: 

Er, ‘$ + (p,A, + pfAf) ‘$ + Cd+ = 0 

B.C. 
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(12) 

s = 0, 
a2x a3x 
s=-g= 0 

s = I, 
a*x a3x 
s=z= 0, 

let 

the mode shape function $j(S) is the same as equation (7). Giving an impulse to the 
shaft, the equation of motion becomes: 

EI, ‘;f + ( psA, + prAf) ‘+; + C a: = h(t). 

Doing the Fourier Transform of the above equation and solving for the closed form 
solution, we can obtain: 

The theoretical natural frequency is equal to: 

(13) 
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The frequency response function is: 

4.2. Longitudinal motion 

The equation of motion: 

EA, $ - (p,A, + pfAf) z - C$ = 0 

B.C. 

g (0,t) = 0 

$ (1,t) = 0 

let 

w(v) = 4(s) 4(t) 

the mode shape function +j (s) is the same as equation (10). 
Referring to the previous section, we can obtain: 

(14) 

The theoretical natural frequency is: 

f”=&Jz. 
s s f f 

The frequency response function is: 

4.3. Experiments 

The purpose of this experiment is to examine the influence of the static fluid. The 
arrangements of this experiment are similar to that shown in Fig. 2 but with sealed 
static fluid. 

The method is the same as that given in section 3.3 but with the accelerometer 
placed at point 6. 

4.3.1. Natural frequency. 
4.3.1.1. Lateral. Comparing the theoretical values of natural frequencies of modes 
l-8 with those of the experiment in Table 4, it is seen that the theoretical values of 
the Euler beam are close to the experimental values. Since the fluid term pfAf appears 
in the denominator within the root, the natural frequencies are expected to be lower 
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TABLE 4. THENATURALFREQUENCIESOFLATERALVIBRATION 

OFTHESHAFTOFTHEBTADRILL(SUPPORTEDHORIZONTALLY, 

WITH STATIC FLUID) 

Mode Theoretical values Experimental values 

1 34.989Hz 34.877 Hz 
2 96.338 Hz 96.881 Hz 
3 188.861 Hz 189.887 Hz 
4 312.195 Hz 313.895 Hz 
5 466.368 Hz 472.781 Hz 
6 651.373 Hz 654.917 Hz 
7 867.213 Hz 868.056 Hz 
8 1113.887 Hz 1116.072 Hz 

TABLE 5. THE NATURAL FREQUENCIES OF LONGITUDINAL 

VIBRATION OF THE SHAFT OF THE BTA DRILL (SUPPORTED 

HORIZONTALLY, WITH STATIC FLUID) (BEFORE THE EQUATION 

OF MOTION BEING CORRECTED) 

Mode Theoretical values Experimental values 

1 1530.254 Hz 1615.979 Hz 
2 3060.508 Hz 3255.210 Hz 
3 4590.762 Hz 4893.316 Hz 

than those of the shaft without fluid and this is indeed proven by the experimental 
results. This justifies the validity of the equation of motion. 
4.3.1.2. Longitudinal. Comparisons of the experimental natural frequencies of modes 
l-3 with theoretical values are listed in Table 5. There are discrepancies, however, a 
check with no-fluid reveals that the fluid does not cause any change in longitudinal 

2 

natural frequencies. This fact can be seen from Table 6, so the term of pfAf $!$ can 

be neglected and the equation of motion in the longitudinal direction for this experiment 
can thus be modified as follows: 

B.C. 

a$ (0,t) = 0 

g (f,t) = 0. 

TABLE 6. THE EXPERIMENTAL VALUES OF THE NATURAL 

FREQUENCIES OF LONGITUDINAL VIBRATION OF THE SHAFT 

OF THE BTA DRILL (SUPPORTED HORIZONTALLY) 

Mode No fluid With static fluid 

(16) 

1 1615.979 Hz 1615.979 Hz 
2 3255.210 Hz 3255.210 Hz 
3 4898.316 Hz 4898.316 Hz 
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TABLET. THE NATURAL FREQUENCIES OF LONGITUDINAL 

VIBRATION OF THE SHAFT OF THE BTA DRILL (SUPPORTED 

HORIZONTALLY, WITH STATIC FLUID) (AFTER THE EQUATION 

OF MOTION BEING CORRECTED AS EQUATION (16)) 

Mode Theoretical values Experimental values 

1 1599.824 Hz 1615.979 Hz 
2 3199.649 Hz 3255.210 Hz 
3 4799.474 Hz 4898.316 Hz 

Normalized displacement 
1 

0.6 

0.4 - 

0.2 

1 

-0.0 

-1 -I 

0 0.2 0.4 0.6 0.8 shaflt 1.2 1.4 1.6 

Length of the (ml 

- Theory -.a.- Experiment 

FIG. 11. The mode shape of mode 1 for lateral vibration (shaft with static fluid, free-free). 

