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Abstract—Caching valid regions of spatial queries at mobile clients is effective in reducing the number of queries submitted by mobile

clients and query load on the server. However, mobile clients suffer from longer waiting time for the server to compute valid regions.

We propose in this paper a proxy-based approach to continuous nearest-neighbor (NN) and window queries. The proxy creates

estimated valid regions (EVRs) for mobile clients by exploiting spatial and temporal locality of spatial queries. For NN queries, we

devise two new algorithms to accelerate EVR growth, leading the proxy to build effective EVRs even when the cache size is small. On

the other hand, we propose to represent the EVRs of window queries in the form of vectors, called estimated window vectors (EWVs),

to achieve larger estimated valid regions. This novel representation and the associated creation algorithm result in more effective

EVRs of window queries. In addition, due to the distinct characteristics, we use separate index structures, namely EVR-tree and grid

index, for NN queries and window queries, respectively. To further increase efficiency, we develop algorithms to exploit the results of

NN queries to aid grid index growth, benefiting EWV creation of window queries. Similarly, the grid index is utilized to support NN query

answering and EVR updating. We conduct several experiments for performance evaluation. The experimental results show that the

proposed approach significantly outperforms the existing proxy-based approaches.

Index Terms—Nearest neighbor query, window query, spatial query processing, location-based service, mobile computing

Ç

1 INTRODUCTION

LOCATION-BASED services (LBSs), also known as location-
dependent information services (LDISs), have been

recognized as an important context-aware application in
pervasive computing environments [1]. Spatial queries are
one of the most important LBSs. According to spatial
constraints, spatial queries can be divided into several
categories including nearest neighbor (NN) queries and
window queries. An NN query is to find the nearest data
object with respect to the location at which the query is
issued (referred to as the query location of the NN query).
For example, a user may launch an NN query like “show
the nearest coffee shop with respect to my current
location.” On the other hand, a window query is to find
all the objects within a specific window frame. An example
window query is “show all restaurants in my car
navigation window.”

In general, a mobile client continuously launches spatial
queries until the client obtains a satisfactory answer. For
example, a query “show me the rate of the nearest hotel with
respect to my current location” is continuously submitted in a
moving car so as to find a desired hotel. The naive method
answering continuous spatial queries is to submit a new
query whenever the query location changes. The naive

method is able to provide correct results, but it poses the
following problems:

. High power consumption. The power consumption of a
mobile device is high since the mobile device keeps
submitting queries to the LBS server.

. Heavy server load. A continuous query usually
consists of a number of queries to the LBS server,
thereby increasing the load on the LBS server.

Fortunately, in the real world, the queries of a continuous
query usually exhibit spatial locality. Thus, caching the query
result and the corresponding valid region (VR) in the client-
side cache was proposed in [2], [3] to mitigate the above
problems. The valid region, also known as the valid scope, of a
query is the region where the answer of the query remains
valid. Subsequent queries can be avoided as long as the client
is in the valid region. Note that a VR is associated with a query
by definition. However, as pointed out in [4], by associating a
VR with the corresponding object, the VR of an object p can be
used to resolve all the queries whose answer object is p.

Although VRs are useful, an LBS server may not provide
VRs in practice since the server may simply provide query
results only or would not compute VRs under heavy load.
In these situations, mobile service providers (e.g., Verizon
Wireless and AT&T) or smartphone makers (e.g., Apple
and RIM) can utilize a proxy architecture where the proxy
provides estimated valid regions (EVRs), which are the
subregions of the corresponding VRs, for the clients. With
the proxy architecture, the clients still can enjoy the benefits
of EVRs even if the LBS server does not provide VRs and
thus the mobile service providers and smartphone makers
can attract more clients. In other words, the proxy-based
approach is an alternative solution to serve the function of
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VRs in case that the LBS server could not provide VRs. In
[5], [6], the authors proposed to deploy a proxy between
mobile clients and the LBS server to build EVRs by
exploiting the queries interested in the same objects. EVR
provisioning is inspired by that, in addition to spatial
locality, spatial queries also exhibit temporal locality,
resulting from that a number of queries with close query
locations are likely to be launched during a short interval.
For instance, a large number of NN queries about nearest
hotels will be launched by passengers after a train arrives.
Hence, a proxy may be able to answer subsequent queries
interested in the same objects by caching EVRs created
based on previous queries. Despite the success of proxy
deployment and EVR provisioning in [5], [6], they have the
following drawbacks:

. Slow growth of EVRs of NN queries. The algorithms
proposed in [5] suffer from slow EVR growth, which
causes a lower cache hit ratio. The effect of an EVR in
[5] is also limited by the number and locations of the
queries interested in the same data object.

. Slow growth of EVRs of window queries. The algorithm
proposed in [6] has the same drawbacks as [5].
Besides, since VRs of window queries are likely to be
concave polygons, the EVRs are built in a pessimistic
manner, causing the EVRs to be extremely small.

. Lack of mutual support. The algorithms of [5] and [6]
are executed independently. That is, the result of an
NN query is useless for [6] to create the EVR of a
window query, and vise versa.

In view of this, we propose in this paper a proxy
architecture as well as several companion algorithms to
provide EVRs of NN and window queries on static data
objects for mobile clients. We aim to reduce the number of
queries submitted by mobile clients, the time of obtaining
query results and corresponding EVRs, and load on the
LBS server. The contributions of this paper are summarized
as follows:

. For NN queries, we devise new algorithms to
efficiently create new and extend existing EVRs.
The devised algorithms not only enable mobile
clients to obtain effective EVRs immediately but
also lead the proxy to build effective EVRs even
when the proxy cache size is small.

. For window queries, different from [6], we propose
to index the positions of data objects, instead of
EVRs, by a grid index. Since VRs of window queries
may not be convex polygons, creating effective
polygonal EVRs by previous queries is inherently
difficult. Thus, we propose to represent the EVRs of
window queries in the form of vectors, called
estimated window vectors (EWVs), to achieve larger
estimated valid regions. Such novel representation
and indexing lead the proxy to efficiently create
more effective EVRs of window queries.

. We introduce two index structures, an EVR-tree for
NN queries and a grid index for window queries,
due to the distinct characteristics of NN and window
queries. We also develop algorithms to make these
two index structures mutually support each other.
Specifically, the grid index can be used to answer

NN queries and extend existing EVRs. The answer
objects of NN queries are exploited to update the
grid index, benefiting the creation of more effective
EWVs of window queries.

. We conduct several experiments to compare the
proposed approach with the existing proxy-based
approaches [5], [6] and the representative server-
based approach [7], [8]. The experimental results
show that the proposed approach significantly out-
performs the existing proxy-based approaches.
Moreover, we compare the proposed approach with
the representative server-based approach [7], [8] for
understanding the benefits of the proxy architecture.
The experimental results demonstrate that the
performance of the proposed approach is close to
that of [7], [8] even though the proposed approach
has only partial information of data objects.

The rest of this paper is organized as follows: Section 2
reviews related work and presents the preliminaries. We
elaborate NN and window query processing in Sections 3
and 4, respectively. The experimental results are shown in
Section 5 to evaluate the performance of the proposed
approach. In Section 6, we provide a comparison between
proxy-based and server-based approaches. Finally, Section 7
concludes this paper and discusses future work.

