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This study investigates a dual flow-shops scheduling problem. In the scheduling context, there are two flow
shops and each shop involves three processing stages. The two shops are functionally identical but their stage
processing times for a job are different. While sequentially going through the three processing stages, each job
is allowed to travel between the two shops. That is, for a job, each of its three stages could be processed in any
of the two shops. Such a context is called dual flow-shops in the sense that the two flow shops’ capacities are
completely shared. The scheduling problem involves two decisions: (1) route assignment (i.e. assigning the
processing stages of a job to a shop), and (2) job sequencing (i.e. sequencing the jobs waiting before each
stage). The scheduling objective is to minimise the coefficient of variation of slack time (CVS), in which the
slack time (also called lateness) denotes the difference between the due date and total completion time of a job.
We propose five genetic-algorithm-based (GA-based) solution methods to solve the scheduling problem,
which are called GA-EDD, GA-FIFO, GA-SPT, GA-LFO, and GA-COMBO respectively. Numerical
experiments indicate that GA-COMBO outperforms the other four methods.

Keywords: scheduling; cross-shop production; dual flow-shops; combined dispatching criteria; genetic
algorithm (GA)

1. Introduction

Dual plants are a common production scenario for some manufacturing companies. The context of dual-plants
denotes that a company has two distinct plants, which are physically located in neighbouring regions so that their
capacity could be mutually supported through transporting jobs between the two plants.

The emergence of dual plants is essentially due to the risk of high investment in capacity expansion. An over-
investment decision may lead to financial crisis; therefore, manufacturing companies tend to expand their capacity
in a step-wise manner. That is, if a company has two plants, the first plant may have been in operation over a few
years before the second plant emerges.

This research addresses a production scenario of dual plants with the following three features. Firstly, the
two plants are functionally identical flow shops; each shop involves a sequence of three distinct processing
stages. Due to the advance of manufacturing technology, the processing efficiency in the two shops may be
different. Secondly, the two plants must be scheduled in a capacity-sharing paradigm in order to alleviate the
problem of machine underutilisation. This paradigm implies that a job has to undergo three operations and
each operation could be processed in any of the two shops. Thirdly, the transportation time between the
two plants is a substantial amount (compared against the processing times) and cannot be ignored in
scheduling.

Compared with prior literature on flow shop scheduling, the addressed production scenario is unique in
considering the cross-plant transportation time. That is, if the transportation time is so trivial and can be ignored,
then such a dual plants scenario can be seen as a single flow shop in which each workstation involves two machines
with various processing efficiencies. The scheduling of such a single flow shop has been extensively studied. Yet,
scheduling for the addressed dual plants scenario has been rarely examined.

This research intends to study the scheduling of the addressed dual plants scenario. Due to the aforementioned
route flexibility in job processing, the scheduling of the dual plants scenario involves two decisions: (1) route
assignment (i.e. assigning the processing stages of a job to one of the two plants), and (2) job sequencing
(i.e. sequencing the jobs waiting before each stage in each plant). We define the scheduling objective as minimising
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the coefficient of variation of slack time (CVS), in which the slack time (also called lateness) denotes the difference
between the due date and total completion time of a job.

This research proposes five genetic-algorithm-based (GA-based) solution methods to solve the scheduling
problem, which are called GA-EDD, GA-FIFO, GA-SPT, GA-LFO, and GA-COMBO respectively. These five
algorithms are based on a common GA algorithmic flow but are distinct in adopting different sequencing rules.
The abbreviations of these algorithms are explained below: EDD (earliest due date), FIFO (first-in-first-out), SPT
(shortest processing time), LFO (least slack first) and COMBO (a combination of multiple sequencing rules).
Extensive numerical experiments have been carried out, and the results indicate that GA-COMBO outperforms the
other four algorithms.

The remainder of this paper is organised as follows. Section 2 reviews literature on capacity sharing/trading
between two neighbouring plants. Section 3 describes the scheduling problem in more detail. Section 4 explain why
the objective function CVS is adopted and how to compute CVS. Section 5 presents the common GA solution
architecture of these five GA-based algorithms. Section 6 discusses how to adopt design of experimental (DOE)
methodology to GA-COMO algorithms as well as their distinctions in algorithms. Section 6 reports experiments and
results, and concluding remarks are in Section 7.

