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This paper deals with an integrated scheduling problem in which orders have been processed by a distribution
centre and then delivered to retailers within time windows. We propose a nonlinear mathematical model to
minimise the time required to complete producing the product, delivering it to retailers and returning to the
distribution centre. The optimal schedule and vehicle routes can be determined simultaneously in the model.
In addition, two kinds of genetic-algorithm-based heuristics are designed to solve the large-scale problems.
The conventional genetic algorithm provides the search with a high transition probability in the beginning of
the search and with a low probability toward the end of the search. The adaptive genetic algorithm provides
an adaptive operation rate control scheme that changes rate based on the fitness of the parents. The
experimental results have shown that the solution quality of these two algorithms is not significant but that the
adaptive genetic algorithm can save more time in finding the best parameter values of the genetic algorithm.

Keywords: integrated scheduling; vehicle route; time windows; genetic algorithm; adaptive operation

1. Introduction

Introducing the zero-inventory concept into production and delivery problems has been widely discussed in many
industries in which a product cannot be inventoried due to its short lifespan. The production factory or distribution
centre has to deliver the product within a strictly limited time to fulfil their orders from customers in order to be
more competitive. In such an integrated system, an important element of achieving the just-in-time concept,
reducing the retailer’s inventory, is incorporated between order scheduling and the delivery of finished goods.
Traditional research has separately and sequentially investigated machine scheduling and order delivery without
effective coordination. However, making two individual but uncoordinated decisions will not produce a global
optimal solution.

This study investigates a practical scheduling problem of a distribution centre (logistics plant) addressing the
needs of various demand points. In-factory, there are two types of inventory groups divided by product size, weight,
demand cycle and product value. High-value commodities are produced by a predetermined conveyor belt system.
The products in the system are produced by high mix low volume (HMLV) and picked into order totes in order to
facilitate loading and unloading. The number of high-volume commodities are packed in a ‘dozen’ or ‘box’ as a unit
stacked shelves. In the order-picking region, there are several picking personnel driving electric pallet trucks
shuttling between the shelves to fill such orders. We are interested in the scheduling problem related to serving the
demand from customers who are high-value commodity users. Because the retailer’s warehouse capacity is quite
limited, it prefers to receive merchandise on time to increase turnover of internal products. Hence, each order
requires processing in the distribution centre and delivery to a predetermined location within a time window.

We assume that all requests are known in advance and each order is produced immediately in one pack
containing several goods. In other words, each production order is considered as a continuous process according to
each retailer’s requests. Consequently, the manufacturing stage of an order can be considered as a single process
without interruption. The decision maker has to decide when the production orders should start to be picked up and
when they can be assigned to a vehicle so that the orders can be optimised into a delivery route. The operational
decision making is to determine the minimum makespan.

In recent years, for the two-echelon supply chain problems, most articles have focused on production
and distribution planning such as those by Liang (2008), Safaei et al. (2010), Samaranayake et al. (2011), and
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Steinriicke (2011). However, this study is related to research concerned with production scheduling and delivery
(Zdrzalka 1995, Chang and Lee 2004, Zhong et al. 2007, Lu et al. 2008, Li and Yuan 2009, Wang and Cheng 2009).
Chang and Lee (2004) studied machine scheduling and product delivery, in which jobs require different amounts of
storage space during delivery. Their objective was to find a schedule for processing jobs such that the time required
for all jobs to be processed and delivered to the corresponding customers was minimised. Zhong et al. (2007) dealt
with two production environments, a single machine and two parallel machines, and delivery to a single customer
set. Their objective was to minimise the time when the vehicle finished delivering the last batch to the customer and
returns to the machine(s). Lu ez al. (2008) developed a single-machine-scheduling problem that incorporated the
routing decisions of a delivery vehicle with at most ¢ jobs at a shipment. When preemption is not allowed, they
showed that this problem is strongly NP-hard for each fixed ¢ > 1. The objective was to minimise the maximum
delivery completion time of the jobs. Although the joint production and delivery scheduling problem has received
significant attention, the previous research has focused on delivering to customers who are located in a few areas
(n < 3) or where few vehicles are available to deliver the products to specified customers. It may not occur in every
industrial environment in practice. Therefore, the detailed planning between each customer’s (7 > 3) delivery will be
proposed in this study.

