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The long-standing controversy concerning the effect of electron-electron interaction on the electrical

conductivity of an ideal graphene sheet is settled. Performing the calculation directly in the tight binding

approach without the usual prior reduction to the massless Dirac (Weyl) theory, it is found that, to leading

order in the interaction strength � ¼ e2=@v0, the dc conductivity �=�0 ¼ 1þ C�þOð�2Þ is signifi-

cantly enhanced with respect to the independent-electron result �0, i.e., with the value C ¼ 0:26.

The ambiguity characterizing the various existing approaches is nontrivial and related to the chiral

anomaly in the system. In order to separate the energy scales in a model with massless fermions,

contributions from regions of the Brillouin zone away from the Dirac points have to be accounted for.

Experimental consequences of the relatively strong interaction effect are briefly discussed.
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Introduction.—It has been demonstrated recently that a
graphene sheet, especially one suspended on leads, is one
of the purest electronic systems. The scattering of charge
carriers in suspended graphene samples of submicron
length is so negligible that the transport is ballistic [1,2].
The novelty of the physics of undoped graphene is in the
ability to probe the ‘‘ultrarelativistic’’ physics of excita-
tions leading to numerous similarities with phenomena
previously associated with the high energy physics.
Examples include Zitterbewegung and Klein tunneling
[3], electron-hole (Schwinger) pair creation by an electric
field [4], a possibility of dynamical (chiral) symmetry
breaking by electron interaction effects [5] (exciton con-
densation), and the chiral (parity) anomaly [6]. The latter,
a quantum anomaly, attributed to graphene long before
its discovery, is one of the most remarkable features of
a relativistic field theory with massless fermions [7,8].
Generally it is associated with the fact that a classical
symmetry is ‘‘broken’’ by quantization in the case of an
infinite number of degrees of freedom, when the ultraviolet
(UV) cutoff is necessary. Chiral anomaly means that the
classical axial Uð1Þ symmetry is violated. This led to
explanations of such physical phenomena [7] as �0 !
�� decay (that would be suppressed by the symmetry),
the solution of the problem of the large mass of the �
meson (zero, if it were to be a Goldstone boson of a
nonanomalous symmetry), etc. The anomalies are notori-
ous in that calculations of a well-defined physical quantity
using different UV cutoff procedures (for example, the
sharp momentum cutoff, lattice regularization, or a prop-
erly defined dimensional regularization) led to different
finite values. The physical essence of this ambiguity is
that there is no simple separation between the UV and
infrared physics and certain care should be exercised in
construction of the correct effective low energy model.

This might be suspected to occur in a theory of graphene.
In a description of graphene, while the starting point might
be an atomic or tight binding model [9], one typically
replaces it by a massless effective Dirac (Weyl) model
‘‘near’’ its two Dirac points constituting the Fermi
‘‘surface’’ of undoped graphene.
In this Letter, we point out that the elucidation of the

ambiguities encountered in the theory of the (a priori
strong) Coulomb interactions should be associated with
a careful treatment of the separation of scales due to the
anomaly. We show in detail, using the tight binding model
providing a natural UV cutoff, that some aspects of the
graphene physics are not dominated by the two Dirac
points of the Brillouin zone at which the spectrum is
gapless. The low frequency conductivity in the quasi-
dielectric phase below the exciton condensation critical
coupling [5,10] �� e2=@v<�c (neglecting weak loga-
rithmic renormalization of the electron velocity [10–13],
v ¼ v0 � 106 m=s) is given in terms of its value in the
noninteracting theory, �0 ¼ e2=4@, by

�ð!Þ=�0 ¼ 1þ C�þOð�2Þ: (1)

This expression is valid for frequencies below the hopping
energy � ¼ 2:7 eV. The value of the only numerical con-
stant C appearing here has been a matter of intense con-
troversy. The first detailed calculation by Herbut, Juričić,
and Vafek [14] utilizing a sharp momentum cutoff regu-
larization of the Dirac model provided a value of order 1:

Cð1Þ ¼ 25

12
� �

2
� 0:51: (2)

The use of the sharp momentum cutoff was criticized by
Mishchenko [15], who obtained a value of
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Cð2Þ ¼ 19

12
� �

2
� 0:01; (3)

making a ‘‘soft’’ momentum cutoff regularization. He
supported this choice by the consistency of the Kubo and
the kinetic equation calculations of conductivity with that
of the polarization function (dielectric constant). The con-
sistency required a modification of the long range interac-
tion so that it becomes UV cutoff dependent. It was further
supported by Sheehy and Schmalian [16], who used yet a
different cutoff procedure and pointed out that only such a
small value of C can explain the experimental observation
of the optical conductivity in graphene on a substrate [17],
which is within 1% of �0. This apparently closed the issue,
albeit such a small numerical value would have profound
physical consequences even beyond the transport and
dielectric properties.