2. Relevant literature

Prior studies on how to effectively utilise capacity between two neighbouring plants can be grouped into two
categories. The first category assumes that the capacities of the two plants cannot be shared; that is, the production
of a job can only be carried out in one plant (i.e. cross-plant production is prohibited). In contrast, the second
category assumes that capacities of the two plants can be shared or traded; namely, a cross-plant route for the
production of a job is tolerable.

In the first category (i.e. capacity cannot be shared), most studies focused on solving a job assignment problem;
that is, given two or more neighbouring plants, how to effectively assign each job to a particular plant. Prior
literature typically develops mathematical programming models to solve such problems in various contexts (e.g. Lee
et al. 2006, Chiang et al. 2007). A comprehensive survey of such studies has been published by Wu et al. (2005).

In the second category (i.e. capacity can be shared), prior studies can be classified into two tracks. One track
focused on the route assignment decisions. The other track focused on the capacity-trading decisions between the
two plants. Example studies on the route assignment decisions include Toba et al. (2005) and Wu et al. (2009a,
2009b). Example studies on the capacity-trading decisions include Wu and Chang (2007), Chen et al. (2008), Chiang
et al. (2010) and Renna and Argoneto (2011).

In the route assignment studies, Wu et al. (2009a, 2009b) focused on how to plan the production routes of jobs in
advance to optimise capacity utilisation. In contrast, Toba et al. (2005) addressed the route assignment problem in
shop floor control context; that is, how to determine the production route of a job in a real time manner by
dynamically considering machine breakdown status.

In the capacity-trading studies, Wu and Chang (2007) investigated how to determine the capacity-trading
amount for each workstation of the two plants in a weekly manner. Chen et al. (2008) focused on how to determine
the capacity-trading price. In addressing such capacity trading decisions, Chiang et al. (2010) adopted the concept of
auction while Paolo et al. (2010) and Renna and Argoneto (2010) applied the methodology of game theory. In
summary, such studies intended to periodically regulate the work station capacity of each plant by a capacity-
trading mechanism in order to optimise the overall capacity utilisation. The obtained capacity-trading decision in
turn can be used to plan the production routes of jobs (i.e. making the route assignment decision).

Prior studies on capacity-sharing of two plants have established significant milestones on the route assignment
decisions. However, the job sequencing issue has been rarely addressed in these studies. In this research, we attempt
to study a scheduling problem in a dual-plant capacity-sharing context, in which both the route assignment decision
and the job sequencing decision must be considered.

3. Problem statement

This section explains the dual-plant scheduling problem in more detail. The scheduling problem comes from a real
case faced by a manufacturing company that produces substrates for mounting semiconductor devices. The three
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assumptions of the scheduling context are first presented. Then, we describe the two scheduling decisions and finally
discuss the objective function.

Assumption 1: The two plants are functionally identical but may be different in processing efficiency. As shown in
Figure 1, in the scheduling context, there are two neighbouring plants (Plant_A and Plant_B). Each plant is composed
of three sequential stages, and each stage represents a manufacturing process. Of the stages, Ai is functionally identical
with Bi but the processing time of Bi might be smaller because the manufacturing process of Bi is relatively advanced
than that of Ai.

Assumption 2: Each job has eight possible processing routes due to the adoption of a capacity-sharing paradigm. Each
of the two plants is a flow shop. The completion of a job must go through the three sequential stages, each of which is
either located at Plant_A or Plant_B. This implies that there are eight possible processing routes for manufacturing a
job. Namely, the processing route of a job can be represented by S1!S2!S3, in which Si is either Ai or Bi.

Assumption 3: The transportation time between the two plants is a substantial amount. The two plants are physically
neighbouring but the required transportation time is a substantial amount (compared against the job processing times at
each stage) and cannot be ignored in scheduling. In contrast, the transportation time between any two stages in a
particular plant is trivial can be ignored in scheduling. This assumption implies that the scheduling context is not a
flexible flow shop which has been extensively studied in literature.