Although the production scheduling with delivery problem has received significant attention, few papers apply it
to a practical production environment. The literature on practical issues has been discussed by the following: Naso
et al. (2007), Bredstréom and Ronnqvist (2008), Geismar et al. (2008), Chen et al. (2009), Day et al. (2009). In their
paper, Naso et al. (2007) focused their work on ready-mixed concrete delivery. The authors integrated production
planning and distribution routing. The strict time constraints forbid both earliness and lateness of the supply to be
taken into account as well. The objective was to minimise total cost, including transportation costs, loading and
unloading waiting costs and additional costs related to outsourced production, hired trucks and overtime work by
some truck drivers. Chen et al. (2009) addressed the integrated production and distribution problem for perishable
food products. The demands at retailers are assumed stochastic and they will be a random variable with a
probability density function. Thus, the revenue of the supplier is uncertain and the objective of this study is to
maximise the expected total profit of the supplier.

The integrated scheduling problem that we study extends from these recent papers. In the next section, we
present a formulation mix with production scheduling and vehicle routing problems with a time window into an
integer nonlinear programming model. We then describe two evolutionary algorithms for making improvements in
Section 3, and in Section 4 numerical results are provided. This paper is concluded in Section 5.

2. Model formulation
2.1 Description of problem

We consider a distribution centre with one manufacturing process but that produces several kinds of products. The
products that each retailer requires are put into one pack immediately. Our objective is to minimise the time, #,ay,
required to manufacture and deliver goods to satisfy all demands. We implement this expiration time by requiring
that all batches must be delivered within a time window [a;, b;]. There is a set of retailers, N = {1,2,...,n}; cach has a
geographic location and a demand, d;, i € N, to be satisfied. Production and distribution can occur continuously
throughout the period, so this problem can be envisioned as planning a day’s operation for a product that has a
production cycle that is less than one day.

Trucks with capacity Q, maxend; < Q < > i, d;, are used to deliver the products to retailers. Since each truck
has a limited capacity, many vehicles are needed and the number of vehicles is given, K = {1,2,...,k}. We assume
that as long as the total physical space of the products loaded into the vehicle does not exceed Q, they can be
arranged to fit in the physical space provided by the vehicle. Each trip starts at the distribution centre (location 0),
travels to a sequence of retailer locations and returns to the distribution centre. We assume that each retailer is
visited only once and that all demands must be satisfied.

Other assumptions in formulating are given as follows:

(1) The demand quantity of retailers is known and given.

(2) The vehicle fleet size is consistent.

(3) All products of the same retailer are produced continuously as the same batch.
(4) The setup time for producing different batches is negligible.



Downloaded by [National Chiao Tung University ] at 00:27 26 April 2014

International Journal of Production Research 899

(5) The truck loading time is negligible.
(6) The travel distances of delivery networks are symmetric.

2.2 Notation

The notations which are used to develop a mathematical model of the problem are defined and interpreted as
follows:

Decision variables:

Ciy.  makespan of the demand of retailer 7 in the distribution centre for vehicle k
Z; a binary decision variable indicating if product i is performed before product j
Vi a binary decision variable indicating if the order from retailer 7 is delivered by vehicle k
X; a binary decision variable indicating if the arc (i,/) is part of a vehicle route k
t; time departing from retailer i

Non-decision variables and parameters:

p; unit processing time of retailer i
d; demand of retailer i
f; travel time between retailers i and j
s; service time at retailer i
r; flow variables of retailer i
N retailer set
Ny retailer set including location 0
M  very large positive number

2.3 Mathematical models
The addressed problem with minimisation of the total complete time objective can be formulated as follows.

min fmax (1

The constraints in the model are presented below in three sets, each representing one type of system constraint.
Production scheduling constraints:

ZCik_Pidizoa ieN) (2)
keK
Y Ci—pidi=) Ci+MZj—1), ixjeN, 3)
keK keK
Zi+Zi=1, ixjeN, 4)
CikaXy,'k, ieN;keKk. (5)
Flow conservation constraints:
K, i=0
Z)’ik:{] e N 6)
keK ’
K, j=0
Xijk = { . . (7)
22 =11 jen
injk = ijik =Y, 1€ Nopkek, (®)

JENy JENy
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Y oxp=1, kek ©)
jeN
ro =0, (10)
=1 = (di+0)Y Xj—0Q. ieNyjeN, (11)
keK
<Y Y Oxjp, i€N. (12)
keK ieNy
Definitional constraints:
tj > max{t; + fy, aj} + 5, — M(1 — xj), ixje N:kek, (13)
t; > max{max Cyyi + foj» aj} + 5, — M(1 — xo), ixje N keKk, (14)
a<ti—si<bj JjeN, (15)
tmax > Zj +f}03 ] € N (16)
Nonnegative constraints:
=0, jeN, (17)
Cyi>0, ieN;keKk. (18)

