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In this paper, we solve the optimal sequencing, lot-sizing and scheduling decisions for several products
manufactured through several firms in a serial-type supply chain so as to minimise the sum of setup and
inventory holding costs while meeting given demand from customers. We propose a three-phase heuristic to
solve this NP-hard problem using a time-varying lot- sizing approach. First, based on the theoretical results,
we obtain candidate sets of the production frequencies and cycle time using a junction-point heuristic. Next,
we determine the production sequences for each firm using a bin-packing method. Finally, we obtain the
production times of the products for each firm in the supply chain system by iteratively solving a set of linear
simultaneous equations which were derived from the constraints. Then, we choose the best solution among the
candidate solutions. Based on the numerical experiments, we show that the proposed three-phase heuristic
efficiently obtains feasible solutions with excellent quality which is much better than the upper-bound
solutions from the common cycle approach.

Keywords: serial-type supply chain; economic lot scheduling problem; inventory control; time-varying
lot-sizing policy; scheduling

1. Introduction

In a flow shop production system, items have to go through several facilities before they become finished products.
Similarly, from the viewpoint of a serial-type supply chain, items must experience the required manufacturing
operations by visiting a series of firms in the supply chain. Figure 1 demonstrates an example of the routing and
transfer operations of items in a serial-type supply chain.

Those enterprise groups, that establish ‘fully vertical-integrated’ supply chains, have to face the challenge in the
production planning and scheduling from the integration among the firms in such a serial-type supply chain system
(though enjoying significant advantage from the economy of huge scale). For example, Foxconn Technology
Group, applying its so-called ‘single-whip’ principle, forms a serial-type supply chain system, that includes
15 factories, in Longhua Science & Technology Park, Shenzhen City of China. (Note: Foxconn Technology Group
is a Taiwan-registered corporation listed among Forbes’ top 50 enterprises in 2010, and its notable products include
the Amazon Kindle, iPad, iPhone, PlayStation 3, Xbox 360 and Wii. Foxconn is the largest exporter in Greater
China.) In such a unique serial-type supply chain system, all the firms mutually share complete information with
total confidence since each one belongs to Foxconn. The supply chain managers must pay attention to the
determination of the lot sizes of different items and the generation of a feasible production schedule. Since the whole
lot of a particular item on one facility must be finished before it is transferred to the next facility, and a transferred
lot has to wait if another lot occupies the next facility, it is even more difficult to generate a production schedule for
a serial-type supply chain than the single facility system.

Mass customisation is the new paradigm that replaces mass production, which is no longer suitable for modern
commercial environment of growing product variety and opportunities for e-commerce. From this point of view, a
time-varying lot-sizing (TVLS) policy is more realistic for today’s turbulent markets than a constant lot-sizing
policy. Therefore, we propose a heuristic for solving the optimal lot-sizing and scheduling problem in a serial-type
supply chain system using a time-varying lot-sizing policy in this paper.
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2. Literature review

Considering the setup cost and setup time incurred when the machine switches from one product to the next, the key

issue is to select a production sequence and a batch size for each product run. Since this problem is frequently

encountered in many industries, it has attracted the attention of many researchers over 40 years. Basically, there are

three types of approaches for solving the economic lot scheduling problem (ELSP): the common cycle approach, the

basic period approach, and the time-varying lot-sizing approach. Since the latter allows different lot sizes for any

given product during a cyclic schedule and it usually gives better solutions than the previous two approaches,

numerous papers have addressed this problem.
Maxwell (1964) first provided the time-varying lot sizes approach that relaxes the restriction of equally spaced

production lots, i.e. the approach allows the lot sizes of each product to be different within a cycle time. Provided

that there is enough time for setups, Dobson (1987) developed a heuristic to show that the production order in a

cycle can be converted into a feasible production schedule in which the production lots are not necessarily equal.

An extended study allowing the set-up time to be sequence dependent was presented by Dobson in 1992. Gallego

and Roundy (1992) study the ELSP with backorders under the TVLS approach. Raza and Akgunduz (2008)

consider the time-varying lot size approach to solve the ELSP, which deals with the production assignment of

several different products on a given single production facility. A computational study of the existing solution

algorithms, Dobson’s heuristic, hybrid genetic algorithm, neighborhood search heuristics, Tabu search and a

proposed simulated annealing algorithm were presented and compared.
This presentation is different from most literatures introduced above since it solves the optimal scheduling

problem in a serial-type supply chain system (with multi-facility) by time-varying lot-sizing policy. Considering this

problem is closely related to the ELSP, we provide some background on the ELSP before introducing the

mathematical model for the time-varying lot-sizing policy. The ELSP concerns with lot-sizing and scheduling

decisions in a single production facility for n products so as to minimise the average total costs while meeting the

given demands of each product. In the literature, most of the solution approaches for solving the ELSP employed a

so-called ‘basic period-based cyclic schedule’ which uses a basic period as the base for production planning and

scheduling. One may refer to Elmaghraby (1978), Lopez and Kingsman (1991) and Yao (1999) for the problem

definition and assumptions of the ELSP. The problem formulations for the ELSP that uses basic periods can be

classified as either the ‘basic period’ (BP) approach or the ‘extended basic period’ (EBP) approach. The most

commonly used approach to deal with this problem is the common cycle (CC) approach where a lot of each product

is produced each cycle. The CC and BP approaches can be viewed as specific cases of the EBP approach. The cost of

the CC approach can be regarded as the upper bound of the cost for the ELSP.
The solution methodologies for the ELSP that have been proposed so far may be divided into two major

categories: analytical and heuristic. For a given value of basic period, the analytical approaches usually employ

either dynamic programming or integer nonlinear programming model; see Bomberger (1966), Elmaghraby (1978),

Axsäter (1982) for dynamic programming models and Haessler (1979) for binary integer programs. Hsu (1983) has

shown that the single-facility ELSP problem is NP-hard.
To generate a production schedule for a flow shop production system (abbreviated as the FS-ELSP) is even more

difficult than the single facility ELSP. The lot sizing and scheduling problems in flow shops have attracted many