2 PRELIMINARIES

2.1 Related Work

In recent years, a significant number of research studies
have been proposed for spatial query processing. Most of
these studies addressed representative spatial queries, such
as NN queries, kNN queries, and window queries. For
different scenarios, some studies coped with static data
objects while some tackled mobile data objects. The latter
studies [9], [10], [11], [12] coped with continuous window
query monitoring while [12], [13], [14], [15], [16] addressed
continuous kNN query monitoring. Since our work falls into
the former category, we focus on reviewing previous
studies on static data objects in the following.

R-tree and its variants, such as R�-tree [17], are one of the
most popular methods of static spatial query processing. An
LBS server is able to answer spatial queries quickly using R-
tree-like index structures. However, in mobile environments,
mobile clients usually launch a continuous query consisting
of a number of queries with different query locations for
obtaining a satisfactory answer. Continuous queries cause the
conventional scheme to suffer from wireless medium con-
tention and heavy query load. To address this problem,
previous studies proposed that mobile clients could avoid
launching unnecessary queries by caching VRs and EVRs.
According to the architecture, these studies can be classified
into two categories: server-based approaches and proxy-
based approaches. Basically, server-based approaches have
the complete information of data objects and can utilize the
information to create VRs for mobile clients. On the other
hand, proxy-based approaches have only partial information
of objects and exploit spatial and temporal locality of queries
of mobile clients to build EVRs. We first introduce the existing
server-based approaches as follows: In [2], Zheng et al.
proposed that an LBS server creates the Voronoi diagram [18]
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of data objects in an offline manner and returns the answer
object of an NN query as well as the corresponding Voronoi
cell to the querying client. The client caches the Voronoi cell to
reduce the number of subsequent queries since the Voronoi
cell is the VR of the answer object. The main advantage is that
the LBS server constructs the Voronoi diagram once and uses
it repeatedly. However, searching the corresponding Voronoi
cell is time consuming and object updates incur the overhead
of partial reconstruction of the Voronoi diagram. Zheng et al.
[19] introduced a grid-partition-index to improve search
efficiency, but it is still impaired by object updates.

Zhang et al. [20] proposed to compute the VRs by
executing a number of time parameterized queries [21] in
an online manner that avoids object update cost. The
drawback is that, when the number of queries increases, the
average waiting time of clients becomes longer since VR
computation requires extra I/O and computational cost.
Thus, this approach is not suitable for large-scale LBSs. In
[7], [8], Lee et al. proposed to retrieve the nearest object and
to exploit the objects in the remaining queue to identify the
introduced complementary objects. Complementary objects
are those objects contributing the bisector as the Voronoi
cell perimeter. The VR computation algorithm of [7], [8]
only requires one single index lookup. Nutanong et al. [22]
presented a technique called V �-Diagram, which computes
VRs based on the data objects, the query location, and the
current knowledge of the search space. V �-Diagram exploits
the FRR (fixed-rank region proposed in [23]) of ðkþ xÞ
maintained objects and the safe region of k nearest objects to
create the VR of the kNN query. Both [7], [8] and [22]
outperform [20] significantly. As to window queries, in [24],
Dar et al. allowed a client to store the answer of a window
query as a semantic region. Any window query covered by
the semantic region could be directly resolved by the
client’s local cache. Zhang et al. [20] also introduced an
online algorithm to compute the VRs of window queries via
a number of time parameterized queries, and later, Lee et al.
proposed to identify the complementary objects of a
window query by enlarging the query window. If all
answer objects are inside the query window and no
complementary object is encountered, the mobile client
can know that the cached answer objects remain valid. In
[25], Ku et al. presented a peer-sharing paradigm, allowing
mobile clients to obtain a complete or partial result of the
query from other clients in the vicinity. A mobile client only
waits for unresolved parts from the LBS server and thus the
average waiting time could be reduced.

These server-based approaches suffer from heavy load
on the LBS server and relatively longer waiting time for

mobile clients. In order to alleviate the problems, Gao and
Hurson [5] presented a proxy-based approach which
deploys a proxy between an LBS server and mobile clients.
Based on spatial and temporal locality of spatial queries
mentioned earlier, they proposed to make the proxy create
EVRs according to query history. For example, in Fig. 1a,
each point represents a previous NN query whose answer
is object p. These query points are within the VR of p. Since
VR computation cost is high, the proxy can build the EVR
of p by connecting these query points. Because each EVR is
a subregion of the corresponding VR, caching EVRs helps
the proxy resolve some subsequent queries directly.
Following [5], Gao et al. [6] employed the proxy to create
the EVRs of window queries based on window query
history. All query points with the same query result are
used to create the corresponding EVR. Since the VR of a
window query may not be a convex polygon, the proxy
pessimistically assumes that these query points occur at the
boundary of the VR, and creates a feasible but small EVR.
Besides, EVR construction cannot be applied to the case
where a window query has no answer objects. Moreover,
the window queries with the same result set but of different
sizes cannot be used to create an EVR.

2.2 System Architecture

Fig. 2 depicts the proposed system architecture for NN and
window query processing. The system architecture consists
of three parts: 1) an external LBS server, 2) deployed
proxies, and 3) the mobile clients. The LBS server is
responsible for managing static data objects and answering
the queries submitted by the proxies. Note that the LBS
server can use any index structure (e.g., R-tree or grid
index) to process spatial queries. The LBS server is assumed
not to provide VRs. Each of the deployed proxies supervises
one service area and provides EVRs of NN queries and
EWVs (vector form of EVRs) of window queries for mobile
clients in the service area. Each base station serves as an
intermediate relay for queries and query results between
mobile clients and the associated proxy. Base stations,
proxies, and the LBS server are connected by a wired
network. A mobile client maintains a cache to store the
query results and the corresponding EVRs. When a mobile
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Fig. 1. Example VR and EVR. (a) An example VR. (b) An example EVR.

Fig. 2. System architecture.



client has a spatial query, the mobile device first examines
whether the current location is in the EVR of the stored
result. If so, the stored result remains valid and the mobile
device directly shows it to the client. Otherwise, the mobile
device submits the query, which is received and then
forwarded by the base station, to the proxy. For the received
query, the proxy will return the query result as well as the
corresponding EVR to the client.

2.3 Proxy Design

A proxy builds EVRs of NN queries and EWVs of window
queries based on NN query history and available data
objects, respectively. The proxy maintains an object cache
and two index structures: an EVR-tree for NN queries and a
grid index for window queries, as illustrated in Fig. 3. The
two index structures share the data objects in the object
cache. The EVR-tree is an R-tree (or its variants) composed
of EVRs where each EVR is wrapped in a minimum
bounding box (MBR). An EVR consists of the region vertices
with respect to a data object and a pointer to the
corresponding object entry in the object cache. When an
NN query point q is located in an EVR of the EVR-tree, the
proxy retrieves the corresponding object from the object
cache to answer the query. On the other hand, the service
area is divided into m� n grid cells managed by the grid
index. Grid cells are classified into two categories: fully
cached cells and uncached cells. All grid cells are initialized to
uncached. The proxy marks a cell as fully cached when all
the objects within the cell are received. The corresponding
grid index entry of a fully cached cell caches the object
pointers to the associated object entries in the object cache.
The purpose of fully cached and uncached cells is to realize
the stored object distribution, enabling the proxy to create
EWVs of window queries effectively. When receiving a
window query, the proxy obtains the result and creates the
corresponding EWV by retrieving stored objects in the
surrounding fully cached cells. Although the EVR-tree and
the grid index are designed for NN and window queries,
respectively, these two index structures mutually support
each other.