The comparisons of the experimental natural frequencies of modes l-3 with those 
of modified theory are listed in Table 7. 

4.3.2. Mode shape. 
4.3.2.1. Lateral. The mode shape function of the shaft is: 

+j(S) = cash PjS + COS PjS - oj(sinh PUS + sin PjS) 

The comparisons between the theoretical and experimental mode shapes of modes 
l-5 are shown in Figs 11-15. We see good agreement between the theoretical and 
experimental mode shapes with the exception of mode 5. This result justifies the 
reasoning in previous experiment. 

Normalized displacement 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.6 

0 0.2 0.4 0.6 0.8 
Length of the shalt (ml 

1.2 1.4 1.6 

- Theory .-a-. Experiment 

FIG. 12. The mode shape of mode 2 for lateral vibration (shaft with static fluid, free-free). 
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Norma l i zed  d i sp lacemen t  
t I 

0.8  c~ 

0 .6  c>.""". 
f.: o.,o\ /...° 0.2 

-0.6 

-0.8 
- 1  , ,  t L i L i i i 

0 0.2 0.4 o.s o.a t t.2 t.4 t.6 
Leng th  o f  the  sha f t  (m) 

- -  T h e o r y  ' ~ " "  E x p e r i m e n t  

FIG. 13. The mode shape of mode 3 for lateral vibration (shaft with static fluid, f ree-free) .  

Norma l i zed  d i sp lacemen t  
1 

0.8 

0 .6  

0 .4  

0 .2  

0 

- 0 . 2  

- 0 . 4  

- 0 . 6  

- 0 . 8  

- 1  

0 

E3 

0.2 0.4 0.6 0.8 I 1.2 1.4 

Leng th  of  the sha f t  (m) 
1.6 

- -  T h e o r y  .-a... E x p e r i m e n t  

FIt~. 14. The mode shape of mode 4 for lateral vibration (shaft with static fluid, f ree-free) .  

Norma l i zed  d i sp l acemen t  
1 

0 .8  

0 .6  o o .  

0 "-..... o .: 
-0.2 
-0.4 
- 0 . 6  ~ ..... D ' ,  . . "  

c3 . - "  

- 0 . 8  o 

- 1  I I L I I i I 

0 0.2 0 .4  0.6 0.8 I 1.2 1.4 1.6 

Leng th  o f  the  sha f t  (m) 

- -  T h e o r y  " ' ~  E x p e r i m e n t  

Fro. 15. The mode shape of  mode 5 for lateral vibration (shaft with static fluid, f ree-free) .  

4.3.2.2. Longitudinal. The mode shape function of the shaft is: 

eAs) = c o s ~ .  
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The experimental mode shape of mode 1 is shown in Fig. 16. Again the cosine shape 
can be roughly seen from the five points of measurement. 

5. EIGENPROPERTIES OF SHAFT WITH TOOL HEAD BUT WITHOUT FLUID 

5.1. Lateral motion 

The cutting head is a concentrated mass on one end of the shaft. Its influence is 
examined. 

The equation of motion: 

B.C. 

s = 0, 
a*x a3x 

p-0 asZ - as3 

s = 1, 
a*x 
--=O,E&$=m,$. 
as2 

The above system can be substituted by the following equivalent system: 

B.C. 

(17) 

(18) 

s = 0, 
a*x a3x 
g+Jg=o 

a*x a3x 
s=l, -=as’=O as* 

let 

mo = WI 4(t) 

the mode shape function +j(s) is the same as equation (7). 

Normalized displacement 

0.4 - 

0.2 

o- 

-0.2 

-0.4 

-0.6 - 

-0.8 

0 0.2 0.4 0.6 0.0 1 1.2 1.4 1.6 

Length of the shaft (m) 

- Theory .a.. Experiment 

FIG. 16. The mode shape of mode 1 for longitudinal vibration (shaft with static fluid, free-free). 
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Giving an impulse to the shaft, the equation of motion becomes: 

04X 02X OX 02X 
EI~ ~ s  4 + p~A~ ~ - ~  + C ~ + m r S ( s - l )  ~ = h( t ) .  