Raw
material item 2Producer1 item 1 item 3 item 2 item 3

P1 P2

item 2 item 1  item 3 item 2 item 3Producer 2 

item 2 item 1 item 3 item 2 item 3 Producer 3 

Figure 1. The routing and transfer operations of items in a serial-type supply chain.
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researchers’ attention in the past. One may refer to the literatures including Ouenniche and Boctor (2001a, b),
Huang and Yao (2006, 2008). Ouenniche and Boctor (2001 a, b) tested feasibility of their candidate solutions using
the EBP approach, however, the limitation on the values of the multipliers {ki} imposed in Ouenniche and Boctor’s
(2001b) two-group heuristic could significantly affect the quality of the obtained solutions. Many problems exist in
Ouenniche and Boctor’s (2001a) power-of-two heuristic were pointed out in the study of Huang and Yao (2007a),
especially on the feasibility testing of an obtained solution and the generation of a feasible production schedule.
These problems may misjudge those solutions with better objective values as infeasible ones, and often lead
Ouenniche and Boctor’s power-of-two (PoT) heuristic to worse solutions.

In the ELSP, it is typically assumed that production and demand rates are known product-dependent constants.
Research on the ELSP has focused on cyclic schedules, i.e. schedules that are repeated periodically. A basic period B
is an interval of time devoted to the setup and production of a subset of (or all) the items. A solution to the problem
is usually given in the form of a basic period B and a set of multipliers {ki}, which implies that each item i is
replenished after a fixed cycle time kiB.

Moon et al. (2002) provided a hybrid genetic algorithm based on the TVLS approach for solving the ELSP
problem of a single facility where m items are produced. They try to find a cycle length, a production sequence,
production time durations, and idle time durations, so that the production sequence can be completed in the chosen
cycle and demand can be fully met, and the total of inventory and set-up costs is minimised.

In this paper, we will utilise the TVLS approach for solving the optimal lot-sizing and scheduling for multiple
items produced through a series of production facilities. We name it as the serial-type time-varying lot-sizing
problem (or, the ST-TVLS problem). Gallego and Shaw (1997) showed that solving the ELSP for a single facility
using the TVLS approach is strongly NP-hard. Our interested problem in this paper is obviously even more difficult
than the conventional ELSP. The TVLS approach has two advantages (Dobson 1987): First, it can avoid a
feasibility checking problem that the EBP approach meets; Second, under PoT policy, the TVLS approach is a
quicker solution approach than the BP and EBP approaches. Dobson (1992) presented the mathematical model for
the single-facility ELSP using the TVLS approach. The difficulty for the TVLS approach is how to find an optimal
production sequence by minimising the average total cost. Intuitively, the TVLS approach can get better solution
than the CC and BP approaches, therefore, this paper is motivated to propose a heuristic to secure the optimal lot
sizing and scheduling strategies to control the inventory in serial-type supply chains by using the TVLS approach.

The rest of this paper is organised in the following manner: in Section 3, we present the ST-TVLS model.
Section 4 shows our proposed three-phase heuristic. To determine the production frequencies of each member of the
supply chain, we first propose a junction-point heuristic which is derived from the relaxation form of the ELSP
formulation of Ouenniche and Boctor (2001a). Second, we solve the production sequence of each item by a bin-
packing method. Finally, we obtain the optimal production time for all the production lot in each firm by solving a
set of simultaneous equations. Section 5 gives numerical experiments and sensitivity analysis verifying that the
solution quality of the proposed three-phase heuristic is much better than that obtained from the common cycle
approach. Finally, Section 6 presents our concluding remarks.

3. The mathematical model

We present the mathematical model for the single-facility TVLS model and the ST-TVLS model in this section.

3.1 The single-facility TVLS model

Before presenting the formulation for the single-facility TVLS model, we first define the notation and introduce the
assumptions used for deriving the mathematical model as follows.

The index i (i¼ 1, 2, . . . , n) is used in the subscripts to refer to the ith item, while the position index
‘ ð‘ ¼ 1, . . . , �LÞ is used in the superscripts to refer to the data related to the part produced at a certain position,
where �L is the total number of items to be produced in cycle time T.

Production rate (units per day) pi i¼ 1, 2, . . . , n;
Demand rate (units per day) ri i¼ 1, 2, . . . , n;

Inventory holding cost ($ per unit per day) hi i¼ 1, 2, . . . , n;
Set-up cost ($) Ai i¼ 1, 2, . . . , n;

Set-up time (days) si i¼ 1, 2, . . . , n;

International Journal of Production Research 737
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Production time duration for item produced at position ‘ t‘, ‘ ¼ 1, . . . , �L;
Idle time duration after the production of the item at position ‘ u‘, ‘ ¼ 1, . . . , �L;

Item produced at position ‘ f ‘, . . . , f
�Lð f ‘ 2 f1, . . . , ngÞ

Let Ji be the position in a given sequence where item i is produced, i.e. Ji ¼ f‘ j f
‘ ¼ ig. Let Lk be the positions in

a given sequence from k (where f k is produced), up to but not including the position in the sequence where part f k is

produced again and k ¼ 1, . . . , �L.
As derived by Dobson (1992), the single-facility TVLS model can be written as

inf
‘2J

min
t�0,u�0,T�0

1

T

X�L

‘¼1

1

2
h‘ ð p‘ � r‘ Þ

p‘

r‘

� �
ðt‘ Þ2 þ

X�L

‘¼1

A‘

 !
: ð1Þ

Subjected to X
‘2Jt

ptt
‘ ¼ riT, i ¼ 1, . . . , n ð2Þ

X
‘2Lk

ðt‘ þ s‘ þ u‘ Þ ¼ ð pk=rkÞtk, k ¼ 1, . . . , �L ð3Þ

X�L

‘¼1

ðt‘ þ s‘ þ u‘ Þ ¼ T: ð4Þ

Constraints (2) indicate that one must allocate enough time to each item i to meet its demand over the cycle.