An entry of the object cache is in the form of
hID; ðx; yÞ; eID; cell flag; object infoi. Each data object p is
assumed to have a unique ID. ðx; yÞ is the 2D coordinate of p.
eID denotes the corresponding EVR ID and cell flag

indicates whether p is located in a fully cached cell.
object info contains the basic information of p. For example,
the object info of a restaurant includes the cuisine type,
hours of operation, phone number, and so on. When the EVR
of p is inserted into the EVR-tree, the proxy updates the eID
of the corresponding object entry. Similarly, once the cover-
ing cell where p is located becomes fully cached, the cell flag
is set to true by the proxy. With the information, when phas to
be replaced, the proxy can remove the corresponding EVR
from the EVR-tree or revert the fully cached cell to uncached.
It is worth noting that, when a fully cached cell is reverted to
uncached, the proxy sets the cell flag of all relevant object
entries to false without removing the objects from the object
cache for better performance because the objects are shared
with the EVR-tree.

3 NEAREST-NEIGHBOR QUERY PROCESSING

3.1 Overview

When receiving an NN query, a proxy first attempts to
answer the query with the EVR-tree and the grid index. If
the proxy cannot answer the query, it will submit one or
two 2NN queries to the LBS server. The rationale of
extending the received NN query into 2NN queries is that
the distance between the nearest and second nearest objects
is useful for building the EVR of the nearest object based on
the theoretical result of [26].1 By exploiting the objects
returned by the LBS server, the proxy extends an existing or
creates a new EVR. Besides, the returned objects are utilized
to aid grid index growth, which will facilitate window
query processing. For each NN query, the proxy provides
the mobile client not only the answer object (the nearest
object) but also an EVR for helping the client avoid
subsequent queries. Note that these 2NN queries initially
cause slightly heavier load on the LBS server, but they lead
the proxy to provide effective EVRs for mobile clients
efficiently. With the EVRs, the number of queries submitted
by the clients and the load on the LBS server are reduced
greatly. Note that given an object p, the EVR of p is denoted
by EVRðpÞ. The processing steps executed by the proxy are
as follows:

. Step 1. The proxy checks whether the NN query
location ðxq; yqÞ is in any EVR of the EVR-tree by
performing the general R-tree search operation since
EVR-tree is an R-tree (or its variant). If so, go to Step 7.

. Step 2. If not, the proxy attempts to answer the query
with the grid index. If the two nearest objects, say p1

and p2, are found in the grid index,2 the proxy looks
up the EVR-tree to see whether p1 is located in any
existing EVR. If so, go to step 6.
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Fig. 3. Object cache, EVR-tree, and grid index.

1. Specifically, Song and Roussopoulos [26] showed that, given a kNN
query with query location q, the server first extends the kNN query into a
ðkþ 1ÞNN query with the same query location and then gets the kþ 1
nearest objects with respect to q. Suppose that these kþ 1 objects,
fp1; p2; . . . ; pkþ1g, are ordered by their distance to q in ascending order.
The first k objects (i.e., fp1; p2; . . . ; pkg) are the answer objects of the original
kNN query and the distance between the kth and ðkþ 1Þth objects (i.e., pk
and pkþ1) can be used to define a region so that fp1; p2; . . . ; pkg remain the
answer objects of the kNN query as long as the new query location is within
the region.

2. The details of finding p1 and p2 by the grid index are described in
Section 3.2.



. Step 3. The proxy extends the received NN query
into a 2NN query with the same query location
ðxq; yqÞ and submits the 2NN query to the LBS
server. Let p1 and p2 be the nearest and the second
nearest objects to q, respectively. When receiving p1

and p2 from the LBS server, the proxy searches the
EVR-tree for EVRðp1Þ. Meanwhile, the proxy runs
algorithm GridIndexUpdate3 to update the grid
index based on q, p1, and p2. If EVRðp1Þ is found,
go to Step 6.

. Step 4. The proxy generates another 2NN query with
query location ðx1; y1Þ where ðx1; y1Þ is the location
of p1. Obviously, the nearest object to ðx1; y1Þ is p1.
Let the second nearest object to ðx1; y1Þ be p3. The
proxy runs algorithm EVR-Creation4 to create the
EVR of p1 based on p1, p2, and p3. At the same time,
the proxy runs algorithm GridIndexUpdate to
update the grid index based on p1 and p3.

. Step 5. The proxy inserts p1 and EVRðp1Þ into the
object cache and the EVR-tree, respectively. Go to
Step 7.

. Step 6. With q, p1, and p2, the existing EVRðp1Þ is
extended using algorithm EVR-Extension.5 The up-
dated EVRðp1Þ is reinserted into the EVR-tree.

. Step 7. The proxy returns the answer object p1 and
the corresponding EVRðp1Þ to the mobile client.

It is worth mentioning that 1) the grid index for window
query processing is helpful for resolving NN queries as well
as extending existing EVRs, and 2) the returned answer
objects of NN queries benefit grid index growth. The
mutual support of these two index structures will be
detailed in the following sections.

3.2 Resolving NN Queries by Grid Index

When the proxy cannot answer an NN query by the EVR-
tree, it attempts to exploit the grid index and cached objects
to resolve the query. With the grid index, the proxy
examines whether the query point q lies in a fully cached
cell. If so, the proxy retrieves the nearest object p1 and the
second nearest object p2 to q via the grid index. Besides p1,
the proxy retrieves p2 since we intend to update EVRðp1Þ in
case that EVRðp1Þ exists. With p1 and p2, the proxy
calculates distðq; p2Þ and creates a circle C centered at q
with distðq; p2Þ as the radius. Note that distðp; qÞ denotes the
euclidean distance between any two given points p and q. If
the circle C does not overlap any uncached cell, p1 and p2

can be guaranteed to be the real nearest and second nearest
objects to q, as shown in Fig. 4. The proxy proceeds to
examine whether p1 is located in any EVR of the EVR-tree. If
EVRðp1Þ is found, the proxy updates EVRðp1Þ by algorithm
EVR-Extension with q, p1, and p2. Finally, the proxy returns
p1 together with the updated EVRðp1Þ to the query client.
Note that, if any uncached cell is involved, the NN query
cannot be resolved by the grid index. For example, in Fig. 4,
the circle C

0
, centered at q

0
and with radius as distðq0 ; p02Þ,

overlaps an uncached cell Cellu. An object may be located in
the overlapping region of Cellu and C

0
such that p

0

2 is not the
real second nearest object to q

0
.