The scheduling problem can be described below. Consider a set of N jobs to be processed by the two plants.
The scheduling of the N jobs involves two decisions: (1) route assignment and (2) job sequencing decisions. The first
decision is to assign each processing stage of a job to either Plant_A or Plant_B. The assignment results imply that
one of the eight processing routes for manufacturing a job has been selected. For example, the processing route for a
particular job might be like A1!A2!B3. After the route assignment decision, the second decision is to determine
the processing sequence of those jobs that have been assigned to each stage (i.e. each Ai and Bi).

The objective of the scheduling problem is to minimise the coefficient of variation of lateness (CVs). Suppose cj
represent the completion time of job j and dj represent its due date. Then, the lateness of job j is Lj ¼ dj � cj. And the
objective function is CVs ¼

�s
�Xs
, where �s is the standard deviation of Lj and �Xs is the mean of Lj.

Herein, the aforementioned Lj (the lateness of job j) is also called the slack time of job j. If Lj 4 0, it implies that
Lj is the slack (time buffer) that has been allocated to job j. In turn, such a slack serves a time buffer for dealing with
unexpected events requested by the customer of the job. Consider a production environment where unexpected
events requested by customers frequently appear. In such an environment, we have to reserve a slack time for each
job in order to deal with the possible coming of unexpected events. Such a slack reservation policy tends to prohibit
frequent changes of the production schedule.

Consider the cases with �Xs 4 0: The objective function ðCVs ¼
�s
�Xs
Þ is a the-smaller-the-better metric, which has

two implications. Firstly, a larger �Xs denotes that on average we have allocated a larger slack time to each customer.
Namely, a larger �Xs implies that the average time buffer is longer; and the service quality (in terms of quickly
responding unexpected requirements from customers) is better. Secondly, it implies that the slack of each job shall
be as equally treated as possible. That is, if the slack time of each job is identical (�s ¼ 0), then CVs ¼ 0: That is, the
service quality (time buffer) provided to each customer shall be as equal as possible. In summary, the metric
ðCVs ¼

�s
�Xs
) is a multiple objective function, which includes two objectives. One is �Xs and the other is �s. In addition,

CVs ¼
�s
�Xs
denotes that we attempt to minimise �s and also maximise Xs.

Notice that in some test cases we may obtain �Xs 5 0, which implies that many jobs have no slack time at all;
namely they will be lately-delivered. In such cases, CVs ¼

�s
�Xs
becomes a negative number because we always have

�s � 0. This implies that CVs ¼
�s
�Xs
shall be a the-larger-the-better metric while �Xs 5 0; in contrast, CVs ¼

�s
�Xs
shall be

Figure 1. Production flow of typical dual flow shop.
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a the-smaller-the-better metric while �Xs 4 0. To resolve such a conflict in justification, we use 1
CVs
¼

�Xs

�s
as a

performance metric in the GA search. Apparently, 1
CVs
¼

�Xs

�s
is a the-larger-the-better metric whatever �Xs is positive,

zero, or negative. While the near-optimal solution is obtained from GA, we proceed to compute its CVs.

4. Algorithms

As stated, we proposed five GA-based algorithms to solve the scheduling problem. In the five algorithms, a
scheduling solution is modelled by a sequence of jobs (called a chromosome). By a decoding method, one
chromosome will yield a route assignment decision. Given such a route assignment decision, we could use a
dispatching rule to make the job sequencing decision. These five algorithms are essentially the same in using a GA
algorithmic flow to generate new chromosomes but are different in embedding various dispatching rules (e.g. FIFO,
EDD, SPT, LSF, COMBO). These five algorithms are thus named GA-FIFO, GA-EDD, GA-SPT, GA-LSF, and
GA-COMBO.

In this section, we firstly describe the chromosome representation scheme and then present the decoding method
used to obtain the route assignment decision of a chromosome. Secondly, given a route assignment decision, we
describe how to use a dispatching rule to determine the job sequence. Thirdly, we describe the shared GA
algorithmic architecture and some of its details.

4.1 Chromosome representation and decoding

We first present how to represent a chromosome. As stated, each job must go through three operations (stages); and
each operation can be processed either in Plant_A or Plant_B. Consider a scheduling problem that has N jobs.
To represent a scheduling solution, a chromosome is composed of a sequence of the N jobs. Consider an example
problem that has eight jobs in total. The processing times and due dates of these eight jobs are shown in Table 1.

