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The Number of Isolated Nodes in a Wireless Network with a
Generic Probabilistic Channel Model

SUMMARY A wireless node is called isolated if it has no links to other
nodes. The number of isolated nodes in a wireless network is an important
connectivity index. However, most previous works on analytically deter-
mining the number of isolated nodes were not based on practical channel
models. In this work, we study this problem using a generic probabilistic
channel model that can capture the behaviors of the most widely used chan-
nel models, including the disk graph model, the Bernoulli link model, the
Gaussian white noise model, the Rayleigh fading model, and the Nakagami
fading model. We derive the expected number of isolated nodes and further
prove that their distribution asymptotically follows a Poisson distribution.
We also conjecture that the nonexistence of isolated nodes asymptotically
implies the connectivity of the network, and that the probability of connec-
tivity follows the Gumbel function.

key words: connectivity, isolated nodes, multihop wireless networks, wire-
less channel models

1. Introduction

Wireless ad hoc and sensor networks dispense with the need
for fixed infrastructures, such as cables or base stations,
which means they can be flexibly deployed with minimal
cost for various tasks. However, without the aid of infras-
tructures, connectivity is a major concern [1]-[4]. In the
past, many theoretical studies on network connectivity were
based on disk graph models, in which two nodes have a link
if and only if the distance between them is no more than
their transmission radii [5]; even so, the disk graph mod-
els were criticized for oversimplifying wireless channels. In
this work, using a generic probabilistic channel model, we
study the connectivity problem by investigating the number
of isolated nodes in a randomly deployed wireless network.

In many applications of multihop wireless networks,
e.g., wireless sensor networks and mobile ad hoc networks,
wireless nodes are distributed in a random manner, so it
is natural to represent wireless nodes by a set of random
points. A good tutorial on modeling wireless networks
and techniques is presented [6]. Nodes are called isolated
if they do not have links to other nodes. The nonexis-
tence of isolated nodes is a prerequisite for connectivity.
In [7], it was proved that if #» nodes with transmission ra-
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dius /(Inn + &) /nn, in which £ is a tunable parameter that

remains constant during the analysis, are independently dis-
tributed over a unit-area square, then the network asymptoti-
cally has no isolated nodes with probability exp (—e‘f ) Fur-
thermore, in [8], it was proved that the network is asymptot-
ically connected if & — oo and asymptotically disconnected
if ¢ — —oo. However, neither node failures nor link failures
were considered in these works. In [9], assuming that each
node has the same probability to be active independently,
p1, and that each link has the same probability to be up in-
dependently, p», the authors proved that the total number of
isolated active nodes asymptotically follows a Poisson dis-
tribution with mean p; ¢~¢, if the transmission radius is given
by \/(lnn + &) /np1pon. In [10]-[12], the impact on con-
nectivity due to link failures caused by shadowing or fading
was investigated. An analytical procedure for the compu-
tation of the node isolation probability and coverage in an
ad hoc network in the presence of channel randomness was
presented [13]. In [14], the node isolation probability under
a specific channel model, the Nakagami fading model, was
derived.

However, the majority of previous analytical works
were not based on practical channel models. In this pa-
per, our study is based on a generic probabilistic model that
can capture the behaviors of the most widely used models,
including the disk graph model, the Bernoulli link model,
the Gaussian white noise model, the Rayleigh fading model,
and the Nakagami fading model. In this generic probabilis-
tic model, we let f (r) be the probability of the event that
two nodes have a link if they are separated by a distance of
r. It is realistic to assume that f (r) is a decreasing function
and that there are two constants 0 < R; < R, < oo such that
f(@)=1for0<r<Ryand f(r) = 0forr > R,. The values
of Ry, R,, and f (r) are set to define the generic model.

The nonexistence of isolated nodes is a prerequisite for
network connectivity and is also a good indicator for it. We
will first derive the expected number of isolated nodes. In
addition, we will further prove that the probability distri-
bution of the number of isolated nodes asymptotically fol-
lows a Poisson distribution. The equations given in this
work will allow users to control the expected number of iso-
lated nodes by tuning the node density or even the transmis-
sion power. Thus, the desired level of connectivity can be
achieved. These results can be used to obtain the connectiv-
ity features of the network. In addition, they are of practical
value for researchers or designers in this field. We run exten-
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sive simulations to verify our probabilistic analysis. More-
over, we conjecture that the nonexistence of isolated nodes
asymptotically implies connectivity. This conjecture is also
verified through simulations.