Equation (1) minimises the time required to manufacture and deliver goods to satisfy all production demands by
all vehicles. The constraints in Equations (2)—(5) are production scheduling constraints. The constraint in
Equation (2) ensures that the batch at the manufacturing stage can be completed only after it has been on the
conveyor belt for the necessary processing time. The constraint in Equation (3) imposes that the one batch at the
manufacturing stage cannot start before the previous batch on the same machine has been completed for different
batches. The constraint in Equation (4) defines that a batch can only be performed either before or after the other
for any pair of batch 7 and j. The constraint in Equation (5) assures the y variables.

The constraints in Equations (6)—(12) are flow conservation constraints of vehicle route problems. The
constraints in Equations (6) and (7) enforce that one vehicle arrives at retailer j exactly once and every route starts
and ends at the depot. The constraint in Equation (8) allows that for each retailer i, the entering vehicle must
eventually leave this node. The constraint in Equation (9) restricts each vehicle to only leave the supplier once. The
constraints in Equations (10)—(12) are the subtour elimination constraints. The constraint in Equation (11) also
guarantees the vehicle’s capacity. The constraints in Equations (13)-(16) are definitional constraints. The constraints
in Equations (13) and (14) define the arrival time at retailer j. The constraint in Equation (15) denotes that the
service at retailer 7 begins in the intervals [a;, b;]. The constraint in Equation (16) ensures that the ending time at the
delivery stage can be completed only after all vehicles return to the depot. The constraints in Equations (17) and (18)
are nonnegative constraints.

The model formulated above is an integer nonlinear programming model embedding a vehicle routing problem,
which is known to be NP-hard. Therefore, genetic algorithm (GA)-based heuristics are proposed for solving the
addressed problem.

3. Developing evolutionary algorithms

So far, the genetic algorithm is most commonly applied to global optimisation, especially in complex nonlinear
problems and in situations when an analytical solution cannot be obtained. Hence, in this article two GA based
heuristics are developed to obtain a near optimal schedule in a reasonable computation time.
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In the proposed encoding scheme is integer coding combined with order (or permutation)-based encoding for the
priority assignment. Although a binary coding has some advantages in terms of implicit parallelism of the search, we
apply an integer coding to keep the chromosome simple and reduce the overhead of coding/decoding (see
Michalewicz 1996, Ishibuchi ef al. 2003, Iyer and Saxena 2004).

The decoding scheme is another key component for establishing an effective search subject to a given
permutation by the chromosome. This algorithm is an example of route first cluster second heuristics. It uses the
backward method to avoid a large number of infeasible solution spaces and to ensure the feasibility of chromosomes
in decoding. After decoding the permutation, we can obtain the vehicle assignment and route planning of vehicles.
The detailed process of the decoding is described in Subsection 3.3.

3.1 Conventional genetic algorithm

GA is inspired by the natural capability of living beings to evolve in order to adapt to their environment. The driving
force in this algorithm is the selection of chromosomes based on their fitness. Chromosomes with better fitness have
a higher probability of being chosen as members of the next iteration population. During each generation, we have
operators recombine two or more chromosomes to produce new individuals called crossover operators.
Furthermore, we have operators which cause the self-adaptation of individuals and create more offspring eugenics
called mutation operators. These two operators rates are p. and p,, respectively. The basic structure of the algorithm
is illustrated as follows.

Input. Randomly produce an initial population.
Output. The best chromosome from the final population after the evolution procedure.

While the termination condition is not yet achieved:

Evaluate fitness of the population,

Select chromosomes for the candidate population,
Perform crossover and mutation,

Reproduce new population.

When the permutations produced by the GA procedure are complete, the solving process of each individual
chromosome can be treated as a two-stage flowshop scheduling. A GA for flowshop scheduling was proposed by
Reeves (1995), which was then tested on several categories of problems with time gradients and job correlations and
some hard test problems proposed by Taillard (1993). Murata et al. (1996) compared various crossover and
mutation operators and showed that the two-point crossover and shift mutation operators are effective for this
problem. In the past, research by Cheng and Chang (2007) showed complete optimal parameter combination design
in GA for general flowshop problems. The operators which are used to develop the heuristic are interpreted as
follows:

(1) Select new population

Selection strategy plays an important role in GA, as a bad selection strategy will lead to premature convergence.
In this article, roulette wheel selection is adopted to determine the candidates for chromosomes. The higher the
adaptation function value, the greater the percentage of being the candidate. The adaptation value of each
chromosome is the fitness over the whole to design the occupied percentage on the roulette wheel. The object of this
article is to minimise the total completion time, and this value is used to express the fitness function.