3.3 EVR Creation

When neither the EVR-tree nor the grid index can be used to
answer the NN query with the location ðxq; yqÞ, the proxy
will create a new EVR for the answer object p1 of the query as
follows: First, the proxy extends the NN query into a 2NN
query and submits the 2NN query to the LBS server. After
obtaining the answer objects p1 and p2 of the 2NN query
(where distðq; p1Þ < distðq; p2Þ), the proxy starts to create the
EVR by first building a circle C1, which is centered at q with
r1 as the radius where r1 ¼ ðdistðq; p2Þ � distðq; p1ÞÞ=2. Let
the location of p1 be ðx1; y1Þ. Next, the proxy submits another
2NN query with the query location ðx1; y1Þ to the LBS server.
Obviously, the nearest object to the location ðx1; y1Þ is p1. Let
the second nearest object of this new 2NN query be p3 with
the location ðx3; y3Þ. Similarly, as shown in Fig. 5b, the proxy
builds another circle C2 with center ðx1; y1Þ and radius r2

where r2 ¼ distðp1; p3Þ=2. Then, with q as the origin and � as
the angle between q and p1, the proxy creates seven vertices
vnew1ðxnew1; ynew1Þ, vnew2ðxnew2; ynew2Þ, vnew3ðxnew3; ynew3Þ,
vnew4ðxnew4; ynew4Þ, vnew5ðxnew5; ynew5Þ, vnew6ðxnew6; ynew6Þ, and
vnew7ðxnew7; ynew7Þ by the following equations:

xnew1 ¼ xq þ r1 cos �þ �
2

� �
ynew1 ¼ yq þ r1 sin �þ �

2

� �

xnew2 ¼ xq þ r1 cos �� �
2

� �
ynew2 ¼ yq þ r1 sin �� �

2

� �

xnew3 ¼ xq þ r1 cos �þ 3
4�

� �
ynew3 ¼ yq þ r1 sin �þ 3

4�
� �

xnew4 ¼ xq þ r1 cos �� 3
4�

� �
ynew4 ¼ yq þ r1 sin �� 3

4�
� �

xnew5 ¼ xq þ r1 cos �þ �ð Þ ynew5 ¼ yq þ r1 sin �þ �ð Þ
xnew6 ¼ x1 þ r2 cos �� �

2

� �
ynew6 ¼ y1 þ r2 sin �� �

2

� �

xnew7 ¼ x1 þ r2 cos �þ �
2

� �
ynew7 ¼ y1 þ r2 sin �þ �

2

� �
:

Finally, the polygon formed by vnew1, vnew2, vnew3, vnew4,
vnew5, vnew6, and vnew7 is the new EVR of p1, as depicted in
Fig. 5c.

In fact, there are numerous combinations of the points on
or within C1 and C2 to form a feasible EVR. However,
considering the computational overhead, transmission cost,
and limited storage space of a mobile device, the number of
vertices of an EVR has to be limited. Thus, a new EVR is
represented by only the seven calculated vertices to achieve
effectiveness at low cost. A reader interested in determining
the best number of the vertices of an EVR can refer to [2].

3.4 Updating Grid Index by Results of NN Queries

In addition to EVR creation, we exploit the answer objects
p1 and p2 to speed up grid index growth. We observe that
concerning the 2NN query with query point q, there exist
only two objects p1 and p2 within the circle C centered at q
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Fig. 4. Resolving an NN query by the grid index.

3. The details of algorithm GridIndexUpdate are described in Section 3.4.
4. The details of algorithm EVR-Creation are described in Section 3.3.
5. The details of algorithm EVR-Extension are described in Section 3.5.



with distðq; p2Þ as the radius. Based on this observation, we
attempt to take advantage of the answer objects and
algorithm GridIndexUpdate to mark uncached cells as fully
cached cells as follows: When the proxy receives p1 and p2,
it uses the circle C to determine all totally overlapped cells
of circle C, as shown in Fig. 6. A cell with respect to the
circle C is referred to as a totally overlapped cell if the entire
cell is within C. If a totally overlapped cell is uncached, this
cell becomes fully cached, as the Celli in Fig. 6. By doing so,
the proxy can accelerate grid index growth, resulting in the
creation of more effective EWVs of window queries.

3.5 EVR Extension

As mentioned earlier, when the proxy receives the answer
objects p1 with location ðx1; y1Þ and p2 with location ðx2; y2Þ
of the submitted 2NN query, it first checks whether
EVRðp1Þ is cached. If so, the proxy invokes algorithm
EVR-Extension to update the EVR by the following steps.
First, the proxy retrieves the existing EVRðp1Þ from the
EVR-tree. Let ðxold; yoldÞ stand for the centroid of EVRðp1Þ

and build the circle C1 by the method given in Section 3.3,
as depicted in Fig. 7a. The proxy proceeds to calculate the
coordinates of five new vertices vext1ðxext1; yext1Þ, vext2ðxext2;
yext2Þ, vext3ðxext3; yext3Þ, vext4ðxext4; yext4Þ, and vext5ðxext5; yext5Þ
with ðxold; yoldÞ as the origin and � as the angle between q
and p1, as shown in Fig. 7b. The coordinates of the five
vertices vext1, vext2, vext3, vext4, and vext5 are determined as
below

xext1 ¼ xq þ r1 cos �þ �
2

� �
yext1 ¼ yq þ r1 sin �þ �

2

� �

xext2 ¼ xq þ r1 cos �� �
2

� �
yext2 ¼ yq þ r1 sin �� �

2

� �

xext3 ¼ xq þ r1 cos �þ 3
4�

� �
yext3 ¼ yq þ r1 sin �þ 3

4�
� �

xext4 ¼ xq þ r1 cos �� 3
4�

� �
yext4 ¼ yq þ r1 sin �� 3

4�
� �

xext5 ¼ xq þ r1 cos �þ �ð Þ yext5 ¼ yq þ r1 sin �þ �ð Þ:

The original EVRðp1Þ is then extended with the five vertices
vext1, vext2, vext3, vext4, and vext5. Since an updated EVR may
become a concave polygon, we employ the Melkman’s
algorithm [27] to compute the convex polygon of the
updated EVR to remove the unnecessary vertices and
achieve a larger region size. The convex polygon serves as
the final updated EVR of p1. Interested readers can refer to
[28] for the proofs of the proposed algorithms.

3.6 EVR of kNN Query

Although the proposed algorithms for EVR creation and
extension are optimized for NN queries, after minor
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Fig. 6. A totally overlapped uncached cell is marked as a fully cached
cell.

Fig. 7. Extending an existing EVR. (a) Before extending. (b) After
extending.

Fig. 5. EVR creation. (a) Building C1. (b) Building C2. (c) Creating an
EVR.



modifications and disabling some optimization techniques,
the algorithms can support kNN queries. Specifically, when
receiving a kNN query with query location qðxq; yqÞ, the proxy
extends the query into a ðkþ 1ÞNN query and submits the
ðkþ 1ÞNN query to the LBS server. On receipt of the answer
objects fp1; p2; . . . ; pkþ1g from the LBS server, the proxy builds
a circle C with center q and radius r ¼ ðdistðq; pkþ1Þ �
distðq; pkÞÞ=2 where distðq; pkÞ < distðq; pkþ1Þ. Next, the proxy
creates four vertices vnew1ðxnew1; ynew1Þ, vnew2ðxnew2; ynew2Þ,
vnew3ðxnew3; ynew3Þ, and vnew4ðxnew4; ynew4Þ by the following
equations:

xnew1 ¼ xq þ r ynew1 ¼ yq xnew2 ¼ xq ynew2 ¼ yq þ r
xnew3 ¼ xq � r ynew3 ¼ yq xnew4 ¼ xq ynew4 ¼ yq � r:

Finally, the polygon formed by vnew1, vnew2, vnew3, and vnew4

is the new EVR of the kNN query. Fig. 8a is an example of
EVR creation for a 3NN query.