Constraints (3) state that item i must be produced each time to last until the next time it is produced again.
Constraint (4) means that the cycle time T must be the sum of production, setup, and idle times for all the items

produced in the cycle. Note that, in order to find the production time easily, Moon (2002) assumed that there are no

idle times for a given production sequence. They called this method a quick-and-dirty heuristic and claimed that this

approximation works very well for a highly loaded facility. However, when considering a flow-shop production
system (or a serial-type supply chain system), the idle time can no longer be neglected (Huang and Yao 2007a).

We will have further discussion on this issue later.

3.2 The ST-TVLS model

In this section, we present the formulation for the ST-TVLS model for a serial-type supply chain system with m

firms. Since more than one facility/firm is involved in the manufacturing process, we have to re-define the notation

as follows. The index j (j¼ 1, 2, . . . ,m) is used to denote the jth firm. The problem can be viewed as one that decides
cycle length (days) Tj, production sequences, production times and idle times through a serial-type supply chain so

as to minimise the sum of setup and inventory holding costs while a given demand is fulfilled. The setup costs Ai of

item i are the sum over all the facilities, i¼ 1, 2, . . . , n. For each finished item in position ‘, the demand rate is

denoted as r‘, and the process time (on facility m) is denoted as t‘m. For item in position ‘ on facility j, the
production rate is p‘j, and the holding cost rate (per unit per unit time) for the work-in-process (WIP) is h‘j.

To indicate the production sequence in a production schedule, we denote d‘j as the starting time of item in position ‘
on facility j.

We note that the production planning and scheduling in a serial-type supply chain system share some common

characteristics with the flow-shop production system. We indicate some important features that should be taken into
account in the formulation of the ST-TVLS model. As stated in Ouenniche and Boctor’s (2001a) study, when

dealing with the ELSP in flow shops, no products can be transferred to the next facility before its production lot is

finished at the current facility at each facility. The importance of the delayed time in the feasibility testing of a

solution for the ELSP in flow shops and its effect on the total cost are thoroughly discussed by Huang and Yao
(2007b). Since no facility can process more than one product at a time, and a lot is not transferred to the next facility

until the entire lot is processed at the current facility, a waiting time could exist during the lot transfer between two

successive facilities, which will increase total cost accordingly.
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Inspired by the models of Dobson (1992) and Ouenniche and Boctor (2001a), we present the ST-TVLS model as
follows.

Min Z ¼
1

m

Xm
j¼1

1

Tj

X�L

‘¼1

A‘

( )
þ
X�L

‘¼1

h‘m
t‘mr‘

2
1�

r‘

p‘m

� �
þ
ðr‘ Þ2

2

Xm
j¼2

t‘jh‘,j�1
1

p‘j
�

1

p‘,j�1

� �( )

þ
Xm
j¼2

X�L

‘¼1

h‘,j�1r‘ ðd‘j � d‘,j�1Þ: ð5Þ

Subjected to X
‘2Jt

p‘jt‘j ¼ r‘Tj, i ¼ 1, . . . , n, j ¼ 1, . . . ,m ð6Þ

X
‘2Lk

ðt‘j þ s‘j þ u‘jÞ ¼ ð pkj=rkjÞtkj, k ¼ 1, . . . , �L, j ¼ 1, . . . ,m ð7Þ

X�L

‘¼1

ðt‘j þ s‘j þ u‘jÞ ¼ Tj, j ¼ 1, . . . ,m: ð8Þ

4. The proposed three-phase heuristic

We propose a three-phase heuristic for solving the ST-TVLS model in this section. We first give an overview of the
three-phase heuristic as follows. In the first phase, we obtain candidate sets of the production frequencies and cycle
time using a junction-point heuristic. The second phase determines the production sequences for each firm using a
bin-packing method. Finally, in the third phase, we obtain the production times of the products for each firm in the
supply chain system by iteratively solving a set of linear simultaneous equations which were derived from the
constraints. Then, we choose the best solution among the candidate solutions. Figure 2 displays a flowchart for
the proposed three-phase heuristic.

1st phase: Secure the production frequency of each facility of the 

supply chain by junction-point searching heuristic 

2nd phase: Solving the production sequence of each facility  

3rd phase: Determination of the production 

times, idle times and lots 

To next 
junction point 

Optimal Solution 

Yes 

No
Are all the junction 
points been tested? 

Figure 2. The proposed three-phase heuristic for solving the ST-TVLS problem.
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We will discuss the details of each phase in the following subsections.

4.1 Phase one: search for the production frequency

In this phase, we determine the production frequencies by solving a relaxation formulation of Ouenniche and

Boctor’s (2001a) model which was solved under the PoT policy, i.e. the cycle time of each item Ti is a PoT integer

multiplier of a basic period B (Ti¼ kiB where ki ¼ 2�i , �i is a non-negative integer). When using a PoT policy, one

should examine the production schedule of a global cycle of KB, where K¼ lcm{ki}¼max{ki}. Note that if we did

not use PoT policy, the value of lcm{ki} could be very large in some extreme cases where there are prime numbers in

the set {ki}. Therefore, we confine the scope of this study under PoT policy.
Our phase-one heuristic aims at determining the optimal value of the basic period B, the set of optimal

replenishment frequencies, a feasible assignment with its corresponding production sequence, and the starting times

so as to minimise the average total costs. It obtains an approximation solution of the production frequencies by

relaxing Ouenniche and Boctor’s (2001a) model. More specifically, by substituting the term d‘j � d‘,j�1 ¼ t‘,j�1 into

Equation (5), the objective function of the relaxed problem is reorganised as

ðRÞZðk1, k2, . . . , kn,BÞ ¼
Xn
i¼1

TCiðki,BÞ ¼
Xn
i¼1

C1i

kiB
þ C2ikiB

� �
ð9Þ

where

C1i ¼ Ai

C2i ¼ hi
ri
2

1�
ri
pim

� �
þ
r2i
2

Xm
j¼2

hi,j�1
1

pij
þ

1

pi,j�1

� �

Since the terms on the right-side of (9) are notably separable, we are motivated to study the properties of

TCiðki,BÞ so as to establish foundation for our new heuristic. The following heuristic focuses on the multipliers ki
because the solution of ST-TVLS model does not include the search for the basic period. Let us define a new

function TC�i ðBÞ by taking the optimal value of ki at any value B04 0 for the function TCiðki,BÞ as follows.