Doing the Fourier Transform of the above equation and solving for the closed form 
solution, we can obtain: 

1 
H i ( w )  = . (19) 

m~ j - cj - 
p~A~ + 

2,r 

The theoretical natural frequency is equal to: 

= 1 / ~Elsmt. 
f~ ~ psA~ + 2-- ~ 

The frequency response function is: 

M 
n(Ss, Sr, W) = E ~/(Ss) IJ#](Sr) Hi(w).  

j=l 

5.2. Longi tudinal  mot ion  

The equation of motion: 

02w 02w - C 0w = 0. 
EA~ ~ s  z - (o~A~ + pfAf) ~ -  Ot (20) 

B.C. 

O__w_w (0,t) = 0 
Os 

02w 
E A  Ow (l , t )  = - m I . 

Os Ot 2 

Rearranging the above equation yields: 

_ 02w O2w - A 02w - COW m t ~ ( s - l )  = O. (21) 

B.C. 

Ow 
Os (O,t) = 0 

Ow 
Os ( l , t )  = O, 
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es4 = Q(s) q(t), 

the mode shape function +i(s) is the same as equation (10). Giving an axial impulse 
to the shaft, the equation of motion becomes: 

EA, $ - psA, $ - C $ - ma(s-l) 2 = h(t). 

Doing the Fourier Transform of the above equation gives: 

(22) 

The theoretical natural frequency is: 

The frequency response function is: 

5.3. Experiments 

The arrangements of this experiment are similar to that shown in Fig. 2 but with 
tool head installed. The method is the same as that described in section 4.3. 

5.3.1. Natural frequency. 
5.3.1.1. Lateral. The decreases of the natural frequencies due to the tool head can 
be predicted by the equation of theoretical natural frequency. Comparing the theoretical 
values of the natural frequencies of modes l-7 with those of the experiment in Table 
8, we can find the theoretical values of natural frequencies close to the experimental 
values and the above prediction can be proven by experimental results. Thus the 
equation of motion is justified. 

TABLE 8. THE NATURAL FREQUENCIES OF LATERAL VIBRATION 

OF THE SHAI?I OF THE BTA DRILL WITH TOOL HEAD (SUP- 

PORTED HORIZONTALLY, WITH NO FLUID) 

Mode Theoretical values Experimental values 

1 35.662 Hz 35.801 Hz 
2 98.305 Hz 98.048 Hz 
3 192.718 Hz 185.624 Hz 
4 318.572 Hz 318.327 Hz 
5 475.892 Hz 480.531 Hz 
6 664.675 Hz 666.543 Hz 
7 884.923 Hz 868.056 Hz 
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TABLE 9. THE NATURAL FREQUENCIES OF LATERAL VIBRATION 

OF THE SHAFI OF THE BTA WITH TOOL HEAD (SUPPORTED 

HORIZONTALLY, WITH NO FLUID) 

45 

Mode Theoretical values Experimental values 

1 1561.504 Hz 1592.728 Hz 

Normalized displacement 
l( 

0.6 - 

0.6 - 

0.4 - 

0.2 

-0.6 - 

-11 I 
0 0.2 0.4 0.6 0.6 shaflt 1.2 1.4 1.6 

Length of the (ml 

- Theory .-Q.. Experiment 

FIG. 17. The mode shape of mode 1 for lateral vibration (shaft with tool head but without fluid, free-free). 

5.3.1.2. Longitudinal. The comparison between the experimental and the theoretical 
natural frequency of mode 1 is listed in Table 9. We see good agreement between 
both results. 

5.3.2. Mode shape. 
5.3.2.1. Lateral. The mode shape function of the shaft is: 

Plotting the mode shapes of modes l-5 according to the above equation and compar- 
ing with the experimental results given in Figs 17-21, we find that the theoretical and 
experimental mode shapes are in good agreement except that of mode 3. This differs 
from the results in the previous section. Apparently, the position of the nodes of modes 
3 and 5 are shifted when the tool head is added to the shaft end. 