In the context of the example problem, we can have a chromosome as shown in Figure 2(a). We then present
how to decode a chromosome to obtain its route assignment decision. Given a chromosome, we first duplicate the
chromosome for each stage and try to split each duplicated one into two parts by applying a load-balance paradigm.
Consider the example chromosome in Figure 2(a). The three duplicated ones are shown in Figure 2(b). For any
stage, each of the eight jobs must be assigned either to Plant_A or Plant_B. The method for making the job
assignment decision is based on a load-balance paradigm. That is, for any stage, the job loading assigned to each of
the two plants shall be as equal as possible. The load-balancing paradigm is carried out by splitting the duplicated
chromosome into two parts, and each part shall be as equal as possible in terms of job loading.

For example, see the stage 1 in Figure 2(b), the duplicated chromosome now has been split into two parts.
The first parts involves the first five jobs (J5, J3, J7, J1, J6) which shall be assigned to Plant_A, while the remaining
three jobs (J4, J8, J2) are in the remaining part and shall be assigned to Plant_B. With such a job assignment,

Table 1. Due dates and processing times of eight jobs for example.

Stage

Processing time

Due date dj

1 2 3

Plant
Jobs A B A B A B

J1 4 5 4 2 4 2 8
J2 8 4 5 3 5 21 9
J3 2 3 7 4 7 14 6
J4 6 6 6 2 6 22 10
J5 5 8 1 5 1 5 4
J6 5 8 8 3 8 3 7
J7 3 1 6 1 6 5 5
J8 7 7 7 1 7 12 8

930 C.-W. Chiou et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

0:
27

 2
6 

A
pr

il 
20

14
 



the loadings for the two plants are quite close. The total processing times required for Plant_A is 15 units while that
for Plant_B is 17 units.

The method for determining the cut-off point required for splitting a chromosome is relatively simple. As shown
in Figure 2(b), we travel through the chromosome from left to right and compute Tj,A (the accumulated processing
times from left to right until completing job j at Plant_A) and do it likewise from right to obtain Tj,B

(the accumulated processing times from right to left until completing job j at Plant_B). In the figure, Pj,A and Pj,B are
the processing time for job j respectively required at Plant_A and Plant_B. To determine the cut-off point, we first
compute an index "j ¼ jTj,A � Tj,Bj, and identify the job j* which has the smallest "j (j*¼ J4 in this example, with
"�j ¼ 4). Then, for the left-hand and right-hand neighbors of job j*, select the job which is relatively smaller in "j,
(J6 is selected in this example, with "j¼ 10). As a result, the cut-off point is set to split the two identified jobs (J4 and
J6 in this example).

4.2 Dispatching and job sequencing

As stated above, we can yield the route assignment decision of a given chromosome by the decoding method and the
load-balancing paradigm. With the decision obtained, the duplicated chromosome at each stage now has been
spitted into two parts (also called two split-chromosomes); and jobs in a particular split-chromosome shall be
processed at the same plant. In turn, we need to make the job sequencing decision for each split-chromosome.
The method for determining the job sequence of a split-chromosome is by a dispatching rule. For example, see
Figure 2(c), if we apply the EDD (earliest due date) rule for the job dispatching decisions, the job sequence of the
first split-chromosome at Stage_1 now has changed and becomes J5! J7! J3! J6! J1. Noticeably,
the application of different dispatching rules would result in different job sequence in each split-chromosome.

To justify which dispatching rules would be more effective, we use five dispatching rules (FIFO, EDD, SPT,
LSF, and COMBO) in this research. This in turn yields five GA-based algorithms; that is, GA-FIFO, GA-EDD,
GA-SPT, GA-LSF, and GA-COMBO. The first four dispatching rules, relatively simpler and widely used in

(a)

(b)

(c)

Figure 2. Chromosome and decoding schemes (pj,k: the processing time of job j required at Plant_k; Tj,k: the accumulated job
processing times at Plant_k starting from the leftmost job to job j; "j ¼ jTj,A � Tj,Bj).
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literature, are briefly introduced below. The last one COMBO, developed by this research, is relatively complex and
will be explained in the section.