TC�i ðB
0Þ ¼ min

ki2Nþ
TCiðk

�
i ðBÞ,BÞ 8B ¼ B0 � 0

��� �
: ð10Þ

That the function TC�i ðBÞ is a piece-wise convex with respect to B can be easily proved by referring to Huang and

Yao’s papers (2005, 2006). Consequently, the problem (R) can be re-written by

R1ð Þ �ðBÞ ¼ inf
B40

Xn
i¼1

TC�i ðBÞ

( )
: ð11Þ

where the function �ðBÞ is the optimal objective function value of problem (R1) with respect to B. Since the �ðBÞ

function is the sum of a convex function and n piece-wise convex functions, it is obvious piece-wise convex with

respect to B. The junction point for piece-wise convex function TC�i ðBÞ can be defined as a particular value of B

where two consecutive convex curves TCiðki,BÞ and TCið2ki,BÞ concatenate (Huang and Yao 2006). Importantly,

such a junction point provides us with the information on at ‘what value of B’ where one should change its

multiplier value from ki to 2ki so as to secure the optimal value for the TC�i ðBÞ function. A closed form to locate the

junction points can be derived by letting the difference between TCiðki,BÞ and TCið2ki,BÞ to be zero. Then we have

the junction point for the multipliers ki and 2ki of product i as

�iðkiÞ ¼
1

ki

ffiffiffiffiffiffiffiffiffi
C1i

2C2i

r
ð12Þ

The following inequality (13) holds for the junction points.

�iðvÞ5 � � � 5 �iðkþ 1Þ5 �iðkÞ � � � 5 �ið2Þ5 �ið1Þ ð13Þ
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where v is an (unknown) upper bound on the value of k. Theorem 1 is an immediate result from Equations (12)
and (13).

Theorem 1: With regard to a junction point w of the TC�i ðBÞ function, suppose that k�L and k�R are the optimal
maintenance frequencies for the convex curves on the left side (i.e. B � w) and the right side (i.e. B4w) of w,
respectively, then k�L ¼ 2k�R.

As shown in the studies of Yao (1999, 2005) and Huang (2006), all the junction points for each facility will be
inherited by the �ðBÞ function. In other words, if w is a junction point for a product i, wmust also show as a junction
point on the piece-wise convex curve of the �ðBÞ function. The following corollary is a by-product of theorem 1, and
it provides an easier way to obtain the optimal maintenance frequency k�i ðBÞ 2 Nþ for the TC�i ðBÞ function for any
given B4 0.

Corollary 1: For any given B4 0, an optimal value of k�i ðBÞ 2 Nþ for the TC�i ðBÞ function is given by

k�i ðBÞ ¼
1 B4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1i=C2i

p

2p,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1i=C2i

p
=2p 5B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1i=C2i

p
=2p�1; p 2 Nþ

�
: ð14Þ

KPoTðBÞð¼ fk
�
i ðBÞg

n
i¼1Þ is denoted as the set of optimal production multipliers of item i at time B. Recall that the

TC�i ðBÞ function is piece-wise convex with respect to B, these theoretical results encourage us to solve the problem
(R) by searching along the B-axis. To design a search algorithm that obtains an optimal solution for the problem
(R), one need to define the search range by a lower and an upper bound on the B-axis, which are denoted by BL and
BU, respectively. The best local minimum in ½BL,BU� must be no worst than any solution outside this searching
range. One may refer to Huang and Yao’s paper (2008) for the derivation of lower and an upper bound. Under PoT
policy, we may serve Bcc/2 as the lower bound, i.e. Bmin¼Bcc/2. While, the upper bound on the search range can be
obtained by the common cycle (CC) approach in which it requires that ki¼ 1 for all i, i.e. all of the products share a
common production cycle. We set

Bcc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

C1i

.Xn
i¼1

C2i

s
ð15Þ

For any given vector of k, one may locate its local minimum, B
^

ðkÞ, by taking the first derivative of the objective
function �ðBÞ and equating it to zero.

B
^

ðkiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

C1i=ki

 !. Xn
i¼1

C2iki

 !vuut ð16Þ

It is obvious that B
^

ðkÞ � Bcc since ki � 1 for all i. Therefore, there exists no local minimum for B4Bcc; that is,
there exist no local minima for B4Bcc for the �ðBÞ function.

By the rationale discussed above, the proposed search algorithm for our phase-one heuristic is summarised as
follows.

Step 1: The initialisation.

(a) Obtain the common cycle period Bcc by Equation (15). Let �‘ ¼ 0 and locate the smallest junction point that
is greater than (or equal to) Bcc, and define it as w0 ¼ minf�iðkiÞ : �iðkiÞ4Bccg. If w0 does not exist, let �‘ ¼ 1,
w0 ¼ Bcc,K1 ¼ f1, . . . , 1g,B1 ¼ Bcc, and calculate the cost ��ðK

^

1,BccÞ.
(b) Obtain the multipliers by Equation (14). Calculate � ¼ argmaxif�iðkiÞ5w0g and let w1 ¼ ��ðk�Þ, j ¼ 1. If the

local minimum locates within ½w1,w0�, i.e., B
^

ðKPoTðBccÞÞ 2 ½w1,w0�, let �‘ ¼ 1, K
^

�‘ ¼ KPoTðBccÞ

, B
^

�‘ ¼ B
^

ðK
^

�‘Þ and compute ��ðK
^

�‘, B
^

�‘Þ.

Step 2: The search procedure.