A similar work focused on the connectivity of wire-
less networks with arbitrary wireless channel models [15].
This was built upon the wireless model, in which a total
of n nodes are randomly, independently, and uniformly dis-
tributed in a unit square, and each node has uniform trans-
mission power. The authors proved that the probability of
having a connected network and the probability of having no
isolated nodes asymptotically converges to the same value
as n tends to infinity. In contrast, our work uses a different
network model, which is not scaling. Furthermore, besides
the node isolation probability, we also investigate the distri-
bution of the number of isolated nodes.

The rest of this paper is organized as follows. In Sect. 2,
we give our main results. In Sect. 3, lemmas needed to prove
the main results are given. In Sect. 4, we derive the expected
number of isolated nodes. In Sect. 5, we give the asymptotic
distribution of the number of isolated nodes. In Sect. 6, the
channel models used in the simulations are introduced, and
simulation results are given to verify our theoretical theo-
rems. We summarize the paper in Sect. 7.

2. Main Results

The nonexistence of isolated nodes is a precondition for net-
work connectivity. The probability of nonexistence of these
isolated nodes is considered as a tight upper bound for the
probability of connectivity [16]. It was proved that if there
are no isolated nodes in a random geometric graph, then the
graph is asymptotically almost surely connected.

In this paper, we assume that wireless nodes are rep-
resented by a Poisson point process over a deployment re-
gion D = [0, 1> with density A (l). For convenience, we
will suppress the parameter / in A (/) from this point on. To
avoid tedious arguments on boundary effects and to sim-
plify the calculations, we will apply the torus convention de-
scribed, for example, in [17]-[19]. Hence, instead of the Eu-
clidean distance, the toroidal distance [20], [21] is applied.
The toroidal distance between nodes u and v is denoted by
d (u,v). In addition, scaling disk models, like that used in [8]
and [9], are not adopted. Instead, the transmission radius of
the nodes is independent of the number of nodes, and the
node density is a function of the deployment region.

As stated before, f (r) is the probability of the event
that two nodes have a link if they are separated by r. Leta =
o f)2mrdr, A= (P +InInP +£) /a,and w = £ + Ina.
Here, £ is a tunable parameter that remains constant during
the analysis and Aa = In />+In In [>+¢ is the expected number
of nodes with which a node has links. Our first result gives
the expected total number of isolated nodes in the network.

Theorem 1: The expected total number of isolated nodes

in the network is e™®.

Based on Theorem 1, the expected number of isolated
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nodes can be controlled by tuning the parameter w that de-
pends only on ¢ and a. The ratio of a to nR% is the condi-
tional probability that two nodes have a link between them
if they are within the distance R,. Specifically, if f(r) = 1
for r € [0, R,], the ratio is equal to 1. In other words, any
two nodes within a distance R, always have a link, and this
is the traditional r-disk graph. Different channel models
have different settings for R, R,, and f (r). Accordingly,
a= fooo f (r)2nrdr also differs. This shows variation in the
expected number of isolated nodes. The greater the value of
a, the lesser the expected number of isolated nodes. In some
applications, it is tolerable to have a certain percentage of
nodes isolated. With the knowledge of the expected number
of isolated nodes, this can be achieved by choosing a proper
&. We further give the probability distribution of the number
of isolated nodes in the following theorem.

Theorem 2: The total number of isolated nodes is asymp-

totically Poisson with mean ™.

According to Theorem 2, the probability of the event
that there are k isolated nodes in the network is asymptoti-
cally equal to (e’k“’ / k!) exp (—e™ ). Specifically, the event of
the nonexistence of isolated nodes is asymptotic with prob-
ability exp (—e™®), and is called the Gumbel function. This
probability is an upper bound for the probability of connec-
tivity. In addition, we conjecture that, even considering link
failures, a network without isolated nodes is almost surely
connected. If this conjecture is true, then

Pr (the network is connected) ~ exp (—e™®). (1)

This conjecture will be verified through simulations in
Sect. 6.