(2) Crossover

The chromosomes in the candidate population go through crossover and mutation processes to produce
offspring for the next generation. We use the longest common subsequence (Cormen et al. 1990) to operate in the
mating system. Suppose that 4 and B are the individuals chosen for crossover 4=(856273914) and
B=(861294537). First, we must locate the longest common subsequence, LCS=(86294), of two candidate
individuals. This allows us to search over a larger space, while preserving the good part of the parent chromosomes.
Then, we copy common subsequence positions to each offspring and make exchanges for the remaining genes
according to their original sequence. The resulting individuals are A" =(816253974) and B =(865294731). The
advantage of this mating system is that it will not produce infeasible solutions and requires no additional time to
adjust the structure of individuals.
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(3) Mutation

After crossover, individuals go through a mutation operation with certain mutation rates. The displacement
mutation is implemented in this search. For instance, if the segment (625 3) of individual 4" were chosen to be
mutated, this segment could be randomly inserted into any hierology placement. Hence, the new string could
become A” =(819762534).

3.2 Adaptive genetic algorithm

When GA is used to solve different problems, the parameter adjustment has a great impact on effectiveness. In the
standard form, the designer is often bothered by the parameter design of a specific problem that can be obtained
through trial and error or some algorithmic search. Due to the aforementioned facts, adaptive genetic algorithm
(AGA) forms an alternative: it will start with initial parameter values and dynamically modify its parameter set. Lee
and Fan (2000) indicated that there are two kinds of processes to adjust the parameters in AGA. The first one
changes these parameters according to the deterministic rules, e.g. the number of generations. The second one is
adjusting the parameters according to the feedback information, e.g. the fitness value or the diversity of the
population.

In AGA, we focus on balancing the exploitation and exploration on solution space in a different manner. The
solution structure of this algorithm is the same as the congenital genetic algorithm referred to in Subsection 3.1.
However p. and p,, are increased when the population falls into the local optimum and decreased when the
population is scattered in the solution space.

When GA is implemented, whether the solution is converged to an optimum is the concern of most researchers.
One possible way of detecting convergence is to observe the average fitness value /" of the population in relation to
the best value at present f,.;,. / — fmin 18 likely to be less for a population that has converged to an optimum solution
than for a population scattered in the solution space. However the value of p. also depends on the fitness of both of
the present solutions, that is to say p. should be directly affected by f” — fiin, where f” is the better fitness of the
solutions to be the crossover. Similarly, the value of p,, depends on the fitness, f, of the solution. The closer fis
tO fmin, the smaller p,, should be. The expressions for p. and p,, take the forms

pe=ki(f —fui)/(f = fuin)s [ <1, (19)
Pe = k3, f/ _f (20)
and
P =ko(f = fuin)/(f = fowin)s [ <. (1)
pm=ks f>f (22)

Where kl, kz, k3, k4§ 1.0.

From the preliminary analysis, the values for the operators ki, k, k3 and k4 are determined and described as
follows. Typical values of p. are in the range 0.5-1.0. The moderately large value of p. promotes the extensive
recombination of the schemata. We assign k; and k3 a value of 1.0. This setting is to determine the implementation
of the crossover when all of the parents’ fitness values are inferior compared to the average fitness value. The
crossover rate decreases as the fitness value of the adapter of parents tends to f.,;,. Typically, p,, is chosen in the
range 0.001-0.05. As p,, increases, the solutions have the opportunity to escape the local optimum. When the
solution with inferior average fitness is obtained, this could be completely disruptive and we use a value of 0.5 for k.
We assign a value of 0.5 to k, because a solution with a fitness value of f should also be able to escape the local
region to act in a diversified manner.