(a) Calculate the next set of multipliers KPoTðwj Þ by KPoTðwj Þ � ðKPoTðwj�1Þnfk�gÞ [ f2k�g.
(b) Find � ¼ argmaxif�iðkiÞ5wjg and let wj ¼ ��ðk�Þ.
(c) If B

^

ðKPoTðBccÞÞ 2 ½wjþ1,wj �, let �‘ ¼ �‘þ 1, K
^

�‘ ¼ KPoTðwj Þ, B
^

�‘ ¼ B
^

ðK
^

�‘Þ and compute ��ðK
^

�‘, B
^

�‘Þ.

Step 3: Let j ¼ jþ 1. If wj 5 B
^

1=2, then go to Step 4, otherwise go back to Step 2.
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Step 4: Secure a candidate of the multipliers ðK�PoT,B
�
PoTÞ ¼ argmin �‘f�

�ðK
^

�‘, B
^

�‘Þg. Once the optimal multipliers are

secured (the basic period can be neglected), one can obtain the production frequency y, which is the inverse of the

multipliers.

4.2 Phase two: find the production sequence

The production sequence can be determined by using the bin-packing heuristic which has been suggested by many

researchers (Doll and Whybark 1973, Dobson 1987). Once the production frequency y is obtained from phase one,

the bin-packing heuristic attempts to spread them out as evenly as possible. We create b bins in which b ¼ maxifkig.

For each product i, the production time duration vi is estimated by vi ¼ si þ ðrit=pikiÞ. The lots is assumed to be

equally spaced, that is, we do the bin-packing with b bins and yi items of height vi for all i. Although, the value of t is

not determined yet at this moment, the value of ri=piki can be used as a reference value for comparison since

si 	 ðrit=pikiÞ. The products are ordered lexicographically (yi, vi) by using a variation of the longest processing time

(LPT) rule. The products are ordered by frequency yi first, then by ri=piki, among products with identical

frequencies. By minimising the maximum height of the bin, production sequence f can be determined (one may refer

to Dobson (1987) for details).

4.3 Phase three: determine the production times, idle times and total cost

In the third phase, we first secure the position set Lk ðk ¼ 1, . . . , �LÞ. Then, we obtain the production time

t‘1, ‘ ¼ 1, . . . , �L of the first firm in the supply chain by solving a system of linear equations induced from constraints

(7). The cycle time T can be obtained from either constraint (6) or (8). Next, we will calculate the production times

for all the downstream firms.
Note that the waiting time u‘jð‘ ¼ 1, . . . , �L, j ¼ 2, . . . ,mÞ during the batch transfer between two neighbouring

facilities (i.e. to calculate the values of d‘,j � d‘,j�1) needs to be taken accounts, although there is no feasibility

problem for a ST-TVLS problem. The value of d‘j for all facilities in sequence can be obtained by the following

steps.
For the first firm in the supply chain system ( j¼ 1), the starting time can be determined as follows:

d11 ¼ s1,

d‘1 ¼ d‘�1,1 þ t‘�1,1 þ s‘, ‘ ¼ 2, . . . , �L: ð17Þ

The starting times for the following firms ( j4 1) are as follows:

d1j ¼ d1,j�1 þ t1,j�1 þ s1,

dkj ¼ maxðdk�1,j þ tk�1,j þ sk, dk,j�1 þ tk,j�1 þ skÞ k ¼ 2, . . . , �L: ð18Þ

The production times t‘1, ‘ ¼ 1, . . . , �L of the first firm in the supply chain system are calculated by solving a

system of linear equations induced from constraints (7).

ð pkj=rk � 1Þtkj �
X
‘2Lk=k

t‘j ¼
X
‘2Lk

ðs‘j þ u‘jÞ, k ¼ 1, . . . , �L, j ¼ 2, . . . ,m: ð19Þ

This equation assures that enough product i must be produced each time to last until the next time it is produced

again. Since two sets of unknowns are to be determined, the processing times tkj and idle times ukj, an iterative

process is necessary because the simultaneous equations are not enough for solving all the unknowns at a time. One

may first calculate an initial value of tkj, and accordingly secure a set of waiting time ukj. The final values of tkj and

ukj are determined through an iterative process until their values no longer vary.
The details of our phase-three heuristics are summarised as follows.

Step 1: Calculate Lk, k ¼ 1, . . . , �L.
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Step 2: Determine the processing time of the finished goods (i.e. the production time of the final

facility of the supply chain, tkm1 ) by solving the simultaneous equations which is reorganised from Equation (19)

as follows

ð1� pkj=rkÞtkj þ
X
‘2Lk=k

t‘j ¼ �
X
‘2Lk

ðs‘j þ u‘jÞ, k ¼ 1, . . . , �L:

Step 3: Determine the production time of the rest of facilities by tkj ¼ pkmtkm=pkj, which assure the continuity of the

production lot transferring between different facilities.

Step 4: If it is the first time iteration, go to Step 5. Otherwise, check the convergence of the iteration by examining

the value of tkj with its previous value for all the facilities of the supply chain. If all the production values keep the

same, which means that the production times are determined. After the calculation of the total production time of

each facility Tj and the total cost of the supply chain ��ðK�,B�jÞ, one should go back to phase one to test next

junction point. If all the junction points have been investigated, go to Step 6.

Step 5: Calculate the starting time dkj and waiting time ukj, j¼ 1, . . . ,m� 1, k¼ 1, . . . , �L, from the first facility to

the last one. Go back to Step 2.

Step 6: The optimal solution can be determined by ��ðK��,B
�
�jÞ ¼ argmin�f��ðK�,B�jÞg.

5. Numerical experiments

In this section, we first use an example to demonstrate the implementation of the proposed three-phase heuristic.

Then, we conduct random experiments. The third part presents sensitivity analysis on the effect of the setup time,

the setup cost and the holding cost.