Normalized displacement 

0.: 1.1 

0.6 - 

0 0.2 0.4 0.6 0.6 shalt 1.2 1.4 1.6 

Length of the (ml 

FIG. 18. The mode shape of mode 2 for lateral vibration (shaft with tool head but without fluid, free-free). 
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Normalized displacement 

‘I 0.8 

0 0.2 0.4 0.6 0.6 1.2 1.4 1.8 

Length of the 
shit 

(m) 

- Theoty -a .. Experiment 

FIG. 19. The mode shape of mode 3 for lateral vibration (shaft with tool head but without fluid, free-free). 

Normalized displacement 
l- 

0.8 - 

0.6 - 0 

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Length of the 
shaflt 

(m) 

- Theory ..Q .. Experiment 

FIG. 20. The mode shape of mode 4 for lateral vibration (shaft with tool head but without fluid, free-free). 

FIG. 

5.3. 

-11 0 I 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Length of the 
shaflt 

(m) 

- Theory -a- Experiment 

21. The mode shape of mode 5 for lateral vibration (shaft with tool head but without 
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FIG. 22. The mode shape of mode 1 for longitudinal vibration (shaft with tool head but without fluid, 
free-free). 

TABLE 10. THE EXPERIMENTAL NATURAL FREQUENCIES OF LATERAL VIBRATION 

OF THE SHAFT OF THE BTA DRILL UNDER DIFFERENT CONDITIONS 

Mode No fluid With static fluid 
Equipped with 

tool head 

1 38.752 Hz 34.887 Hz 35.801 Hz 
2 103.469 Hz 96.881 Hz 98.048 Hz 
3 199.699 Hz 189.887 Hz 195.524 Hz 
4 326.396 Hz 313.875 Hz 318.327 Hz 
5 492.157 Hz 472.781 Hz 480.531 Hz 
6 693.670 Hz 654.917 Hz 666.543 Hz 
7 914.559 Hz 868.056 Hz 871.931 Hz 

The experimental mode shape of mode 1 is shown in Fig. 22. 
The comparisons of the experimental natural frequencies of the above three con- 

ditions of lateral vibration are shown in Table 10. We find that the conditions of the 
shaft with static fluid and the shaft equipped with the tool head but without fluid will 
reduce the natural frequencies of the shaft in the lateral direction. The effect of static 
fluid is more obvious than that of the tool head. 

6. RESULTS AND DISCUSSION 

The above investigation treats the BTA drill as a continuous beam to study its 
dynamics. The following conclusions can be made. 

(1) There are at least seven lateral motion modes under 1000 Hz. These are far 
lower than those of other cutting tools. For example, Tlusty [ll] cited a long end mill 
with a first mode at 1400 Hz and a short end mill with a first mode at 3500 Hz. The 
internal cutting fluid and the tool head at the front end further reduce the natural 
frequencies from several Hz for mode 1 to approx. 50 Hz for mode 7. A look at Table 
11 reveals that the amplitude of the lowest two modes are significant enough to 
influence the drilling process of which the depth of cut is in the order of millimetres. 

TABLE 11. THE MAXIMAL EMPIRICAL AMPLITUDE OF MOTION (TOOL LENGTH: 1600 mm) UNIT: mm 

Lateral mode Longitudinal 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 mode 1 

No fluid 1.032 2.762 0.101 0.283 0.148 0.018 
With fluid 4.687 1.220 0.612 1.593 0.538 0.024 
With tool head 2.705 0.384 0.027 0.032 0.673 0.074 
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(2) Lateral motion shows better agreement between theoretical and experimental 
results than longitudinal motion. This may be due to the fact that there are 15 striking 
points and five measuring points available for lateral experiment but only one striking 
point, the shaft end, and five measuring points available for longitudinal experiment. 
Further measuring points could improve the results of longitudinal experiment but each 
measuring point is a ground sensor seat which, when amply prepared, might change 
the characteristics of the tool shaft. 

(3) However, the results concerning longitudinal motion are sufficient to supply 
knowledge of practical significance. The natural frequencies of the first longitudinal 
mode are higher than at least 1590 Hz and the maximal magnitude of deflection is 
negligible (Table 11). It was also found that the internal fluid has no effect in the 
longitudinal direction. This means the longitudinal motion of the tool can be neglected. 
The penetration effect and hence the resultant process damping may not be significant 
for the cutting process. 