3.3 Decoding
3.3.1 Finding a set of feasible trips

In this subsection, we show the decoding process in the genetic algorithm for a chromosome. For any chromosome o
of N retailers, this algorithm starts with a tour that begins at the central depot, visits each retailer exactly once and
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then returns to the depot. Suppose the travelling salesman tour (TSP) can be written as

0—o0(l)—0o(2) —--+-—o(n) — 0. The subtour between retailer o(i) and o(j), denoted by 7(i, /), is the total distance
of having a vehicle service retailers 0, o(i), o(i+ 1), ..., o(k) for i <k, in that order. Hence, the total demand of
retailers o(i), o(i+1),... ,o(k) has to be less than the largest vehicle’s capacity. We use the notation §; and §,(m) to

stand for the jth feasible solution and the trip generated by the vehicle m in the jth feasible solution, respectively. If
the number of arcs in the first path is sequential until o(i) in which 7 is determined by a vehicle’s capacity and time
window, the sequence of trips generated by §(1) = (0, o(i)). Similarly we can define the paths of other vehicles to be

8(2) = n(o(i + 1), (/)

8(3) = n(a(j+ 1), 0(k)),
and the trips of the last vehicle is

8(K) = n(oc(K)\S(1) US(2) U --- U 8K — 1).

Example 1: Consider a vehicle routing problem (VRP) with a manufacturing stage. There are four retailers being
considered and the capacity of a vehicle Q =10. The required information for each retailer is shown in Table 1.

The symmetric travel times are the following.

-5 6 3 2
5 — 4 3 7
fi=l6 4 — 6 4
33 6 — 6
2 7 6 —

If a chromosome o =(3, 2,4, 1), all the feasible solutions are generated and described in Table 2. In Table 2, the
trips proceed from the distribution centre and the complete time is used to verify the time window of the ith retailer.
Additionally, the completion time has to consider the manufacturing time, delivery time and service time, in other
words the manufacturing time sum of the processing time from the demand until the ith retailer, o(7); delivery time
and service time are calculated by general VRP problems. Additionally, the completion time of the addressed
problem is the sum of the manufacturing time, delivery time and service time. The completion time required is
calculated as

i i—1 t
Toty = Y Potiroty + Joo) + D _Jotirotien) + Y So())-
=1 =1 =1

Table 2. Potential arcs for Example 1.

L ) Trip sequence Complete time

Table 1. Retailer information for Example 1. until ith retailer Demand on ith retailer
i Di d; S [a;, bi] 0— o0 5 45
0—o0,— 0 9 60
0 0 0 0 [0,100] 0— 01— 0y— 03 15% 63*
1 5 5 6 [60,80] 00— o, 4 53
2 7 4 3 [50,60] 0— 05— 03 10 64
3 3 5 5 [40,60] 0—o0,— 03— 04 15% 74%
4 2 6 4 [60,70] 00— o4 6 64
0—> 03— 04 11* 77
0— 04 5 66

Note: the asterisks indicate values that disqualify the
potential arc.
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When the completion time is calculated, it is not illegal to violate the time window of each retailer until the ith
retailer has been violated. According to Table 2, all feasible solutions could be solved as follows.

81(1) = (0, 01)

81(2) = n(02) 52(1) = (0, 01) 83(1) = 7(0, 02)
81 = 81(3) _ 7-[(02) , 6 =13 802)=mn(0y,03), 8 =13 82)=n(03)
518) = (o) 5(3) = n(os) 55(3) = (04)

This method expands when the number of vehicles is unknown. When the number of vehicles is determined, the
suitable solutions will be found from the group of feasible solutions. For example, it will be deduced by three
vehicles that 8, and &3 are the expected solutions. In the third feasible solution, the route of each vehicle is 0-3-2-0,
0-4-0, 0-1-0, respectively.

3.3.2 Minimising the total completion time for a given set of trips

We now discuss a situation in which the retailers should be served by the known vehicles and the corresponding trips
could satisfy all time limit requirements. For specific vehicle k, the processing time can be divided into the
production time in the distribution centre Mfsl/)() and delivery time outside the plant Mfsf,)() Thus, the problem is
equivalent to a two-stage flowshop system and an optimal schedule can be found by using Johnson’s algorithm.
Johnson’s algorithm can be implemented as follows.

Johnson’s algorithm: divide K-trips into two disjoint subsets S; and S,, where S| = {Kk|M§,)c) > Mfsl}\,)} and
S, = {KHMSS?,)() < Mfsi,)c)}. Order the jobs in S| in non-decreasing order of Mfsi/)c) and those jobs in S, in non-
increasing order of Mf;,)x) Sequence jobs in Sy first, followed by those in S>.