Nevertheless, the interaction strengthCwas recalculated
once again by Juričić, Vafek, and Herbut [18], who argued
that the modification of the interaction requires simulta-
neously a Pauli-Villars regularization of massless fermi-
ons. They applied yet another regularization, making the
space dimensionality fractional, D ¼ 2� " (similar to the
space-time 4� " regularizations that have long been in use
in high energy and critical phenomena physics [8]) that
modified both the current operator and the interaction in
such a way that they satisfy the Ward identities and
obtained

Cð3Þ ¼ 11

6
� �

2
� 0:26: (4)

The dimensional regularization is questionable on physical
grounds, and, in a comprehensive subsequent work [19],

the authors reaffirmed the small valueCð2Þ and it seems that
it is a commonly accepted one. To refute the earlier calcu-
lation of Ref. [18], they write, ‘‘of course, satisfying the
Ward-Takahashi identity does not guarantee that the regu-
larization scheme will produce the exact value of C for the
physical system. We believe that if a really quantitative
result is desired for the constant C, then one should resort
to a complete electronic structure calculation (based, for
example, on a realistic tight-binding Hamiltonian) rather
than working with an effective low-energy theory.’’ We
followed this path but surprisingly found that the tight

binding value is Cð3Þ. The situation is further complicated
by other values in literature like C ¼ 0:34 obtained in a
dielectric constant calculation [20].

To reveal the origin of the ambiguity exhibited by the
various values of C (there is a consensus that all the
calculations are mathematically sound [16]), we use a
dynamical approach (used previously to address the ambi-
guity of the noninteracting case [4,21]) directly in the dc
case by ‘‘switching on’’ a uniform electric field in the tight
binding model with Coulomb interactions and then con-
sidering the large-time limit. This approach (known in field
theory as the ‘‘infinite hotel story’’) is the best way to

reveal the physical effects of anomalies [7,8]. One can
directly separate the contributions from the neighborhood
of Dirac points and the ‘‘anomalous’’ contributions from
the rest of the Brillouin zone, so that one can decide what
regularization of the effective Weyl theory is the correct
one. We have also performed a standard diagrammatic
Kubo formula calculation of the general ac conductivity
within the tight binding model and obtained the same
result.
The tight binding model and its linear response to an

electric field.—Electrons in graphene are described suffi-
ciently accurately for our purposes by the 2D tight binding
model of nearest-neighbor interactions in an external field
described by Wilson links [22]:

K½A� ¼ ��
X
n;i

c�yrn Wn;ic
�
rnþdi

þ H:c:;

Wn;i ¼ exp

�
ie

c@

Z 1

s¼0
Aðrn þ sdi; tÞ � di

�
:

(5)

Here, Aðr; tÞ is the vector potential and c�yr creates an
electron with spin � (summation over � implied) on the
sites of the honeycomb lattice rn ¼ n1a1 þ n2a2, where
lattice vectors a1;2 and the nearest-neighbor displacements

di are defined in Fig. 1.
Coulomb interactions between electrons are

V ¼ X
n;m

�
1

2
vðrn � rmÞðNA

nN
A
n þ NB

nN
B
n Þ

þ vðrn � rm � d1ÞNA
nN

B
m

�
; (6)

where NA
n ¼ c�yrn c

�
rn , N

B
n ¼ c�yrnþd1

c�rnþd1
, and vðrÞ ¼ e2=r.

The corresponding current density operator (in the
Heisenberg picture) is c�K½A�=�Aðr; tÞ:

FIG. 1 (color online). Honeycomb lattice for graphene.
The sublattice A (red points) is spanned by the lattice vectors
a1;2 ¼ a

2 ð�1;
ffiffiffi
3

p Þ where a ’ 3 �A. The three nearest neighbors

on sublattice B (blue points) are displaced by d1 ¼ 1
3 ða1 � a2Þ,

d2 ¼ 1
3 ða1 þ 2a2Þ, and d3 ¼ � 1

3 ð2a1 þ a2Þ. Wilson links W

describing the minimal coupling to the vector potential Aðr; tÞ
are defined in Eq. (5).
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Jðr; tÞ ¼ � i�e

@

X
n;i

di

Z 1

s¼0
�ðr� rn � sdiÞ

� c�yrn Wn;ic
�
rnþdi

þ H:c: (7)

This describes a networklike flow of currents on links
between neighboring sites in Fig. 1. As was emphasized
in the context of quasilocal interaction models (Hubbard
models) in graphene in Ref. [23] (and much earlier in the
context of lattice gauge models of particle physics [22]),
this model satisfies all the (nonanomalous) Ward identities
associated with charge conservation and therefore no trial-
and-error modification of the current operator is needed.