3. Preliminaries

In this section, lemmas for proving the above theorems are
given. The proofs of these lemmas are given in the Ap-
pendix. Let G, (xy,---,x;) denote the r-disk graph over
X1, ,X; in which there is an edge between two nodes
if and only if their distance is at most r. For any posi-
tive integers k and m with 1 < m < k, let Cy, denote
the set of (x|,---,x;) € DF satisfying the condition that
Gag, (x1, -+, x) has exactly m connected components. The
space DF can be partitioned into Cyy, Cyp - - -, Cig-

We use X, Xo,--- and X, X],--- to denote indepen-
dently and uniformly distributed random points in D. Let
P, = {X1,Xa,- -+, Xpoapy} denote a Poisson point process
with density A over D where Po (-) is the Poisson random
variable, and X; = {Xi,Xé, e ,X)@ denotes a random k-
point process over D. Specifically, X} is independent of P,.
Let B; fori = 1,2,--- denote the event that the node X; is
isolated in the network over #,, and let B fori = 1,--- ,k
denote the event that X; is isolated in the network over

Xi U P,. Recall that £ is a constant, a = fow f(r)2nrdr,

A=(nZ+mnnP?+ f) /a, and w = & + Ina. Thus, we have
the following lemmas.
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Lemma 3: For any integer £ > 2 and (xy,xp,:--,x;) €
Chks

k X| =X
Pr /\ B = ¢7Ha, )
i=1

Lemma 4: For any positive integer k,

k
P f e Ha [ dxi] ~ (e7)~. 3)
(X1, x1)ECkK !:1[

Lemma 5: For any two integers k > 2and 1 <m < k — 1,
there is a positive constant ¢ such that, for any (x1,---, x;) €
Ckm’

X;(Z)Ck

Xi =X
< e—(m+c)/la. (4)

k
Pr /\ B;

i=1
Lemma 6: For any two integersk >2and 1 <m <k -1,

k
A f e~ (mtoa dx;|=0(). (5)
(x1,X2, Xk )ECkm l_[

i=1

X;(Z)Ck

We write g (1) = o(h(4)) if limy5e g () /R(1) = 0.
Generally speaking, Lemmas 3 and 4 are for estimating
the probability of the existence of k widely spaced isolated
nodes, and Lemmas 5 and 6 are for estimating the probabil-
ity of the existence of k isolated nodes among which some
are close to others. The density A and a together will affect
the probability of the isolated nodes.

4. The Expected Number of Isolated Nodes

Briefly, the expected number of isolated nodes equals the to-
tal number of nodes in the network multiplied by the prob-
ability of a typical node being isolated. To derive the ex-
pected number of isolated nodes, we use Palm theory [22].
Let X’ be a point randomly located in D and independent of
#,, and let B (x,r) denote a disk with center x and radius
r. Let h(Y,X) for Y C X be the indicator function such
that (Y, X) = 1 if #(Y) = 1, where #(-) is the cardinal-
ity function, and the node in Y is isolated in X; otherwise,
h(Y,X) = 0. Then, we have

The expected number of isolated nodes in P, (6)

= Z Pr (X is isolated) (7
(X}cPa

= > E[h(X), P (®)
{X}SPa

=E| > h(x), m] ©)

{X}cP,
= (AP)E[h({X'}.{X'} UP))] (10)

= AP Pr(X’ isisolated in {X'}UP)). (1)
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The introduction of the random point X’ in Eq. (10) is to
ensure that there is at least one node in D. The equality
from Egs. (9) to (10) is based on Palm theory, and A/ is the
expected total number of nodes in the network. The proba-
bility Pr (X’ is isolated in {X’} U ;) can be given by

Pr (X’ is isolated in {X"} U P,)

= f Pr (X’ is isolated | X" = x) Pr (X’ = x) dx
xeD

= 1 f Pr (X’ is isolated | X" = x) dx. (12)
12 xeD

To calculate Pr (X’ is isolated | X" = x), we apply the parti-
tion technique of the Riemann integral. The disk B (x, R,)
is divided into k annuli by k concentric circles with centers
at xand radii r; < r, < -+ < 1, = Ry, respectively. For
convenience, let rp = 0. For 1 < i < k, the annulus with
radii r,_; and r; is called the ith annulus. Let Ar; = r; — ri_y.
The area of the ith annulus can be approximated by 2rxr;Ar;.
If a node is in the ith annulus, the event that X’ has a link
to that node is approximately the probability f (r;). Let N;
denote the number of nodes in the ith annulus. Then,