5.1 A demonstrative example

Here, we take an example with five facilities and 10 products, with its data set shown in Table 1, to demonstrate the

implementation of the proposed three-phase heuristic.
Note that only one set of multiplier (that is, one junction point) is chosen as a candidate of the production

frequency each time in the first phase. And then, the corresponding production sequence, the idle time and the

average total cost are determined through phase two and three. After the first round, we go back to phase one to

choose another candidate of the production frequency and to go round and begin again until we finish the searching

of all the junction points. Among all these tests, the set of multiplier with the minimum cost will be the optimal

solution.
Before starting a searching process, the feasibility criteria for each facility in the supply chain system,Pn

i¼1 ri=pi 5 1, should be test. The feasible criteria for each facility are fulfilled, as listed in Table 2.
Next, we present the implementation details of the proposed three-phase heuristic.

Phase 1: Search for the production frequency.

(1) Obtain the upper bound on the search range by Equation (15), we have Bcc¼ 11.62. Set � ¼ 1. Calculate the

junction points of all the products, as shown in Table 3.
(2) We have the first junction point locate at w1 ¼ 11.62.
(3) Obtain the production frequency of each product, that is, the multipliers KPoTð�iÞ ¼

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

Phase 2: Find the production sequence of the products by using our bin-packing heuristic. In this example, the

products are manufactured in the fifth firm using the following production sequence: ð f1, f2, . . . , f �LÞ ¼

(9, 4, 3, 8, 7, 1, 5, 6, 2, 10).

Phase 3: Determine the production times, idle times and total cost.
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Table 1. The data set of the demonstrative example.

Product i Producer j
Demand
rate ri

Production
rate pij

Setup
time �ij

Sum of
setup cost Ai

Inventory
cost hij

1 1 376.6 7638.4 0.24 66.7 0.0040
2 5365.6 0.16 0.0021
3 6845.9 0.34 0.0031
4 6433.3 0.19 0.0047
5 8624.5 0.30 0.0047

2 1 212.4 5496.3 0.24 85.7 0.0047
2 6791.2 0.23 0.0043
3 9796.8 0.30 0.0012
4 7224.8 0.26 0.0021
5 10737.5 0.31 0.0031

3 1 589.6 9306.2 0.34 71.4 0.0028
2 10741.1 0.18 0.0043
3 5698.3 0.22 0.0042
4 9550.8 0.18 0.0018
5 7467.9 0.29 0.0022

4 1 502.5 5210.5 0.21 95.9 0.0046
2 10292.9 0.22 0.0039
3 6947.7 0.22 0.0040
4 6236.3 0.21 0.0013
5 5672.9 0.34 0.0010

5 1 411.1 5927.7 0.21 148.9 0.0013
2 8317.9 0.18 0.0040
3 6238.8 0.21 0.0018
4 9326.3 0.32 0.0022
5 10236.4 0.24 0.0011

6 1 201.7 10610.1 0.23 138.4 0.0040
2 6374.9 0.28 0.0023
3 6642.7 0.27 0.0038
4 5615.2 0.25 0.0017
5 7995.2 0.33 0.0021

7 1 450.7 10944.6 0.26 92.0 0.0030
2 7356.9 0.27 0.0039
3 9654.0 0.18 0.0014
4 8184.9 0.30 0.0022
5 9617.9 0.35 0.0050

8 1 602.1 6232.9 0.31 141.7 0.0014
2 5673.1 0.25 0.0012
3 10450.4 0.20 0.0039
4 6344.8 0.23 0.0042
5 7805.6 0.22 0.0019

9 1 733.7 7317.0 0.16 134.3 0.0029
2 6295.0 0.22 0.0022
3 8531.6 0.23 0.0027
4 5342.8 0.33 0.0046
5 5137.4 0.30 0.0013

10 1 191.1 9664.2 0.16 130.9 0.0015
2 6122.8 0.23 0.0028
3 9836.8 0.33 0.0022
4 6128.3 0.15 0.0034
5 10248.3 0.26 0.0012
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Step 1: Calculate Lk, k ¼ 1, . . . , �L as:

L1 ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10ð Þ;

L2 ¼ 2, 3, 4, 5, 6, 7, 8, 9, 10, 1ð Þ;

L3 ¼ 3, 4, 5, 6, 7, 8, 9, 10, 1, 2ð Þ;

L4 ¼ 4, 5, 6, 7, 8, 9, 10, 1, 2, 3ð Þ;

L5 ¼ 5, 6, 7, 8, 9, 10, 1, 2, 3, 4ð Þ;

L6 ¼ 6, 7, 8, 9, 10, 1, 2, 3, 4, 5ð Þ;

L7 ¼ 7, 8, 9, 10, 1, 2, 3, 4, 5, 6ð Þ;

L8 ¼ 8, 9, 10, 1, 2, 3, 4, 5, 6, 7ð Þ;

L9 ¼ 9, 10, 1, 2, 3, 4, 5, 6, 7, 8ð Þ;

L10 ¼ 10, 1, 2, 3, 4, 5, 6, 7, 8, 9ð Þ:

Set � ¼ 1 (use � as the record of the number of iteration).

Step 2: Utilise the linear simultaneous equations,

ð1� pkj=rkÞtkj þ
X
‘2Lk=k

t‘j ¼ �
X
‘2Lk

ðs‘j þ u‘jÞ, k ¼ 1, . . . , �L,

to determine the processing time of the finished products, that is tkm1 . We have the set of the processing time of the

fifth firm as {1.00, 0.62, 0.56, 0.54, 0.33, 0.31, 0.28, 0.18, 0.14, 0.13}.

Step 3: Determine the production times of the other firms by tkj� ¼ pkmtkm� =p
kj. The results are shown in Table 4.

Step 4: Check the convergence of the iteration. Since it is the first time of iteration, � ¼ 1, go to Step 5.

Step 5: Calculate the starting time dkj and waiting time ukj, j¼ 1, . . . ,m� 1, k¼ 1, . . . , �L, from the first firm to the

last one, as shown in Tables 5 and 6, respectively.

Table 4. The production time of the firms.