Using the Johnson’s algorithm framework, we have to define Mgi,)() and Mfi,)c) in our situation. While retailers
of one trip §(k) are known at the distribution centre stage, the production time Mgz,; is the sum of the processing
times of the demands of each retailer on trip (k). However, we must take into account explicitly the connection
between delivery time and the time window outside the plant. These observations lead to the following formula

2) .
for Mf;(k).

min Mfs?/)q (23)
M), < 37 max{t + fy.ai} + s — My, + M(1— ), ixjedk), (24)
ied(k)
1
ty < M), (25)
(ti+fi—b) xy <0, ixjedky, (26)
yef0,1} (27)

Equation (23) minimises the time at the second stage for when vehicle & completes the assigned travel trip and
returns to the depot. The constraint in Equation (24) ensures that the trip for the delivery stage can be completed
only after all necessary retailers have been served within their time window. The constraint in Equation (25) imposes
the start time on trip 8(k), while the constraint in Equation (26) defines the arrival time on retailer i to be earlier than
its time limit.

3.3.3 Enhancing the algorithm

In the decoding process, a mechanism that converts N retailers into K trips to form a K-job two-stage flowshop
scheduling problem is designed. We need to estimate the processing time within each stage. In the first stage, we have
determined which retailers should be served on which trips and then intuitively measure of the pickup time by
customer demands and unit processing times. Because of a lack of the optimal service sequences of retailers through
8;(m) in the second stage, we attempted to improve each trip’s delivery time by using 2-OPT on each pair of retailers
within each trip §,(m). We now proceed to formally state the solution algorithm as follows.
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Input. A chromosome o = {o(1),0(2),...,0(N)}.
Output. Feasible solution for all N retailers.
For each feasible solution set §; = {6(1),8(2),...,8(K)}
alis . 112 ; ; M
Evaluate each trip’s production time My .
Evaluate each trip’s delivery time Mﬁb
Exchange each pair of retailers on this trip using 2-OPT.

When the time window condition is valid and requires less travel time than the original trip then:
Update this trip and Mg?,)().
Use Johnson’s algorithm to schedule the solution set §;.

Example 2: To facilitate the understanding of our decoding with an example, consider that 12 retailers and then
one chromosome o =(1,4,7,...,10,12,2). First we find a set of feasible trips and the shortest path base for five trips
is given in Table 3. Because we consider this problem as a two-stage flowshop, we use the notation M for the plant
and M® for outside the plant. Note that M is calculated by Equation (19) and retailers of each trip are ordered by
the 2-OPT, that is to say Trip B, §(B)={(0,3,7,5,0),(0,7,3,5,0),(0,7,5,3,0)}, contains three kinds of travel paths
because of the symmetric network. Figure 1 depicts the production schedule and the vehicle routing plan of a
feasible solution.

We found the best possible trip set and the mandated delivery time window that can be met with certainty for a
given permutation of retailers. Johnson’s algorithm obtains the optimum total complete time for the sequence of
trips generated by §;, so the enhanced algorithm could find an efficient schedule under this scenario. However, this
framework can be implemented only after establishing one sequence involving all retailers. Hence, we will next use
evolutionary algorithms to find efficient sequences.

4. Computational results
4.1 Data set generation

To implement a comparison of the findings from the proposed GA-based heuristics, some test problems are
generated and described as follows. The retailers’ information including locations, demands and service times are
directly adopted from Solomon’s problem set (1987). The macro structure of the data set is preserved, but the other
data are randomly generated. The unit processing time of a product follows a discrete uniform distribution U(1, 10),
and the manufacturing time of each retailer is obtained by multiplying demands by the unit processing time. The
time window [a;,b;] for each retailer 7 is presented as «;: Using the same «a; from Solomon’s problem set b;: Original
b; + group number x50% x Zje yPidi. Where all retailers in the problem set are divided into four groups, each
group has a group number should be 1, 2, 3, or 4. Each retailer in the problem set is randomly assigned into a group.
For example, b; of the first group is the original b; plus 50% of the total processing time and is plus 100% of the
second group. Computations were performed in Visual C++ 6.0 on a personal computer with an Intel Pentium D
CPU at 3.40 GHz with 1.00 GB of memory.

4.2 Performance of the proposed GA-based heuristics

To assess the solution quality and efficiency of the proposed GA based heuristic, some experiments were conducted
and analysed. The initial populations were randomly chosen for each heuristic, and each generation had 60 members
and the process was continued through 300 generations. And set values of p. and p,, are 0.95 and 0.05 respectively in
the GA after preliminary tests. For the AGA, the values for k|, k», k3 and k4 are set to be 1.0, 0.5, 1.0 and 0.5.