X’=x)
Nizj)

p X’ does not have links with
r nodes in the ith annulus

_ i Pr All links between X’ and
T L o nodes in the ith annulus fail
=

‘Pr(N;=j| X =x)
= Z (1- f(r[))f ((/lzﬂ;‘%i'Ar")je—/lZﬂriAn)

Jj=0
— e—f(r,»)uzrr,»mi . (13)

Therefore,
Pr(X’ is isolated| X = x)

Forall1 <i <k,
=Pr| X’ does not have links with | X’ = x

nodes in the ith annulus

= lim Pr nodes in the ith annulus

k—oo 1
i=1

k
= lim ne—.ﬂnuznm = lim e~ASk Fer2mrar

k—oo 1 k—00

i=1

k ( X’ does not have links with

X’=x)

— e—/l fnRz fr2mrdr _ e—/la‘ (14)

Putting Egs. (11), (12), and (14) together, we have

The expected number of isolated nodes in P,

=2 f e Ydx ~ e7?. (15)
xeD

The last equality holds due to Lemma 4. Thus, Theorem 1
is proved.
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5. Asymptotic Distribution of the Number of Isolated
Nodes

To prove Theorem 2, we apply Brun’s sieve in the form, for
example, used in [23]. This is used to derive the asymptotic
distribution of the number of isolated nodes. For complete-
ness, we give Brun’s sieve here.

Theorem 7 (Brun’s Sieve): Assume m(n) is a non-nega-
tive random integer variable. Let By,---, B, be events
and let Y be the number of B; that hold, and let

SW = Z

{i1,i; Sl 1, m(n))

Pr(Bi] A .../\B,.j). (16)

Suppose there is a constant u such that for every fixed j,
. 1 .
E[S(./)] - 7/1‘]- A7)
J:

Then Y is also asymptotically Poisson with mean .

Let Y be the number of B; events that hold. In other
words, Y is the total number of isolated nodes. To prove
Theorem 2 by applying Brun’s sieve, we need to show that
for every fixed k,

E Z Pr(Bi A--- A Bj,)
(i1, ,ik)c{1, Po(a2)}

1, o
~ g @) (18)

Again, by applying Palm theory to prove Eq. (18), we have

DY
{il,---,ik}g{],---,Po(/Uz)}
ey

:(k!) Pr(Bj A~ ABY). (19)

PI'(B,'] VANKERIVAN B,’k)

Comparing Eqgs.(19) with (18), we can see that if
k

(A2) Pr(Bj A---AB) ~ () forall k = 1,2,--- then

the proof is complete. The case of k = 1 was proved in the

previous section. Thus, here we only need to prove that, for

any integer k > 2,

(A2) Pr (B A A BY) ~ (). (20)

As described in Sect. 3, for any positive integers k and m
with 1 < m < k, C, denotes the set of (xj,---,x;) € D
satisfying the condition that Gag, (x1, - - - , x) has exactly m
connected components and the space D can be partitioned
into Ci1,Cia - -+, Crx. Therefore, we use a divide and con-
quer strategy to prove this statement. We have

(A2) Pr (B A--- n BY)
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) k X =x
= (1?) f pr| \B|
(1,22, Xz )€D¥ i=1 X =
k= Mk
Xi =X k
-Pr : [l—[ dx;
X]/( = Xk i=1
k X =x k
= ﬁkf Pr /\ B! dei
(X2, X €Dk i=1 X = i=1
k= Mk
X; = X1

k k
= Z ,1"[ Pr /\ B!
; (x1,x2, X, )ECki i=1 X =
k= Mk
k
. [l_l dxi] ) (21
i=1

For the integral over Cy,, with 1| < m < k — 1, according to
Lemmas 5 and 6, we have

k k
A f Pr /\Bl’ ndx;
(x1,%2,+ Xk )ECkm i=1 X = i=1
k= Mk
k
<A f o [ |=o). (22
(1,22, X)) E€Ckm i=1

For the integral over Cy, according to Lemmas 3 and 4, we

Xile

have
Xi = X k
/lkf Pr /\ B! [ dxi]
(x1,%2,7 ,X1)E€Cx i=1 X;{ = x i=1

k
= ,lkf ek dxi |~ (7). (23)
(x1,%2, Xk )ECkk 11:1[

If we combine Egs. (21), (22), and (23) we have

(A2) Pr(B) A -+~ A By) ~ ()" 24)

6. Simulation Results

The generic probabilistic channel model used in this work
is a generalization of many widely used channel models.
Channel models can be described by setting R;, R,, and
f (r). In this section, we begin with a brief introduction to
several well-known channel models: the log-distance path
loss model, the Bernoulli link model, the Gaussian white
noise model, the Rayleigh fading model, and the Nakagami
fading model. Extensive simulation results are given to ver-
ify our theoretical results. For the sake of succinctness, sim-
ilar figures for different channel models will not be included.