Let us consider a uniform electric field along the y
direction E ¼ � d

dt ð0; AðtÞ=cÞ switched on at t ¼ 0. The

current density is expanded to first order in A as J ¼ Jd þ
Jp, with the relevant components being

Jydðr; tÞ ¼ � e2�

c@2
AðtÞX

n;i

ðdyi Þ2c�yrn c�rnþdi
þ H:c:;

Jypðr; tÞ ¼ ie�

@

X
n;i

dyi c
�y
rn c

�
rnþ��

þ H:c:
(8)

Averaging the expectation value of current density over the
sample area S, jðtÞ ¼ 1

S

R
rh�jJyðtÞj�i, one obtains

jdðtÞ ¼ � �e2

c@2S
AðtÞX

n;i

ðdyi Þ2Reh�jc�yrn c�rnþdi
j�i;

jpðtÞ ¼ e2

@S

Z t

t1¼0
Aðt1Þ

X
nm;ij

dyi d
y
j

� Imh�jc�yrn c�rnþdi
e�iHðt�t1Þc�yrm c

�
rmþdj

j�i: (9)

The time independent Hamiltonian H ¼ K þ V, K �
K½A ¼ 0� and its ground state j�i are expanded to first
order in the interaction V. In the tight binding model K has
a spectrum "k ¼ �jhkj determined by the structure func-
tion of the links hk ¼ ��

P
ie

�ik�di . The dc field is defined
by AðtÞ ¼ �cEt, and the results of direct calculation are
presented and discussed in what follows.

The evolution of the current.—The current density to
first order in interactions is

jðtÞ ¼ �0E½C0ðtÞ þ �CðtÞ�: (10)

The components of the minimal dimensionless conductiv-
ity C0ðtÞ are written as integrals over the Brillouin zone
(BZ) (see Fig. 2):

C0
dðtÞ ¼ �16@t

X
k

Re

�
h	kh

00
k

"k

�
;

C0
pðtÞ ¼ �16@t

X
k

	2k
"k

� 8@
X
k

	2k
"2k

sinð2"kt=@Þ;
(11)

where 	k ¼ Imðzkh0kÞ, zk ¼ h	k="k, and a prime denotes a
derivative with respect to momentum along the field, ky.

The conductivity includes two apparently linearly diver-
gent in time ‘‘acceleration’’ parts. However, their sum
integrated over the BZ vanishes since it is a full derivative
of a periodic function, Re

P
kðhkh00kþ	2kÞ="k¼4

P
k"

00
k¼0.

This cancelation, albeit, is nontrivial: Contributions come
from the whole BZ. When one uses the effective Dirac
theory, hk ¼ v0@ðkx � ikyÞ ¼ v0@ke

�i’k , 	k�v0@cos’k

and integration over each of the two circles (with the cutoff
radius K) in Fig. 2 gives a positive UV divergent result:

Z K

k¼0
k
Z 2�

’¼0
Re

�
hkh

00
k þ 	2k
"k

�
¼ v0@

Z K

k¼0

Z 2�

’¼0
cos2’

¼ �v0@K: (12)

This is canceled exactly by contributions from regions of
the BZ far from Dirac points in which the low energy
effective model is not valid [24]. Now that the ‘‘accelera-
tion’’ parts have canceled, the oscillating term in jp at a

large t limit can be safely calculated from the effective low
energy theory. Indeed, averaging over long times T ¼ 1=�
by C ¼ �

R1
t¼0 CðtÞe��t, one obtains

C0 ¼ 2v0

�2

Z 1

k¼0

�

v2
0k

2 þ �2

Z 2�

’¼0
cos2’ ¼ 1; (13)

as expected. Now, we turn to the interaction corrections.
Similarly as before, the linear in t acceleration

corrections,

Cd ¼ � t

@S2
X
p;q

vp�q

"q
Imðh00qzqÞImðz	qzpÞ;