If a subsequent kNN query with query location q
0

has
answer objects fp1; . . . ; pkg, the proxy will check whether
any existing EVR is associated with exactly the same
fp1; . . . ; pkg. If the associated EVR exists, the proxy will
extend the EVR by adding four new vertices vext1ðxext1; yext1Þ,
vext2ðxext2; yext2Þ, vext3ðxext3; yext3Þ, and vext4ðxext4; yext4Þ. vext1,
vext2, vext3, and vext4 are created by using the above equation
with location q

0
in a similar manner. The proxy proceeds to

compute the convex polygon of the updated EVR as the final
EVR. An example of EVR extension for a 3NN query is
shown in Fig. 8b.

4 WINDOW QUERY PROCESSING

4.1 Overview

On receiving a window query, the proxy first checks whether
all the answer objects of the query are available in the object
cache by looking up the grid index. Answer objects are the
objects within the query window. According to the grid

index, the proxy can know whether the grid cells overlapping
the query window are fully cached. If a grid cell overlapping
the query window is fully cached (e.g.,Cell2,Cell4,Cell5, and
Cell6 in Fig. 9a), the answer objects within the overlapping
region can be directly retrieved from the object cache.
Otherwise, the proxy uses the overlapping region of each
uncached cell to generate a new window query (e.g., the
overlapping regions of Cell1 and Cell3 in Fig. 9a). Then, the
proxy submits the new window query to request the required
answer objects from the LBS server. However, to accelerate
fully cached cell growth, the proxy utilizes the corresponding
entire cell as the new query window instead of the over-
lapping region if 1) the ratio of the region size to the cell size is
above the predefined threshold, or 2) the number of
interested queries in this cell exceeds the predefined thresh-
old. For example, in Fig. 9a, the ratio of the overlapping
region size to Cell3 size is assumed to exceed the predefined
threshold. The proxy sends a new window query with Cell3
as the query window to the LBS server. Next, the proxy marks
Cell3 as fully cached when it receives all data objects in Cell3
from the server, as shown in Fig. 9b. After obtaining the
objects from the server, the proxy has all the answer objects.
Finally, the proxy returns the answer objects together with
the corresponding EWV to the query client. Note that these
new queries used to accelerate grid index grow increase the
load on the LBS server initially, but they lead to effective EWV
creation, significantly reducing the number of subsequent
queries submitted by clients. The processing steps executed
by the proxy are as follows:

. Step 1. The proxy identifies the overlapping cells
based on the width w, the length l, and the center
ðxq; yqÞ of the query window.

. Step 2. The proxy examines which of the overlapping
cells being fully cached, searches the grid index for
the object pointers within these overlapping fully
cached cells, and then retrieves the answer objects
from the object cache.

. Step 3. For each unresolved overlapping region, the
proxy sends a new query with either the region or
the corresponding entire uncached cell as the query
window to the LBS server.

. Step 4. After receiving the objects from the LBS
server, the proxy creates the EWV by algorithm
EWV-Creation.6 Meanwhile, if all the objects in one
cell are received, the proxy marks the cell in the grid
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Fig. 8. EVR of a 3NN query. (a) EVR creation. (b) EVR extension.

Fig. 9. Grid index growth. (a) Uncached Cell3. (b) Fully cached Cell3.

6. The details of algorithm EWV-Creation are described in Section 4.2.



index as fully cached and stores the objects into the
object cache.

. Step 5. The proxy returns the answer objects along
with the corresponding EWV to the query client.

4.2 EWV Creation

As mentioned in Section 2.1, since the VRs of window
queries may be concave polygons, the proxy in [6]
pessimistically builds EVRs in the form of polygons based
on previous query points. The polygonal EVRs are
extremely small and ineffective. To overcome this problem,
we propose to cache data objects indexed by the grid index
and represent the EVRs in the form of vectors, called
estimated window vectors, to enlarge the estimated valid
regions. Due to rectangular windows and cached objects,
the EWVs can be set effectively. An EWV consists of
estimated valid distance components and is denoted by

V ¼ hDxne;Dyne;Dxnw;Dynw;Dxse;Dyse;Dxsw;Dyswi:

Each component is defined as the estimated valid distance
with respect to a specific direction. For example, Dxne and
Dyne are defined as the east and north estimated valid
distances with respect to the northeast direction, respec-
tively. Given the moving direction and distances, the
corresponding EWV components enable a mobile client
easily to determine the validity of the cached query result.
Consider a mobile client issued a window query and
received an EWV from the proxy at the location ðxq; yqÞ.
When the mobile client moves northeast and wants to
launch a new window query at the new location ðxn; ynÞ, the
client calculates the moving vector components xn � xq and
yn � yq and checks whether they are less than Dxne and
Dyne of the EWV, respectively. If so, the answer objects
associated with the EWV remain valid and the mobile
device can directly show the cached result to the mobile
client without issuing the new query to the proxy. In what
follows, we describe the EWV creation in detail.

For EWV creation, two requirements must be met: 1) all
answer objects p0is must remain valid and 2) no outer objects
o0is will be encountered. The data objects outside the query
window are called outer objects. Since the value of each
component is determined in a similar manner, we use Dxne
and Dyne for the northeast direction to explain the process.
To simplify the process of determining Dxne and Dyne, the
proxy first calculates the estimated valid distances De and
Dn for the query window moving east and north, respec-
tively. Determining De and Dn in advance helps the proxy
calculate Dxne and Dyne because the query window heading
northeast may encounter the o0is in the east and north
directions. As shown in Fig. 10, for De, the proxy first
calculates the minimum distance between p0is and the left
side LW of the query window to ensure the validity of p0is.
The minimum distance Die is set to

Die ¼ min
8i
fdistðpi; LW Þg: ð1Þ

Note that given a point pðxp; ypÞ and a line segment L with
end points ðx1L; y1LÞ and ðx2L; y2LÞ, the distance distðp; LÞ
equals jxp � x1Lj as L is vertical or jyp � y1Lj as L is
horizontal. Considering p1 and p2 in Fig. 10, the proxy sets

Die to distðp1; LW Þ. Clearly, p0is are guaranteed to be valid
while the window is moving east at a distance less than Die.

Next, the proxy retrieves o0is in the surrounding fully
cached cells to calculate the distance that prevents the query
window from encountering o0is. Because the object distribu-
tions in the surrounding uncached cells are unknown,
the corner points of the uncached cells (e.g., ou in Fig. 10) are
added as outer objects for the worst case. With Die, the
proxy considers only those o0is with distances to LE less
than Die. Specifically, the proxy takes into account only
those o0is, which are located right to LE , having y-
coordinates between LN and LS and distances to LE less
than Die. Note that in case of no object within the query
window, Die is set to W , the width of the grid index. Based
on the o0is, De is set to the minimum distance between o0is
and LE . In Fig. 10, De is set to distðov; LEÞ. The similar steps
are applied to determine Dn.