Firm j

Production time tkj1

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5 k¼ 6 k¼ 7 k¼ 8 k¼ 9 k¼ 10

1 0.70 0.68 0.45 0.68 0.29 0.35 0.49 0.13 0.27 0.14
2 0.82 0.34 0.39 0.75 0.43 0.49 0.35 0.22 0.22 0.22
3 0.60 0.51 0.73 0.41 0.33 0.39 0.46 0.21 0.15 0.14
4 0.97 0.57 0.43 0.67 0.39 0.41 0.31 0.25 0.21 0.22
5 1.00 0.62 0.56 0.54 0.33 0.31 0.28 0.18 0.14 0.13

Table 3. The junction points.

i 1 2 3 4 5 6 7

�1 0.08044 0.16883 0.33766 0.67532 1.35064 2.70128 5.40255
�2 0.16187 0.32374 0.64748 1.29495 2.58990 5.17980 10.35960
�3 0.08613 0.17226 0.34452 0.68904 1.37807 2.75615 5.51229
�4 0.12711 0.25423 0.50846 1.01691 2.03383 4.06765 8.13530
�5 0.20745 0.41490 0.82979 1.65959 3.31918 6.63836 13.27671
�6 0.24690 0.49380 0.98760 1.97520 3.95041 7.90081 15.80163
�7 0.09221 0.18443 0.36885 0.73771 1.47542 2.95084 5.90167
�8 0.12720 0.25440 0.50880 1.01761 2.03521 4.07042 8.14084
�9 0.10465 0.20930 0.41861 0.83722 1.67444 3.34888 6.69775
�10 0.31582 0.63164 1.26327 2.52655 5.05310 10.10620 20.21239

Table 2. Feasibility testing.

Firm
Pn

i¼1 ri=pi

1 0.59
2 0.60
3 0.56
4 0.63
5 0.58
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Set � ¼ �þ 1 ¼ 2 and continue the iteration. Go back to Step 3 of Phase 3, we have, at the second time, the

production time of the finished product as {1.00, 0.62, 0.56, 0.54, 0.33, 0.31, 0.28, 0.18, 0.14, 0.13}. We update the

production times and waiting times of each firm, and summarise the information in Table 7.

Step 4: Check the convergence of the iteration.

(a) Since the values of all the production lots keep the same, this iteration converges, and the production times

are thus determined.
(b) We obtain the total production time of each firm Tj as T1¼ 6.536, T2¼ 6.942, T3¼ 6.776, T4¼ 6.840 and

T5¼ 7.031.
(c) Calculate the total cost of the supply chain system �1ðK1,B1jÞ ¼ $220.83.
(d) Proceed with the next junction point starting from phase 1 again at the next iteration.

Next iteration: Set � ¼ �þ 1¼ 2.

(1) Since w2 ¼ 10:364Bcc=2, we continue the investigation by checking the next junction point.
(2) The value � ¼ argmaxif�iðkiÞ5w�g ¼ 2 means that the multiplier of product number two needs to be

updated, i.e. w2 ¼ �2ðk2Þ.
(3) By utilising KPoTðw2Þ � (KPoTðw1Þ\{k2})[ 2k2}, we have KPoTðw2Þ¼ {1, 2, 1, 1, 1, 1, 1, 1, 1,}.
(4) Following the same procedures, we have �2ðK2,B2jÞ ¼ $162.25.

According to our results, the proposed three-phase heuristic investigated only 7 junction points before

termination, and the information on their locations and corresponding costs are summarised in Table 8.

Table 7. Production time of each firm.

Firm j

Production time tkj1

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5 k¼ 6 k¼ 7 k¼ 8 k¼ 9 k¼ 10

1 0.70 0.68 0.45 0.68 0.29 0.35 0.49 0.13 0.27 0.14
2 0.82 0.34 0.39 0.75 0.43 0.49 0.35 0.22 0.22 0.22
3 0.60 0.51 0.73 0.41 0.33 0.39 0.46 0.21 0.15 0.14
4 0.97 0.57 0.43 0.67 0.39 0.41 0.31 0.25 0.21 0.22
5 1.00 0.62 0.56 0.54 0.33 0.31 0.28 0.18 0.14 0.13

Table 5. The starting time of each firm.

j d1j d2j d3j d4j d5j d6j d7j d8j d9j d10j

1 0.16 1.07 2.09 2.85 3.79 4.32 4.87 5.59 5.96 6.40
2 1.08 2.12 2.72 3.78 4.79 5.38 6.06 6.69 7.14 7.59
3 2.13 2.96 3.69 4.72 5.40 6.22 6.81 7.55 8.06 8.54
4 3.07 4.24 4.99 5.66 6.62 7.20 7.93 8.49 9.00 9.36
5 4.33 5.68 6.59 7.37 8.26 8.89 9.44 10.05 10.53 10.93

Table 6. The waiting time of each firm.

j u1j u2j u3j u4j u5j u6j u7j u8j u9j u10j

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.07 0.42 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.11 0.10 0.15 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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As shown in Table 8, the optimal solution can be determined by ðK��,B
�
�jÞ ¼ argmin�f��ðK�,B�jÞg. The minimum

total cost is located in the last iteration with the value of $162.25. In this example, the optimal cost ($162.25) is
significantly less than that from the common cycle ($220.83), which is well known as an upper-bound solution,
by 26.5%.

5.2 Random experiments

We randomly generate the instances for our numerical experiments by picking the parameters values from the
following uniform distribution functions: the demand rate from UNIF [140–740], the production rate from UNIF
[5000–11,000], the setup time from UNIF [0.15–0.35], setup cost in UNIF [60–150], holding cost in UNIF [0.001–
0.005]. We have a total of 16 combinations of the number of firms (m) and the number of items (n) with m¼ 3, 5, 7,
10 and n¼ 5, 10, 15, 20, and tested 250 randomly generated instances for each combination.

Recall that the solution from the common cycle approach may serve as an upper bound for the ST-TVLS model.
Therefore, we compare the solution from the proposed three-phase heuristic with that from the common cycle
approach. Also, we define a performance measure CR, which is the percentage of cost reduction, by

CR ¼ �CC � ��ð Þ=�CC � 100% ð20Þ

We carried out our numerical experiments on a PC (Pentium 4 CPU 3.2GHz with 1G RAM). After solving the
instances, we summarised the statistics of CR for all the combinations in Table 9.