6.1 Channel Models and Simulation Parameters

Let S e (dBm) be the signal strength measured at a reference
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distance dy from the transmitter. Based on the log-distance
path loss model [24], the signal strength received at a dis-
tance d from the transmitter will be S — 10a log (d/dy)
(dBm) where « is the path loss exponent, whose value is
between 2 and 6 depending on the environment. Let S,
(dBm) be the minimum received signal strength for decod-
ing a signal. Hence, the transmission radius denoted as R
can be derived from the equation

Sthr = Stef — 10 log 5 (25)
do
In the simulation, we assume that dy = 1, St = 35dBm,
Str = 15dBm, and @ = 2. Thus, for the log-distance path
loss model, we have Ry = R, = 10. We should note that
f (r) is not needed here.

In a realistic system, links may be down due to the envi-
ronment or barriers between nodes. To characterize the un-
certainty of the existence of links, the Bernoulli link model
assumes that two nodes within each other’s transmission
range may have a link with probability p, depending on the
specific propagation environment. In other words, Ry = 0
and f(r) = p. Let Rp denote the R, in the Bernoulli link
model. To achieve a fair comparison, the average node de-
gree should be kept the same. The degree of a node, or 'node
degree’, is the number of connections it has to other nodes.
A node of degree 0 is isolated. Thus, we have nR* = an%.
In the simulation, we set p = 0.8, which can be set accord-
ing to the environment, and therefore, R; = 0, R, = 11.2,
and f (r) = 0.8.

To model background noises, the Gaussian white noise
model assumes that the signal strength received at a distance
r from the transmitter is given by S s — 10 log (r/dp) — N,
where N is a log-normal random variable with mean u = 0
and standard deviation o. Therefore,

f(r) = PI'(NS Sref_Sthr_ 10()’10g dL)
0

1 S f—Sh—IOalogL
= —(1 +erf( “ il & \’], (26)
2 V2

where erf (-) is the error function. Let R denote the R, for
the Gaussian white noise model. To have the same mean
node degree, R is given by

Re | S tef—S ir— 10 log -~
R? :f - (1+erf( il b )) 2xrdr.
0o 2 o2

27)

In the simulation, we set o = 8, and therefore, f(r) =
L(1+erf ((5-5logr)/(2V2))). R = 0, and R, = 13.186.

In the Rayleigh fading model [25], the amplitude of a
signal will vary according to the Rayleigh distribution. The
cumulative distribution function (CDF) of the Rayleigh dis-
tribution with standard deviation o is

2
R(x)=1-exp (—%), (28)
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where 202 = 10(Ser10alog(r/d0))/10 g the average received
signal power, and for successful reception, the received sig-
nal power x> must be at least 105#/1°, Therefore,

S ef =S thr—10er log( %) ]

F) = Pr(x2 > 105%) = exp (—10— ™

(3
= exp (— (di) 10~ e ) i (29)

0

Let R denote the R, for the Rayleigh fading model. To have
the same mean node degree, Ry is given by

Rr a )
o) r _ Sref=Sthr
nR? = f exp(—(—) 107w )27rrdr. (30)
0 do

In the simulation, f (r) = exp(-r2/100), Ry = 0, and R, =
38.1 for the Rayleigh fading model.

The Nakagami fading model is described by two pa-
rameters: u is the shape parameter denoting the severity of
fading, and w is the scale parameter equal to the average
received power. We have

f(@r)="Pr (received power > 1051‘%)

=1—G(10%;u,9), 31)
u
where G is the CDF of the gamma distribution and w =
10(Swi=10alog(r/d))/10_ | et R\ denote the R, for the Nakagami
fading model. To have the same mean node degree, Ry must
satisfy

Ry
nR*= f
0

In the simulation, we set u = 2, and therefore, f(r) =
(/50 + 1)/, Ry = 0, and Ry = 28.3.