With De and Dn, the proxy proceeds to tackle the o0is in
the northeast direction of the query window. Based on De

and Dn, we introduce a virtual object and a bound region
to reduce the search region of o0is. A virtual object ov is an
outer object created by the corresponding estimated valid
distances De and Dn, as depicted in Fig. 11. The region
constructed by ov as well as LE and LN is called a bound
region (e.g., the region specified by gray dashed lines in
Fig. 11). Recalling the derivation of De and Dn, the query
window cannot move out of the bound region and thus
only the o0is in the bound region have to be considered.
With the o0is in the bound region, the proxy aims to
determine the point that maximizes the values of Dxne and
Dyne because the larger values of Dxne and Dyne lead to the
larger estimated valid region. Since deriving the best point
is time consuming and we focus on minimizing query
answering time, we present an efficient heuristic scheme to
get a feasible point. For each outer object oi in the bound
region, the proxy examines whether its constructed region
contains no oj; j 6¼ i. If so, the proxy calculates and stores
the size of the constructed region of the feasible oi (e.g., o3

and o4 in Fig. 11), denoted by AreaðoiÞ. Otherwise, this oi
(e.g., ov and o2 in Fig. 11) is ignored. The proxy then uses
the object om as the desired point where om is

om ¼ arg max
i
fAreaðoiÞg: ð2Þ

HUANG AND HUANG: A PROXY-BASED APPROACH TO CONTINUOUS LOCATION-BASED SPATIAL QUERIES IN MOBILE ENVIRONMENTS 267

Fig. 10. An example for De.



Finally, the proxy defines Dxne as distðom; LEÞ and Dyne as
distðom; LNÞ. Interested readers can refer to [28] for the
proof of the proposed algorithm.

4.3 Extension to Range Queries

Although we focus on window queries in this paper, the
proposed approach is able to support range queries whose
query region is circular. To resolve a range query, the main
idea is to transform the range query to a window query and
then address the window query with the window query
processing algorithm. We describe the range query proces-
sing procedure as follows:

. Step 1. When the proxy receives a range query with
query location qðxq; yqÞ and radius r, it first trans-
forms the range query into a window query with
query window of the center qðxq; yqÞ, the width 2r,
and the length 2r. The proxy executes the window
query processing algorithm to resolve the window
query and to compute the corresponding
EWV ¼ <D1; D2; D3; D4; D5; D6; D7; D8>.

. Step 2. Let the answer objects of the window query
be fp1; p2; . . . ; png. Without loss of generality, we
reorder the answer objects in ascending order based
on their distance to q so that distðq; pjÞ � distðq; piÞ
when j > i.

. Step 3. LetDmin ¼ min8ifdistðpi; CÞgwhere distðpi; CÞ
denotes the shortest distance between pi and the
range query circle C.

. Step 4. For i ¼ 1 to 8, Di ¼ minðDi;DminÞ.

. Step 5. The proxy filters out the answer objects
fp1; p2; . . . ; png which are not within the query circle
C and then has the final answer objects fp1; p2; . . . ;
pmg.

. Step 6. The proxy returns the answer objects
fp1; p2; . . . ; pmg as well as the final EWV as the EVR
of the range query to the query client.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approach. We implemented a simulator using Java and
conducted several experiments on a Windows platform with
2.33G Intel Core 2 CPU and 3.2 GB RAM. Since [5] and [6] are

the only proxy-based approaches in the literature, we
compare the proposed approach with [5] for NN queries
and [6] for window queries. Besides, although the proposed
proxy-based approach serves as an alternative solution, we
compared the proposed approach with the representative
server-based approach [7], [8] to understand the benefits of
the proxy architecture. The main performance metric is the
query answering time, which is defined as the time elapsed
from the moment a query is submitted to the moment the
query result together with the corresponding EVR or VR are
received. In addition, we use two performance metrics: client
cache hit ratio and server load. The client cache hit ratio
indicates the effectiveness of cached EVRs and VRs at mobile
clients and energy consumption of mobile devices. The
higher the client cache hit ratio is, the smaller number of
queries submitted by mobile clients is. Since data transmis-
sions are a source of power consumption of mobile devices,
the smaller number of submitted queries leads mobile clients
to consume less power. The server load is defined as the total
computation time at the LBS server. We use the total
computation time rather than the number of queries received
by the LBS server since VR construction incurs a higher
computational cost than query answer search does.

We employ the real data set that contains schools in

California.7 The data objects stored at the LBS server are

indexed by an R-tree with a cache size equal to 5 percent

of the R-tree index as the setting in [8]. The sizes of the

EVR-tree and the grid index of our proxy are set to about

22 percent and about 2 percent of the proxy cache size,

respectively. Considering that a proxy is often deployed

in a densely populated area, we limit the service area to

Los Angeles and the surrounding areas. The service area

size is 120 km � 80 km. Within the service area, there are

3,461 schools. For mobile clients, we divide the service

area into four subareas. Mobile clients are evenly assigned

to be located in one subarea and move only within the

subarea. The random waypoint model [29] is employed as

the mobility model. Mobile clients may move at the speed

of 0-2 m/s (0-7.2 km/hr) as pedestrians with probability

about 50 percent or 10-20 m/s (36-72 km/hr) as vehicles

with probability about 50 percent. The query generation

intervals of mobile clients are assumed to be an

exponential distribution with mean 6 hours. The duration

of a continuous query follows an exponential distribution

with mean 30 seconds. During the simulation, a mobile

client may issue an NN query or a window query with

equal probability. There are four sizes of query windows:

1;000 m� 1;000 m, 2;000 m� 2; 000 m, 3;000 m� 3; 000 m,

and 4;000m� 4;000 m. Each client caches an EVR for NN

queries and an EVR (an EWV in our approach) for

window queries. The EVR of an NN query consists of

14 points. The EVR of a window query in [5] is composed

of four points same as the proposed EWV. The total

simulation time is 24 hours. The default simulation

parameters are summarized in Table 1 where networking

parameters are referred to [30], [31]. The results of [5], [6]

are labeled as “Gao” while those of [7], [8] are labeled as
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Fig. 11. A virtual object and the associated bound region.

7. http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm.



“Lee.” Note that since our approach is optimized for NN

queries as well as window queries but not dedicated to

kNN queries, we conduct the experiment for kNN queries

only in Section 5.5.

5.1 Effect of Grid Size

Before comparing with the other two approaches, we
determine the optimal grid sizes of the grid index of our
approach in this experiment. Figs. 12 and 13 show the
experimental results of NN and window queries with the
grid size varied, respectively. For NN queries, we observe
from Fig. 12a that the client cache hit ratio is almost constant
for all grid sizes. This is because the client cache hit ratio is
primarily determined by EVRs and is almost independent
of the grid size. From Figs. 12b and 12c, it can be seen that
the query answering time and the server load become
shorter and lower, respectively, as the grid size decreases.
The reason is that a smaller grid size enables the proxy to
resolve more NN queries by cached objects and EVRs. On
the other hand, for window queries, Fig. 13a depicts that the
client cache hit ratio increases with the grid size getting
larger, arising from that a larger grid size results in more
object information enabling the proxy to set more effective
EWVs. From Fig. 13c, we observe that smaller grid sizes
cause heavier server load, arising from that the proxy has to
request objects for fully cached cells from the LBS server
more frequently. Fig. 13b shows that the query answering
time increases as the grid size gets larger. This result seems
contrary to the intuition that, the high cache hit ratio yields

the smaller number of queries submitted by clients and thus
reduces the processing times of the proxy and the server.
The underlying reason is as below.