Consider a number of jobs waiting to be processed by a machine, and we need to determine the priority for
processing these jobs. FIFO (first-in-first-out) denotes that the job which arrives at the machine earlier has a
higher priority; EDD (earliest-due-date) denotes that the job with an earlier due date has a higher priority; SPT
(shortest-processing-time) denotes that the job with a smaller processing time has a higher priority; LSF
(least-slack-time) denotes that the job with a smaller slack time has a higher priority. Herein, the slack time of a
job is defined as RT� RPT, where RT is the remaining time of the job and RPT is the remaining
processing time.

4.3 Algorithmic architecture

In the five GA-based algorithms, a chromosome denotes a scheduling solution. Given a chromosome, we can obtain
its route assignment decision and job sequencing decisions by the chromosome decoding method, the load-balance
paradigm, and the adopted dispatching rule. In turn, we can evaluate the objective function (also called fitness
function) of the chromosome. The five GA-based algorithms share a common algorithmic flow adapted from a
pioneer one (Holland 1975), which is designed to iteratively generating and selecting chromosomes in order to
ultimately obtain a near-optimum scheduling solution.

The algorithmic flow shared by the five GA-based algorithms is presented by a procedure called GA_Evolution
as below.

Procedure GA_Evolution

Step 1: Generate initial population

. Randomly create a set of N chromosomes to form initial population P0;

. Set t¼ 0 (i.e. Pt¼P0);

Step 2: Create new chromosomes

. Use a crossover operator to create Nc ¼ Pc �N new chromosomes;

. Use a mutation operator to create Nm ¼ Pm �N new chromosomes;

. Create a set S ¼ Pt [Nc [Nm

Step 3: Update population Pt

. Set t¼ tþ 1; /* update the iteration index*/

. Select N chromosomes from S to form Pt by tournament selection method

. Record the best quality chromosome in Pt (called Xbest).

Step 4: Check termination

. If (Xbest keeps the same for Tb iterations) or (t¼Tf)

then output Xbest (the obtained solution) and STOP.
Else, go to Step 2

Some details of Procedure GA_Evolution are further explained below. In Step 3, the tournament selection
method, which has been widely used in literature, is adopted for selecting N chromosome out of NþNcþNm

chromosomes. The basic idea of this selection strategy is intentionally giving a higher selection probability to a
chromosome which is better in solution quality (Goldberg 1989, Michalewicz 1996). This implies that a relatively
inferior chromosome still has a probability to be selected. Such a strategy is to avoid the GA solution-search process
terminate too early, due to being trapped into a local optimum.

In Step 2, we use two operators (crossover and mutation operators) to generate new chromosomes, in which
05Pc5 1 and 05Pm5 1 are parameters given by users. Noticeably, while any the two operators is applied on a
chromosome, only one segment on the chromosome is manipulated and the other two ones are unchanged
(reminded that a chromosome comprise three segments). The mechanisms of the two operators are explained below,
in which the chromosomes used to generate new ones are called parents and those newly generated ones are called
children.

932 C.-W. Chiou et al.
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The mutation operator (also called SWAP), widely used in literature, is a one-to-one conversion. That is, given
one parent chromosome, we can generate one child chromosome with an example as shown in Figure 3. For the
parent chromosome, we randomly choose any two jobs (e.g., J4 and J7 are chosen) and swap them to form a new
chromosome.

The crossover operator, also called LOX (linear order crossover) operator, is adapted from (Croce et al.
1995). This operator is a two-to-two conversion. That is, given two parents chromosomes, we can generate two
children chromosomes with an example as shown in Figure 4. In the figure, we randomly select two cutoff
points to split the chromosome into three parts. Now, the middle part of Parent_1 involves J4, J1, and J6,
which implies that these corresponding jobs in Parent_2 must be replaced by ‘H’ to generate X_Child_2; and
X_Child_1 is generated accordingly. Then, we move the ‘H’ symbols to the middle parts while keeping the
sequence of the remaining jobs unchanged; the results are Y_Child_1; and Y_Child_2. Finally, we place
the middle part of Parent_2 on the ‘H’ symbols of Y_Child_1 and obtain Child_1, Child_2 can accordingly
be obtained.