Cp ¼ t

@S2
X
p;q

vp�q	q Re

��
	q � 	p � i

4"0q
"q

�
ðz	qzpÞ

�
;

(14)

cancel each other beyond the Weyl model applicability
domain, leaving oscillating terms of Cp that now take a

form (averaged over large times)

FIG. 2 (color online). Contours of the tight binding energy "k
in the entire Brillouin zone of the honeycomb lattice. The circles
of radius K around the two Dirac points are the parts described
by the effctive low energy Weyl model.
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C¼ �

@S2
X
p;q

vp�q	q

4"2q þ�2

�
("

	qð4"2p þ 4"2q þ�2Þ
4"2p þ�2

� 	pð12"2q þ�2Þ
4"2q þ�2

#
Reðz	qzpÞ

þ 2"0q
"q

Imðz	qzpÞþ
4	p"q"p

4"2p þ�2

)

¼ 11

6
��

2
¼ Cð3Þ: (15)

The integrals are again computed (see the Supplemental
Material [25] for details) using the Dirac point approxi-
mation. This is the main result of the present work.
In this manner, we also calculated the ac conductivity
of the tight binding model and results will be presented
elsewhere.

Summary and discussion.—To summarize, we have cal-
culated the electron-electron interaction contribution to
dc and ac conductivity of undoped graphene within the
tight binding model. Thus, the controversy of what is the
actual magnitude (even order of magnitude) of the cor-
rections is resolved in favor of the intermediate value of

the constant C ¼ Cð3Þ 
 Cð2Þ. It is shown that the ambi-
guity between the three values originates in a nontrivial
feature of massless fermions, the chiral anomaly. The
major complication that massless fermions cause is the
absence of a perfect scale separation between high ener-
gies (on atomic scale �) and low energies (effective Weyl
theory on the condensed matter scale � �). We demon-
strated that some aspects of the linear response physics
are not dominated by the two Dirac points of the Brillouin
zone at which the effective low energy model is valid.
For example, large contributions (infinite, when the size
of the Brillouin zone is being considered infinite) to the
conductivity from the vicinity of the Dirac points are
canceled by contributions from the region between
them. Another famous consequence of this scale non-
separation is the ‘‘species doubling’’ of lattice fermions
[22], which in the context of graphene means that there
necessarily appears a pair of Dirac points of opposite
chirality. The UV regularization of the effective theory
does matter and, if one were to use such a model, the only
regularization known to date to be consistent with the
tight binding is the space dimensional regularization
developed in Ref. [18]. The reason is not clear to us
(especially due to the fact that fully relativistic dimen-
sional regularization in 2þ 1 anomalous theories is
known to be problematic [8,22]), but experience with field
theory would indicate that one can also construct a
successful sufficiently simple Pauli-Villars kind of
regularization.

If the result C ¼ Cð2Þ were the correct one, the physics
would look very different. Indeed such a small value would
easily explain the experimental absence of interaction
corrections [16] in the ac conductivity of graphene on a

substrate [17]. The explanation probably resides elsewhere,
for example, in the dielectric constant of the substrate,
screening due to puddles, etc. [26]. We have calculated
the effect of screened interactions represented by the
Hubbard model with quasilocal interactions (up to several
nearest neighbors) and obtained a vanishing first order
correction to ac conductivity at all frequencies in accor-
dance with a general theorem [23]. For local interactions,
this has already been noted in Ref. [19].
The intermediate value of C can also have a bearing on

the putative exciton condensation due to strong Coulomb
interaction that has not yet been experimentally observed
even in suspended graphene samples [2] and on interac-
tion corrections to the dispersion relation of the excita-
tions. The random phase approximation and various large
Nf results [27] should also be derived from the tight

binding model or from a properly regularized effective
low energy one. It is well known in field theory that,
generally, chiral anomaly effects appear only in one loop
calculations [8] and that higher orders resummed in a
random phase approximation or a 1=Nf approximation

should not lead to further ambiguities. It is remarkable
to note that differences between the values of C in

Eqs. (2)–(4) are Cð1;2Þ ¼ Cð3Þ � 1=4. Sometimes due to
anomalies similar differences in regularizations are re-
lated to a certain ‘‘topological invariant’’ stemming from
the measure of the path integration over fermionic fields
[8]. Here, the situation is more complicated since we are
dealing with correction due to interactions, not with the
simple bubble diagram.
After completing this calculation, we became aware of

the first simulations of the tight binding model on the
hexagonal lattice [28]. Our results are consistent with
this simulation; see the Supplemental Material [25].
We are indebted to Y. Yaish, H. C. Kao, E. Andrei, and

W.B. Jian for valuable discussions.We especially acknowl-
edge the fruitful discussions with P. Buividovich, who
kindly provided the simulation data prior to publication.
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[18] V. Juričić, O. Vafek, and I. F. Herbut, Phys. Rev. B 82,
235402 (2010).