S 1 Swerie log( %)
1-G|10 ° ;u, =101 [{27rdr.
u

(32)

6.2 Network Snapshots

A schematic of a wireless network with the Gaussian white
noise model is depicted in Fig.1. In the network, nodes
are generated by a Poisson point process with mean density
A = 0.02 in a square region D = [0, 100]>. The solid lines
represent the links between the nodes under the Euclidean
metric; and the dotted lines denote additional links between
nodes under the toroidal metric that connects pairs of nodes
lying on opposite sides.

6.3 Expected Number of Isolated Nodes

To verify Theorem 1, i.e., the theorem of the expected total
number of isolated nodes, we depict the average number of
isolated nodes w.r.t. £ in networks with [ = 500. We are in-
terested in the condition where the network is close to being
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Fig.1 A schematic of a wireless network with the Gaussian white noise
model.

—— Theoretical
 Simulation

N w N

number of isolated nodes

-

-6.5 -6 -5.5

Fig.2  The number of isolated nodes in a network with the Gaussian
white noise model.

connected, i.e., there are few isolated nodes in the network.
Thus, we choose the corresponding domain and range for
the parameter £. Figure 2 illustrates the outcome for the
Gaussian white noise model. The red solid line represents
the expected number of isolated nodes given by Theorem
1, and the blue dotted line represents the average number
of isolated nodes given by the simulations. We can see that
there is only a small gap between the two curves. The round-
ing in the mathematical derivation for the theorem results in
the gap between the expected number and the average num-
ber of isolated nodes. Even so, Theorem 1 accurately ap-
proximates the number of isolated nodes in a network.

6.4 Distribution of the Number of Isolated Nodes

To verify Theorem 2, i.e., the theorem of the probability dis-
tribution of the total number of isolated nodes, network in-
stances are generated with & = —5.8 and / = 500, 1000. As
Fig. 2 shows, there is about one isolated node on average in
the network when ¢ = —5.8. This helps us understand the
features of the network in such circumstances. The node
densities corresponding to / = 500 and / = 1000 are 0.029
and 0.339, respectively. The probability distribution func-
tions of the total number of isolated nodes are depicted in
Fig. 3 for the Gaussian white noise model. The blue solid
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0.5 : : :
=%- 1=500
- e -1=1000
0. —4&— Poisson |
Zz03f
=
©
Qo
o
g 0.2
0.1
0 ; - : —h—h—Ah—Ah—&
0 1 2 3 4 5 6 7 8 9 10

number of isolated nodes

Fig.3  The probability distribution functions of the total number of
isolated nodes.

0.8f
2061
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®©
Q
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a 04
0.2 p -o- Not isolated
, * - Connected
& Theoretical
0.01 0.02 0.03 0.04 0.05 0.06

density

Fig.4 The CDFs of Dis,, Dcon, and Dy, for the log-distance path loss
model.

line marked by triangles denotes the asymptotic probabil-
ity distribution, i.e., the Poisson distribution with parameter
e™®. The black dash-dot line marked by stars and the red
dash line marked by circles denote the experimental proba-
bility distribution corresponding to [ = 500 and / = 1000,
respectively. The results show that Theorem 2 can accu-
rately capture network behavior.

6.5 Network Connectivity

Lastly, we investigate the conjecture that a random network
without isolated nodes is almost surely connected. In the
simulation, nodes are added into the network one by one.
After each node is added, isolated nodes are counted and
network connectivity is verified. Let Djy, denote the node
density the first time that the network has no isolated nodes
in the simulation, let Do, be the node density the first time
that the network becomes connected in the simulation, and
let Dy, denote the theoretical node density for nonexistence
of isolated nodes.

Figure 4 depicts the CDFs of Djso, Dcon, and Dy, based
on 400 network instances over the log-distance path loss
model for / = 200, / = 500, and / = 800. In addition, Figs. 5,



SU et al.: THE NUMBER OF ISOLATED NODES IN A WIRELESS NETWORK WITH A GENERIC PROBABILISTIC CHANNEL MODEL

0.8f
1=200
206
=
®
Q
[
g 041
?
0.2 <;>’ -o- Not isolated
0 * * - Connected
Theoretical

0 © sl
0.01 0.02 0.03 0.04 0.05 0.06
density

Fig.5 The CDFs of Djso, Dcon, and Dy, for the Bernoulli link model.
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Fig.6  The CDFs of Diso, Dcon, and Dy, for the Gaussian white noise
model.
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Fig.7 The CDFs of Do, Dcon, and Dy, for the Rayleigh fading model.