Table 3. Trip information for Example 1.

Trip (3(k)) M M@ Md[ET]T A ] B [ € [ D |

11 27 52 15 102
A (0,1,4,0) 16 17
B (0,7,3,5,0) 25 Min (36, M, 48)=36 x| [ E ] A ]| B [ € T © ]
C (0,9,6,8,0) 23 Min (51, 22, M) =22 o e e L Ll B
D (0,11, 10,0) 27 20

E (0.12,2,0) 11 o1 Figure 1. Schedule for Table 3.
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Table 4. Comparison of three search methods.

Lingo GA AGA

N K Solution Time (s) Solution Time (s) Solution Time (s)

5 2 88 1 88 0.053 88 0.028
2 244 12 244 0.044 244 0.025
2 228 39 228 0.042 228 0.028
3 228 1 228 0.040 228 0.034
3 172 18 172 0.030 172 0.036
3 235 5 235 0.034 235 0.038

6 2 145 27 145 0.061 145 0.058
2 130 127 130 0.045 130 0.038
2 171 58 171 0.044 171 0.042
3 - - 187 0.050 187 0.045
3 - - 174 0.042 174 0.041
3 - - 240 0.045 240 0.038

Table 5. CPU time (in seconds) comparison between the GA and the AGA.

Number of retailers 10 30 50 80 100

GA Average 0.193 1.806 3.372 7.354 12.532
Standard deviation 0.013 0.091 0.128 0.142 0.486

AGA Average 0.312 2.325 5.150 11.398 19.019
Standard deviation 0.099 0.077 0.089 0.313 0.603

These experiments are divided into two parts. The first part provides the optimal solutions for small-sized test
problems as the basis for providing the feasibility and the adaptability of the proposed GA-based heuristic. It is
noted that the optimal solutions are obtained by running the commercial mathematical programming software
Lingo 8.0 (the mathematical model is provided in Subsection 2.3). Twelve small-sized test problems are evaluated
with 10 runs for each test problem. The results are summarised and shown in Table 4. The results shown in Table 4
reveal that, in each small-sized case, GA and AGA have the same ability of search for the solution space and
efficiency disparities in finding a solution are not discernable. For the case of six retailers with three vehicles, the
optimum solution cannot be obtained in 24 running hours. It is noted that, for all the small-sized test problems
evaluated, the solutions are the same in 10 runs of each test problem. This signifies the robustness of the designed
GA-based heuristics.

To demonstrate the efficiency of the proposed-GA based heuristics, we randomly generated 10 samples for each
problem size. The results for each problem size are shown in Table 5. The average time for 100 retailers of the GA
was 12.532 seconds. The average time of the AGA was 19.019 seconds under the same data sets. The results shown
in Table 5 reveal that the difference in efficiency between the two heuristics become increasingly obvious.

From the above test results, we found that the proposed algorithms can solve the production scheduling problem
with delivery efficiently and return a reliable solution. The efficiency of the algorithm makes it suitable for solving
real cases, which are normally large in scale.

4.3 Comparison with other heuristics

In this section, the performance of the proposed heuristics is compared with the H3 heuristic reported by Chang and
Lee (2004). The scenario of this problem is similar as the jobs are processed on a single machine and then delivered
to two areas. Additionally, they defined one customer area as a location where a group of customers are located in
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Table 6. Comparison with other heuristics.

N Q H3 GA AGA GA/ H3 AGA/H3 GA <H3 AGA < H3
30 20 640.00 547.00 547.00 0.85 0.85 0.028 0.028
50 30 957.17 819.50 818.17 0.86 0.85 0.013 0.013
50 60 991.00 848.33 848.33 0.86 0.86 0.009 0.009
80 60 1592.33 1356.17 1354.83 0.85 0.85 0.013 0.013
80 100 1673.83 1433.50 1433.50 0.86 0.86 <0.001 <0.001

100 40 1922.67 1629.50 1628.83 0.85 0.85 <0.001 <0.001

100 60 1898.67 1614.00 1610.00 0.85 0.85 0.005 0.005

Note: Columns GA <H3 and AGA <H3 lists p-values for the comparison.