When mobile clients want to launch new spatial queries
and find that they are not located in their cached EVRs, it is
highly likely that mobile clients are still in the VRs since
EVRs are subregions of VRs. If mobile clients are not located
in their EVRs but are in the corresponding VRs, the data
objects cached at mobile clients remain valid. In this case, it
is unnecessary for the proxy to transmit the data objects to
query clients. Based on this observation, we introduce a
traffic-reduction mechanism to reduce the wireless transmis-
sion cost as follows: When a mobile client wants to submit a
query to the proxy, the client attaches the object ID(s) of the
last query result associated with the cached EVR to the
query. With the information, the proxy can realize whether
the cached object(s) of mobile clients remain valid. If so, the
proxy transmits only the new EVR to the client without
the data object(s), thereby reducing the wireless transmis-
sion cost. With the traffic-reduction mechanism, let Nvalid

denote the number of queries submitted by the clients when
mobile clients are outside the EVRs but the cached data
objects are still valid. As the cache hit ratio decreases, Nvalid

will increase and thus the proxy will answer more queries
with no or fewer objects returned to mobile clients, thereby
reducing the query answering time. In the following
experiments, we choose to set the grid size to 2,500 m due
to better performance.

5.2 Effect of Proxy Cache Size

In this experiment, we investigate the effects of proxy cache
size and cache replacement policy on the system perfor-
mance. The cache size ranges from 20 to 60 percent of the
storage space required for storing all data objects. Regard-
ing cache replacement, we employ three policies: PA, LRU,
and LifeSpan. PA was proposed in [2] and evicts the EVR
with the least cost where the cost is defined as the product
of the access probability and the EVR size. LifeSpan was
suggested in [5], [6] and evicts the EVR that has been
accessed more than n times. We set n to 512 in this
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TABLE 1
Default System Parameters

Fig. 12. Performance of NN queries versus grid size. (a) Client cache hit
ratio. (b) Query answering time. (c) Server load.

Fig. 13. Performance of window queries versus grid size. (a) Client
cache hit ratio. (b) Query answering time. (c) Server load.

Fig. 14. Performance of NN queries versus proxy cache size. (a) Client
cache hit ratio. (b) Query answering time. (c) Server load.

Fig. 15. Performance of window queries versus proxy cache size.
(a) Client cache hit ratio. (b) Query answering time. (c) Server load.



experiment. Figs. 14 and 15 reveal that the client cache hit
ratio increases and server load decreases as the cache size
increases, agreeing with the intuition. For NN queries, the
client cache hit ratio of our approach is about two times
higher than that of Gao’s approach. Due to the low client
cache hit ratio, Gao’s approach performs very poorly in
terms of server load and query answering time. For
window queries, the proposed EWVs increase the client
cache hit ratio by an order of magnitude compared with
Gao’s approach. Although the proxy and the server of
Gao’s approach have to process a large number of queries
submitted by mobile clients, Gao’s approach has close
query answering time compared with our approach
because of the traffic-reduction mechanism. Note that we
adopt 50 percent of the storage space for data objects as the
proxy cache size in the following experiments.

As to cache replacement policies, from Figs. 14 and 15,
we can see that the effect of cache replacement policy on our
approach is fairly minor. This is because the created EVRs
and EWVs are effective in reducing the number of queries
submitted by mobile clients, and such a smaller number of
the received queries incurs low replacement cost at the
proxy. As a result, our approach is less sensitive to the
cache replacement policy. On the other hand, since Gao’s
approach has to accumulate sufficient query points to
enlarge the EVRs, their performance is affected by the
adopted cache replacement policy. Compared with LRU
and LifeSpan, PA makes Gao’s approach have a higher
client cache hit ratio since PA takes into account the access
probabilities and EVR sizes. It is worth noting that using
LifeSpan, Gao’s approach has a lower client cache hit ratio
but achieves shorter query answering time. The reason is
that PA and LRU incur EVR-tree reconfiguration (cache
replacement) whenever a new object is received from the
server. The high cost of frequent EVR-tree reconfiguration
accounts for the long processing time at the proxy when PA
or LRU is used. Since PA leads to the higher client cache hit
ratio and lower server load, we employ PA as the
replacement policy in the following experiments.

5.3 Effect of the Number of Clients

We evaluate the scalability of all the approaches by varying
the number of mobile clients from 20,000 to 60,000 in
increments of 10,000. As shown in Figs. 16 and 17, Lee’s
approach outperforms our and Gao’s approaches in terms of
the client cache hit ratio and server load since Lee’s approach
has the complete data object information to construct
effective VRs. The performance of our approach is close to
that of Lee’s approach due to the effectiveness of EVRs and
EWVs. Gao’s approach suffers from poor performance

because their EVRs of NN and window queries are small.
Figs. 16a and 17a show that the client cache hit ratio is nearly
constant because the number of clients has a small effect on
VR and EVR construction. For NN queries, the increase in
the number of mobile clients results in more submitted
queries, causing the performance of Lee’s and Gao’s
approaches to deteriorate in terms of query answering time
and server load, as shown in Figs. 16b, 16c and 17b, 17c.
Different from Lee’s and Gao’s approaches, our approach is
insensitive to the increase in the number of mobile clients
due to the fact that the cached EVRs and objects at the proxy
are effective in resolving such queries. In fact, the cached
EVRs and objects enable our approach to outperform Lee’s
approach in terms of server load when the number of mobile
clients is large. Specifically, the server load of our approach
is only about 30 percent of that of Lee’s approach when the
number of clients reaches 60,000. Similarly, for window
queries, it is observed from Fig. 17c that our approach
achieves lower server load than Lee’s approach as the
number of mobile clients is large. The reason is that as
the number of mobile clients increases, the proxy is able to
have more fully cached cells, thereby creating more effective
EWVs for mobile clients. These results indicate that our
approach is more scalable than Lee’s approach.

To further understand the query answering time, Fig. 18
lists the distribution of time spent by each entity, including
wireless transmission time, proxy processing time, wired
transmission time, and server processing time. From Fig. 18,
we can see that the query answering time is dominated by
the wireless transmission entity. Compared with high-
speed CPU, the wireless links are the bottleneck of
obtaining query results for mobile clients. With respect to
the server processing time, our approach experiences much
less time than Lee’s approach for two reasons. First, VR
computation is more computationally costly than query
answer search. Second, heavy VR computation results in
longer queuing time on the server. Gao’s approach suffers
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Fig. 16. Performance of NN queries versus number of clients. (a) Client
cache hit ratio. (b) Query answering time. (c) Server load.

Fig. 17. Performance of window queries versus number of clients.
(a) Client cache hit ratio. (b) Query answering time. (c) Server load.

Fig. 18. Distribution of query answering time. (a) NN queries. (b) Window
queries.



from the longest proxy processing time and server proces-
sing time due to the large number of the received queries
caused by the low client cache hit ratio.