6, and 7 depict the CDFs for the Bernoulli link model, the
Gaussian white noise model and the Rayleigh fading model,
respectively, using the same value of /. The simulation re-
sults support our conjecture. It is worth noting that, under
the same average node degree condition, there are no sig-
nificant differences between the behaviors of the different
models. In fact, the node degree is one of the fundamental
indicators to measure the connectivity of a wireless network.
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The simulation results show that the node degree and the
connectivity are closely related. It can infer that a simple
model, e.g., the disk graph model, can capture the behav-
iors of network connectivity, and that theoretical analysis
can provide insights for designing a real network.

7. Conclusions

In this work, we derive the expected total number of iso-
lated nodes and the asymptotic probability distribution of
the total number of isolated nodes in a wireless network,
based on a generic probabilistic wireless channel model.
The probabilistic model studied in this work was a gener-
alization of many widely used channel models, including
the log-distance path loss model, the Bernoulli link model,
the Gaussian white noise model, the Rayleigh fading model,
and the Nakagami fading model. We presented the ex-
act equation for the expected number of isolated nodes,
and proved that the distribution of the number of isolated
nodes asymptotically follows a Poisson distribution. In fu-
ture work, we would like to prove the conjecture that a ran-
dom network with a generic channel model without isolated
nodes is almost surely connected.
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Appendix A: Proof of Lemma 3

For any (x(,---,xx) € Ci, since B(x1,R2),--+ , B (x¢, Ro)
are pairwise disjoint, we have
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k X =x .
Pr /\ B : = () = e (A-1)
i=1 X;( = Xk
O
Appendix B: Proof of Lemma 4
This can be proved by straightforward calculation.
k
/lk f e*k/la d.xl'
(x1, Xk )ECkk 1:1[
1 k
S TGS PR
a
k
[1(-a-1=r3)
i=1
1 k
~ (—e‘f) = (™) (A-2)
O

Appendix C: Proof of Lemma 5

First, we prove the inequality for k = 2 and m = 1. Consider
the case in which d (x1, x2) > R, /2. Let B, be the event that
Xé does not have links to nodes in B(x;,R;) — B (x1,R»).
Then,

Pr (B’1 A B

XIZX]
XéZ)Cz

<Pr (B’l

Xj =x )Pr (B2 (A-3)

X; = X1

Xé = X2 ’
Since it is known from Eq. (14) that Pr (B’1 |Xi =x ) =
we only need to show that there is a positive constant ¢; such
that

(A-4)

Pr (Bz Xy =x ) < e

1
XéZXQ

Let p = d(x1, xp). For any p € [R,/2,R;] and r € [0, R,], let
0 (p, r) denote the angle of the arc of 9B (x, r) not contained
in B (x1,R,). See Fig. A- 1. Since 6 (p, r) is increasing w.r.t.
pand f(r) > 0 for r € [0, R,], we have

R
f(@r) 6O, r)rdr
0 N 1
zf f(r)H(—Rz,r)rdr.
iR, 2

R
%1;2 fe (%Rz, r) rdr
Rz :
b SO, r)rdr
Applying the same approach to deriving the probability

(A-5)

Let

Cc =
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Fig.A-1
B (x1,R2).

0(p,r) is the angle of the arc of dB(xy,r) not contained in

i-th annulus

Fig.A-2  An annulus with center at xj.