[19] S. H. Abedinpour, G. Vignale, A. Principi, M. Polini,
W.-K. Tse, and A. MacDonald, Phys. Rev. B 84, 045429
(2011); I. Sodemann and M.M. Fogler, Phys. Rev. B 86,
115408 (2012).

[20] V. N. Kotov, B. Uchoa, and A.H. C. Neto, Phys. Rev. B 78,
035119 (2008).

[21] K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006); Phys.
Rev. B 75, 233407 (2007); S. Ryu, C. Mudry, A. Furusaki,
and A.W.W. Ludwig, Phys. Rev. B 75, 205344 (2007).

[22] J. Smit, Introduction to Quantum Fields on a Lattice
(Cambridge Univesity Press, New York, 2002).

[23] A. Giuliani, V. Mastropietro, and M. Porta, Phys. Rev. B
83, 195401 (2011).

[24] H. C. Kao, M. Lewkowicz, and B. Rosenstein, Phys. Rev.
B 82, 035406 (2010).

[25] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.066602 for de-
tails of the calculation of the interaction correction and
a comparison with a numerical simulation of the same
model.

[26] S. Yuan, R. Roldán, H. De Raedt, and M. I. Katsnelson,
Phys. Rev. B 84, 195418 (2011).

[27] V. N. Kotov, B. Uchoa, and A.H. C. Neto, Phys. Rev. B 80,
165424 (2009).

[28] P. V. Buividovich, E. V. Luschevskaya, O.V. Pavlovsky,
M. I. Polikarpov, and M.V. Ulybyshev, Phys. Rev. B 86,
045107 (2012); P. V. Buividovich and M. I. Polikarpov,
Phys. Rev. B 86, 245117 (2012).

PRL 110, 066602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

066602-5

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1088/0031-8949/2012/T146/014015
http://dx.doi.org/10.1088/0031-8949/2012/T146/014015
http://dx.doi.org/10.1103/PhysRevB.85.085420
http://dx.doi.org/10.1103/PhysRevLett.98.216801
http://dx.doi.org/10.1103/PhysRevLett.99.226803
http://dx.doi.org/10.1103/PhysRevLett.99.226803
http://dx.doi.org/10.1103/PhysRevLett.100.046403
http://dx.doi.org/10.1103/PhysRevLett.100.046403
http://dx.doi.org/10.1209/0295-5075/83/17005
http://dx.doi.org/10.1103/PhysRevB.80.193411
http://dx.doi.org/10.1103/PhysRevB.80.193411
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1103/PhysRevB.82.235402
http://dx.doi.org/10.1103/PhysRevB.82.235402
http://dx.doi.org/10.1103/PhysRevB.84.045429
http://dx.doi.org/10.1103/PhysRevB.84.045429
http://dx.doi.org/10.1103/PhysRevB.86.115408
http://dx.doi.org/10.1103/PhysRevB.86.115408
http://dx.doi.org/10.1103/PhysRevB.78.035119
http://dx.doi.org/10.1103/PhysRevB.78.035119
http://dx.doi.org/10.1103/PhysRevLett.97.266802
http://dx.doi.org/10.1103/PhysRevB.75.233407
http://dx.doi.org/10.1103/PhysRevB.75.233407
http://dx.doi.org/10.1103/PhysRevB.75.205344
http://dx.doi.org/10.1103/PhysRevB.83.195401
http://dx.doi.org/10.1103/PhysRevB.83.195401
http://dx.doi.org/10.1103/PhysRevB.82.035406
http://dx.doi.org/10.1103/PhysRevB.82.035406
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.066602
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.066602
http://dx.doi.org/10.1103/PhysRevB.84.195418
http://dx.doi.org/10.1103/PhysRevB.80.165424
http://dx.doi.org/10.1103/PhysRevB.80.165424
http://dx.doi.org/10.1103/PhysRevB.86.045107
http://dx.doi.org/10.1103/PhysRevB.86.045107
http://dx.doi.org/10.1103/PhysRevB.86.245117