(4) Some differences between the theoretical and experimental shaft mode shape 
which are mainly at amplitude peaks can be seen in Figs 6 and 9. These may be caused 
by the suspension hindrance. Since the ideal suspension string should be very soft to 
allow a genuine ‘free’ motion of the shaft, this cannot be guaranteed by the actual 
suspension string. The deviation becomes somewhat larger in the case of a shaft with 
internal fluid (Figs 11-14). This is evidence that the internal fluid is not an integral 
part of the shaft during motion. 

(5) There are significant discrepancies between theoretical and experimental mode 
shapes in Figs 8 and 15; examination shows that the location of the accelerometer is 
near the node of mode 4 in Fig. 8 and mode 5 in Fig. 15. Accelerometer seats are 
prepared at 0.4, 0.6, 0.8, 1.0 and 1.2 m along the tool shaft, among which 0.8 m 
incidentally corresponds to the node of mode 2; 0.4, 0.8 and 1.2 m correspond to the 
node of mode 4; while 0.6 and 1.0 m are near the node of mode 5. If the accelerometer 
seats were prepared at places other than the nodes of all possible motion modes, better 
agreement could be expected. On the contrary, the suspension strings should be fixed 
on the node to reduce possible suspension hindrance. In addition, the mass of the 
accelerometer should be as small as possible. There is an accelerometer with 0.1 g 
mass, but which is not available owing to an international export regulation. 

(6) The tool head can be treated as a concentrated mass on the shaft end. Its 
influence is less than that of the internal fluid, but it causes the mode shape to be less 
symmetrical. The head side becomes more reluctant in dynamics and the nodes of 
mode 3 are shifted (compare Figs 19 and 7). Since the disposition of the cutting lips 
are not symmetrical, the asymmetric cutting force might amplify this effect to give a 
complicated head motion. 

7. CONCLUSIONS 

The shaft of a BTA deep hole drill is long enough to claim its own dynamics which 
may influence the cutting process taking place at the tool head. This effect has not 
been rigorously studied in the past. This paper established the equations for lateral 
and longitudinal motion based on the Euler beam theory. Effects of the cutting head and 
internal fluid were included. Solutions were found for free-free boundary conditions. 
Theoretical natural frequencies and mode shapes were obtained. Three series of exper- 
iments were performed. Satisfactory agreements between theoretical and experimental 
results confirmed the validity of the Euler beam approach and the proposed equations. 
In addition, the studies reveal the following facts: (1) the lateral natural frequencies 
are far lower than the longitudinal natural frquencies. This means that the lateral 
vibrational behavior of the shaft is most likely to influence the cutting process; (2) the 
longitudinal natural frequencies are not influenced by the static internal fluid. Since 
their natural frequencies are almost over 1600 Hz, the longitudinal vibrational behaviors 
may have little influence upon the cutting process; (3) the mass effect of internal fluid 
on the lateral natural frequencies is slightly larger than the effect of the cutting head. 
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However, the pressure effect of the internal fluid is not covered in this study. This 
remains to be examined in the future; and (4) the cutting head may shift the node 
position of the shaft mode shape. 
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APPENDIX 

The equipment used in the experiments: 
1. Machine tool: 

SAN SHING SK26120 heavy duty precision lathe. 
2. Hammer: 

Hammer: PCB 086B05 SN5163 
Range: O-5000 lb 
Amnlifier: PCB model 480DO6 Dower unit. 

3. Accelerometer: 
Accelerometer: TEAC 6012 
Weight: 0.3 g 
Amplifier: TEAC SA620. 

4. Spectrum analyzers: 
Microlink and Signal Doctor 

5. The Deep Hole Drill: 
(a) Drill head: 

Type: SANDVIK 420.6-0014D 18.91 70 
Mass: 0.030205 kg 
Mass moment of inertia J,: 1.420 x 10e6 kg.m* 

(b) Drill tube: 
Type: SANDVIK 420.5-800-2 
Length: 1.6 m 
Internal diameter: 11.5 mm 
External diameter: 17.0 mm 
Material: JIS SNCM 21 
Density p.: 7860 kg/m3 
Young’s modulus E: 2.06 x 10” Pa 
Shear modulus G: 8.1 x lOi Pa 

6. Fluid: 
Type: R68 
Density pr: 866 kg/m3 
Absolute viscosity )I: 0.383 kg/m s. 