5.4 Effect of Moving Speed

In this experiment, we study the effect of moving speed on
the performance. We vary the moving speed from 4 m/s
(14.4 km/hr) to 20 m/s (72 km/hr). For NN queries, Fig. 19
shows that the high moving speed degrades the perfor-
mance of all the approaches. This is because the higher the
moving speed is, the more frequently a mobile client moves
out of its cached EVR or VR, resulting in more submitted
queries. Besides, Fig. 19 shows that the moving speed
affects our approach more than the other approaches.
Specifically, as the moving speed increases from 4 to 20 m/
s, the client cache hit ratio drops from about 95 to 84 percent
such that our approach suffers from heavier server load
than Lee’s approach. The drop mainly results from that the
EVRs which are subregions of VRs are less beneficial for
mobile clients at high moving speeds. Compared with
Gao’s approach, however, our approach still enhances the
performance significantly at high speeds since the built
EVRs of our approach are much larger than those of Gao’s
approach. On the other hand, for window queries, the
performance of all the approaches also degrades as the
moving speed increases, as illustrated in Fig. 20. Unlike NN
queries, the moving speed has a greater impact on Lee’s
approach than our approach in terms of server load. The
reason is that, with the cached objects, the proxy of our
approach can directly answer many received queries,
thereby leading to lower server load. Due to the extremely
low client cache hit ratio, Gao’s approach performs poorly
at all moving speeds.

5.5 Effect of k

We vary the value of k from 5 to 30 to study the performance
of all the approaches for kNN queries. From Fig. 21a, we can
see that the performance of Lee’s and our approaches

degrades gracefully in terms of client cache hit ratio as the

value of k increases. This is because that about half of mobile

clients moving slowly as pedestrians rarely move out of the

EVRs or VRs for the querying duration. However, the query

answering time of Lee’s approach is much longer than that

of our approach because 1) the query answering time of our

approach is greatly reduced by using the traffic-reduction

mechanism and 2) Lee’s approach suffers from the much

longer VR construction time for kNN queries, as shown in

Fig. 21c. On the other hand, the large value of k causes the

performance of Gao’s approach to degrade severely for

three reasons. First, a large value of k decreases the

probability that the mobile clients have the exactly same

answer objects, causing Gao’s approach unable to accumu-

late sufficient query points for EVRs. Second, due to the

large number of combinations of answer objects of

kNN queries and small cache size, an EVR is usually

replaced before it grows sufficiently large. Third, since the

cache size is fixed, the more objects stored due to the large

value of k cause a smaller number of EVRs at the proxy.
To further explore the effect of the value of k, we vary

the moving speed of mobile clients from 4 to 20 m/s and
the value of k is fixed at 20. Fig. 22 shows that Lee’s
approach still achieves high client cache hit ratio due to
large VRs. However, the costly VR computation for
kNN queries also causes Lee’s approach to experience
longer query answering time and have heavier server load.
As to our approach, the client hit ratio drops from about 75
to 40 percent as the moving speed is varied from 4 to 20 m/
s, as shown in Figs. 22a. The reason is that the EVRs are
subregions of VRs of kNN queries and thus are much less
effective than VRs. However, the traffic-reduction mechan-
ism and cached information at the proxy lead our approach
to enjoy shorter query answering time and lower server
load, respectively. Finally, since Gao’s approach has a very
low client cache hit ratio, their performance stays poor at all
moving speeds.
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Fig. 20. Performance of window queries versus number of clients.
(a) Client cache hit ratio. (b) Query answering time. (c) Server load.

Fig. 19. Performance of NN queries versus moving speed. (a) Client
cache hit ratio. (b) Query answering time. (c) Server load.

Fig. 21. Performance of kNN queries. (a) Client cache hit ratio. (b) Query
answering time. (c) Server load.

Fig. 22. Performance of 20NN queries versus moving speed. (a) Client
cache hit ratio. (b) Query answering time. (c) Server load.



6 COMPARISON BETWEEN PROXY-BASED AND

SERVER-BASED APPROACHES

Here, we discuss the benefits and drawbacks of the
proposed proxy-based approach compared with Lee’s
server-based approach based on the experimental results
in Section 5:

. Client cache hit ratio.Due to the effectiveness of VRs
and EVRs, both of Lee’s and our approaches achieve
high client cache hit ratios, leading mobile clients to
avoid unnecessary query submissions. However,
compared with VRs, our EVRs are relatively smaller
so that the client cache hit ratio of our approach is
lower than that of Lee’s approach particularly when
the moving speed of mobile clients is high.

. Query answering time.Because of the high client cache
hit ratio, the number of queries submitted by mobile
clients is small for Lee’s and our approaches. The
fewer received queries together with the efficient
processing algorithms and cached information at the
proxy lead our approach to experience shorter query
answering time. In other words, our approach makes
a mobile client wait for only a short period before
obtaining the answer object(s) and the correspond-
ing EVR. It is worthwhile to mention that the cached
EVRs and objects are more beneficial when the
number of mobile clients is large. On the other hand,
since VR computation is time consuming and VRs
are not reused for resolving new queries, Lee’s
approach has longer query answering time than our
approach, especially when a great deal of mobile
clients submit spatial queries.

. Server Load.When the number of mobile clients is
large, due to the cached EVRs and objects at the
proxy, the LBS server of our approach enjoys the
lower server load than the server of Lee’s approach.
On the other hand, if mobile clients move at high
speeds, Lee’s approach outperforms our approach in
terms of server load since their large VRs lead to a
higher client cache hit ratio. Because of the high
client cache hit ratio, both our and Lee’s approach
achieve low server load.

To sum up, the performance of our approach is very close to
that of Lee’s approach even though our approach has only
partial information of data objects. Lee’s approach is more
suitable when mobile clients move at high speeds, whereas
our approach is suitable in a densely populated area.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a proxy-based approach to
continuous NN and window queries in mobile environ-
ments. The proxy takes advantage of spatial and temporal
locality of spatial queries to create EVRs of NN and window
queries. Different from prior work, we devised new EVR
creation and extension algorithms for NN queries, enabling
the proxy to build effective EVRs efficiently. The devised
algorithms make the proxy achieve high performance even
when the cache size is small. On the other hand, we propose
to represent EVRs of window queries in the form of vectors,

called estimated window vectors, to achieve larger esti-
mated valid regions. Moreover, due to distinct character-
istics, we introduce an EVR-tree and a grid index to process
NN and window queries, respectively. The algorithms for
mutual support of the EVR-tree and the grid index are
developed to further enhance the system performance. The
experimental results show that the proposed approach
significantly outperforms the existing proxy-based ap-
proaches since our proposed algorithms create much larger
EVRs for mobile clients.

Compared with the representative server-based ap-
proach, the experimental results indicate that the proposed
proxy-based approach achieves similar performance even
though the proxy has only partial information of data
objects. Besides, the results reveal that the proposed proxy-
based approach is suitable in a densely populated area,
whereas the server-based approach is suitable when mobile
clients move at high speeds. Although offering the above
benefits, the inherent problem of data object updates needs
further investigation for the proposed proxy-based ap-
proach. In future work, we will investigate the impact of
data object updates on the proposed approach and extend
the proposed approach to efficiently handle frequent object
updates.
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