We have two interesting observations from Table 9:

(1) As the number of firms (m) increases, the average cost reduction increases. It is evident that our three-phase
heuristic can obtain a much better schedule than the common cycle approach, and the advantage turns more
significant for those larger size serial-type supply chains.

(2) Note that we solve all the instances (i.e. a total of 4000 instances) in 12.29 seconds. The average run time for
those m¼ 10 instances is only 0.6 seconds longer than those m¼ 3 instances. Therefore, our numerical results
show that the proposed three-phase heuristic is able to effectively solve solution with excellent quality.

5.3 Sensitivity analysis

Here, we conduct sensitivity analysis of the setup time, the setup cost and the holding cost on the optimal solution
quality. First, we set up the baseline ranges for the setup time, the setup cost and the holding cost as [0.15–0.35],
UNIF [60–150], and [0.001–0.005], respectively. Then, in our sensitivity analysis, we change the range of a particular
parameter by multiplying its baseline range by the factors of 1, 2, 3, 5 and 10, respectively. For example, as the
baseline range of the setup time multiplies by factor 2, it becomes UNIF [0.30–0.70]. Using the combination of
10 firms and 10 products as our base, we summarise the results of our sensitivity analysis in Tables 10.

We would like have some discussions on our sensitivity analysis as follows:

(1) The higher the holding cost, the smaller the cost reduction. In other words, the common cycle approach is
apt to obtain a close-to-optimal solution as the holding cost is high. One may observe a similar trend in the
setup time, and it is even more sensitive than the holding cost.

Table 8. The searching process.

w� k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 ��ðK�,B�jÞ

11.620 1 1 1 1 1 1 1 1 1 1 220.83
10.360 1 2 1 1 1 1 1 1 1 1 282.74
8.140 1 2 1 1 1 1 1 2 1 1 233.87
8.135 1 2 1 2 1 1 1 2 1 1 256.73
6.700 1 2 1 2 1 1 1 2 2 1 188.75
5.900 1 2 1 2 1 1 2 2 2 1 178.69
5.510 1 2 2 2 1 1 2 2 2 1 162.25
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(2) The average CR decreases as the number of items increases. It is because the value of
Pn

i¼1 ri=pi
increases when the number of items increases, and the common cycle approach becomes favourable in such

a case.

Finally, Table 11 presents the sensitivity analysis of the setup cost on the values of CR. One may observe that the

average CR increases with the values of the setup cost.

Table 11. The relation between cost reduction and setup cost.

Number
of firms m

Number
of items n

Average cost reduction (percentage)

Setup cost
UNIF [6–15]

Setup cost
UNIF [60–150]

Setup cost
UNIF [600–1500]

3 5 4.1 8.3 8.8
10 1.5 9.2 13.6
15 0.2 4.8 15.2
20 0.1 1.2 10.8

5 5 3.5 12.2 14.8
10 0.9 12.5 20.4
15 0.2 4.7 19.9
20 0.0 1.2 14.3

7 5 3.3 15.0 19.5
10 0.4 14.5 26.8
15 0.1 3.8 22.6
20 0.1 1.0 15.8

10 5 3.1 19.5 25.3
10 0.2 16.4 32.3
15 0.1 3.7 26.3
20 0.0 0.9 16.8

Table 10. The sensitivity analysis on the three parameters.

Parameters Factor

Cost reduction (percentage)

Min. CR
(%)

Max. CR
(%)

Avg. CR
(%)

Setup time 1 0.0 39.2 16.4
3 0.0 6.0 0.3
5 0.0 0.2 0.0
7 0.0 0.0 0.0
10 0.0 0.0 0.0

Setup cost 1 0.0 39.2 16.4
3 2.2 44.7 26.0
5 3.8 48.0 29.3
7 5.7 47.2 30.4
10 12.1 55.2 32.3

Holding cost 1 0.0 39.2 16.4
3 0.0 18.7 5.7
5 0.0 14.2 2.5
7 0.0 7.1 0.5
10 0.0 5.4 0.2

Table 9. The cost reduction for different number of firms and
items.

Number
of firms m

Number
of items n

Cost reduction (percentage)

Min. CR
(%)

Max. CR
(%)

Avg. CR
(%)

3 5 0 28.5 8.3
10 0 23.5 9.2
15 0 19.4 4.8
20 0 14.8 1.2

5 5 0 30.9 12.2
10 0 27.8 12.5
15 0 20.5 4.7
20 0 17.2 1.2

7 5 0 39.0 15.0
10 0 32.1 14.5
15 0 18.7 3.8
20 0 16.0 1.0

10 5 0 43.7 19.5
10 0 39.2 16.4
15 0 19.5 3.7
20 0 12.9 0.9
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6. Concluding remarks

In this paper, we solve the optimal sequencing, lot-sizing and scheduling decisions for several products
manufactured through several firms in a serial-type supply chain so as to minimise the average of total costs.
Using a time-varying lot-sizing policy, we formulate the ST-TVLS model for the concerned problem. We propose a
three-phase heuristic that obtains the production frequencies of each product, find the production sequence and
determine the production times as well as idle times for all the production lots in the three phases. Based on our
numerical experiments, we demonstrate that the proposed three-phase heuristic not only is effective, but also obtains
solutions much better than the upper-bound solutions from the common cycle approach.

Some topics may serve as possible extensions of this study in the future. One could extend the decision making
scenario of the lot-sizing and scheduling problem to a supply chain system with a more general structure, e.g. an
assembly-type supply chain, etc. As one may easily figure that the co-ordination among the scheduling of the
production lots from branches of the supply chain system could become a problem with severe challenge. Another
one could be the integration of the lot-sizing and scheduling problem in a serial-type supply chain system with the
transportation operations. The key issue could be the trade-off between the effect of shipment consolidation in
transportation and reducing number of setups in production and the economies of scale in holding inventory.
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