Pr (X is isolated| X = x) in Sect. 4, we have

Pr (B2

Xi =X et ORZ F)é(p,r)rdr
Xé = X2

R
-1 (7> O(R; /2,r)rd
<e f%szm( 2/2.r)rdr

— e—cl/lfoRz f)2rrdr _ E_CIM. (A 6)

Therefore, if R,/2 < d(x;,x) < R,, we have
Pr(B A By | K1 TH ) < ot
1 2 XEZXZ -

Now, consider the case in which 0 < d (x1, x3) < Ry/2.
For this case, we only consider nodes in B (x;, R;) and divide
B (x1, Ry) by h concentric circles with center at x; and radii
rp <1 < - <r, =Ry asillustrated in Fig. A-2. Since
f (r) is a decreasing function, we have

p X{ and X} do not have links X =x
"\ with nodes in the ith annulus Xé =X
< i ((AZF'tiAri)J e—lenr;Ari)
— j!
Jj=0
A= fE)Y (A= fOri+p)y
— e*(f(ri)+f(fi+P)*f(fi)f(fi+P))/127TfiAfi . (A 7)

We should note that the inequality still holds for annuli not
fully contained in B (x,, R;). Thus,

X;Z)C] )

Pr (B’1 A Bj X, =x
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k
< lim e~ S+ flritp)=f(ri) fritp) 2nrisri
k—o0 il
= oA BRSO F D fr4p)2rdr
= oA SeRrdr=A [ (FGrep)~fOfrep)2mrdr (A-8)

. R . .
Since fo : f(r)2xrdr = a, if we can prove that there is a
positive constant ¢, such that

R

(fG+p) = f() fr+p)2nrdr 2 c2a, (A-9)

then this case is also proved. For any r € [R,/8, R, /4], we
have f(r+p) > f(3Ry/4)and 1 — f(r) = 1 — f(R,/8). Let

f;,;jz £ (3R:) (1 - £ (3R2)) 2nrdr
) [ f () 2mrdr '

o (A-10)

Then,

R>
f+p) (= f(r)2ardr

iR
> f fr+p)(1 = f(@)2nrdr
§R2

iR
> LRZ f(%Rz)(l —f(éRz)) 2nrdr

= (Csa. (A-11)

Thus, if 0 < d (x1, x2) < R>/2, we have

Pr (B’1 A B)

X1 =x1 —(14¢2)a )
X2:x2)Se . (A-12)

If we choose ¢ = min (cy, ¢3), the lemma for k = 2 is proved.
For any k > 3 and m = 1, since there are always two
overlapping disks in the component | J;-; ... x B (x;, Ry), it is
trivial to see that the inequality is still correct.
Foranyk>3and2 <m <k—-1,if (x1, -+ ,xx) € Cpyps
then {x;, -, x;} is partitioned into m sets K, K>, -+, Ky,
such thatforeach j=1,--- ,m, UxeKj B (x, Ry) is a maximal

component. Letn; = |K j| be the number of elements in K.
Suppose K; = {x_,-l, e ,xjnl,}. Then,

X =xp

Pr /\ B, =eMifn;=1  (A-13)
XIEK] }n 1 = x.i”j

and
Xl = xj1
Pr| /\ B : <O if s

1<k ;'n 1 = x.i”j

(A-14)
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Since there is at least one component that contains more than
one node, we have

‘ X =x
Pr /\B:
i=1 X, = xi
m X =Xt
= ﬂpr /\ B < emmrota(AL15)
j=1 | xiekK; X}n,- = Xn,
Thus, the lemma is proved. O

Appendix D: Proof of Lemma 6

First, consider m = 1. This can be validated by straightfor-
ward calculation.

k
pL f e~ (1+00a ]_[ dx;
(x1,%2, Xk )ECK i=1

k
< AP [_] (@G = D Ry?) [ Trone

=2
=0 (InP +Inln P +¢) Per+nFrinint )
=o(l). (A-16)

We write g(1) = O (h(Q)) if there are Ay,co such that
lg (1) /h ()] < ¢p for all A = Ay.

Next, consider 2 < m < k—1. If (x,---,x) €
Cim, then {xy,---,x;} can be partitioned into m sets
Ki,K>,---,K, such that for each j = 1,---,m,
Usek; B(x,R>) is a maximal connected component. Let
nj = |K j| be the number of elements in K;, and suppose
K; = {le, e ,xj,,j}. For fixed k and m, the number of m-
partitions of {xy, - -, x;} are constant. Then,

k
/lkf e—(m+c)/la l—[ dx,»
(x1,x2, . Xk )ECm i=1
m
O(I)E—C/Ial_l /ln/f

j
e l_[ dx;
=1 (lex'"sxjnj)ecnjl j=1

o(l). (A-17)

The last equality holds because of at least one n; > 1. Thus,
the lemma is proved. O
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