10000
(a) (b) &
=
o 10000 % Population Average
E Population Average E" %000
o H <
s a =
SR (1| SOSR———
g | S I S ———
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=
Candidate Solution 7000+ 4 2000
7000 2000
{1500,
1500 6000+ } =
6000 = =
g o
- 1000
1000 § '%
i % 5000 | I~
] s00
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50 100 150 200 250 300 50 100 150 200 250 300
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Figure 2. Statistics of GA and AGA convergence over 100 retailers.

close proximity to each other. When we relaxed the time windows, seven different data sets of customer numbers
and vehicle capacity were randomly generated.

We compared the results from using the three different algorithms. Table 6 presents all the completion times for
GA, AGA and the corresponding heuristic H3; these values are averages taken over six examples. GA and AGA
have a lower average completion time than H3 for each parameter combination. On average, GA and AGA are
more efficient than H3 by 14.79% and 14.86% respectively. Paired #-tests revealed that our heuristics are statistically
better than H3 according to the p-value in the last two columns at the 95% significance level. With these problem
sets, we also found that the effectiveness between GA and AGA not discernible.

4.4 Convergence

To illustrate how GA works differently than AGA, we provide variations of the population averages, the best
solution and dispersion index values for GA and AGA as shown in Figure 2. This index measures how
chromosomes spread around the global best of the population, and the formula for the dispersion index is
evaluated as

g ZieG Z'EC |fl/ _ﬁl
0= G] x C @8
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where

G number of generations,

C number of chromosomes,

f; fitness of the jth chromosome for the ith generation,
J global best of the ith generation.

This index explains the coverage searching area of the population. A population with a high dispersion index has
relatively wider coverage of the searching area than one with a lower dispersion index.

When comparing the two plots in Figure 2, we observe that the average completion time of the population
decreases gradually for AGA while it decreases rapidly for GA. For the GA, as shown in Figure 2, within 50
generations, the candidate solution decreased rapidly and the last improvement was seen at 37 generations while the
AGA continued improving for 254 generations. The best candidate solution in the GA was reported to be 7756 and
the optimal total complete time for AGA was seen at 7784.

Another feature that stands out was related to the population search ability for GA. The candidate solution
stayed at the 7772 level until it found a better solution at the 7756 level and stayed there for the rest of the search. In
the AGA, however, the population solutions moved continuously down and therefore searched for a variety of
solutions. This was mainly due to the difference in the rates of the operators’ control mechanism between the two
methods. In the class GA, the rates of operators were constant from the beginning of the search. Therefore, by the
time the search hit a new solution, it had lost most of its energy and was hardly able to avoid being trapped in the
local optimal solution. The AGA provides a mechanism to disturb the rates of operations. Therefore, the latter one
was a high probability to escape the local optimum.

5. Conclusions

This paper considers production scheduling with delivery in order to minimise the total completion time while
satisfying the request time windows of each retailer. The integer nonlinear programming model has been presented
first. Although the mathematical model provides the benchmark solution, the variables and constraints increase
drastically, even for a small-sized problem. Therefore, two heuristics based on genetic algorithms have also been
proposed for solving medium/large-sized problems. We have developed the encoding/decoding method of
characteristics for this problem. The quality and efficiency of these heuristics have been evaluated through randomly
generated test problems in various environments. The results indicate that two heuristics can obtain the benchmark
solution for small-sized test problem. As the problem size increases, a genetic algorithm has better efficiency.

In quasi-experimental evaluations which Chang and Lee (2004) have proposed to ensure that our heuristics have
sufficient solving ability, the results indicate that the genetic algorithm and adaptive genetic algorithm are both
better than the existing H3 method for solving problems with multiple retailers when not considering time windows
and when concentrating on two regions. With these problem sets, there is no discernable difference between the
effectiveness of the genetic algorithm and the adaptive genetic algorithm.

In this paper, the comparisons of the proposed GAs clearly demonstrate that the genetic algorithm is more
efficient in solving production and delivery problems but the differences in quality solution are not discernable. In
our experiment, we have demonstrated that during the search, when a local minimum is visited, the genetic
algorithm might not be able to improve the solution quality due to low population dispersion, whereas, there is an
adaptive operator rate avoiding being trapped in the local minimum. In the genetic algorithm, such a shortcoming
could be alleviated if proper search parameters are set, such as selection, crossover and mutation, and if the rates of
the aforementioned operators are selected through a pre-search analysis. While, for the adaptive genetic algorithm,
the advantage is that less pre-search analysis may be required.
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