5. GA-COMBO algorithm

This section presents the dispatching decision of the GA-COMBO algorithm. As stated in Section 4.2,
the dispatching decision is to be applied on each split-chromosome at each stage. Referring to Figure 2, the jobs
in each split-chromosome shall be sequenced. In the GA-COMBO, we make the dispatching decision based on a
dispatching priority indicator p ¼ � � nDD þ � � nTCT þ � � nST. In the following, we first explain the indicator p and
proceed to explain how to appropriately determine the three parameters �,� and �:

J2 J5 J4 J1 J 6 J8 J7 J3

J3 J6 J5 J2 J 8 J1 J4 J2

Two cutting sites of the parents are chosen randomly 2,5

X_Child_1

X_Child_2

H H J4 J1 J 6 H J7 J3

J3 H J5 J2 J 8 H H J2

Y_Child_1

Y_Child_2

J4 J1 H H H J6 J7 J3

J3 J5 H H H J2 J8 J2

J4 J1 J5 J2 J 8 J6 J7 J3

J3 J5 J4 J1 J 6 J2 J8 J2

Parent_1 J2 J5 J4 J1 J 6 J8 J7 J3J2 J5 J4 J1 J 6 J8 J7 J3

J3 J6 J5 J2 J 8 J1 J4 J23 J6 J5 J2 J 8 J1 J4 J2
Parent_2

H H J4 J1 J 6 H J7 J3H J7 J3

J3 H J5 J2 J 8 H H J2J3 H J5 2 8 H J2

J4 J1 H H H J6 J7 J3J4 J1 H H H J6 J7 J3

J3 J5 H H H J2 J8 J2J3 J5 H H H J2 J8 J2

Child_1

Child_2

J4 J1 J5 J2 J 8 J6 J7 J3J4 J1 J5 J2 J 8 J6 J7 J3

J3 J5 J4 J1 J 6 J2 J8 J2J3 J5 J4 J1 J 6 J2 J8 J2

Figure 4. Crossover operator: LOX.

Figure 3. Mutation operator: SWAP.
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5.1 Dispatching priority indicator

In the GA-COMBO, we define a dispatching priority indicator

p ¼ � � nDD þ � � nTCT þ � � nST p ¼ � � nDD þ � � nTCT þ � � nST p ¼ � � nDD þ � � nTCT þ � � nST for each job at each

split-chromosome to make the dispatching decision. Herein, �,�, and � are a set of weightings, each of which is a

positive real number and �þ �þ � ¼ 1. Moreover, nDD is defined as nDD ¼ ðxDD � xDDÞ=�DD where xDD represents

the due date of a job, xDD and �DD respectively represent the mean of and standard deviation of xDD for all jobs.

Accordingly, we define nTT ¼ ðxTT � xTTÞ=�TT and nST ¼ ðxST � xSTÞ=�ST, where xTT represents the total processing

time of a job and xST represents the slack time (i.e. slack time¼ due date – total processing time) of a job.
The management implication of the dispatching priority indicator p is explained below. Firstly, a job with a

lower xDD value implies that the job is relatively more urgent and shall be given a higher priority. Secondly, a job

with a lower xTT implies that the job relatively takes less time to finish and shall be given a higher priority in order to

reduce the waiting times of other jobs (i.e., consider the advantage of using shortest processing time as the

dispatching rule). Thirdly, a job with a lower xST implies that the job relatively has less slack time (available time

resource) and shall be given a higher priority.
Respectively highlighting a unique criterion in making job dispatching decision, the three dispatching metrics

ðxDD, xTT, and xSTÞ might be conflict in suggesting the sequence of two given jobs. To resolve such a conflict, we

develop the dispatching priority indicator p ¼ �nDD þ �nTT þ �nST to combine the three dispatching criteria, in

which the three dimensional metrics xDD, xTT, and xST have been normalised as dimensionless metrics

nDD, nTT, and nST in order to reduce the effect of using incompatible unit. Moreover, �,� and � are given

weightings (i.e. given parameters) of the three dimensionless criteria. In summary, the lower is the p value of a job;

the higher is its sequencing priority.

5.2 Determine parameters a, b and c

As stated, �,� and � are given weightings (given parameters). To obtain an effective dispatching result, we have to

make an appropriate choice of these three parameters. Inspired by the applications proposed by (Dabbas et al.

2003), we adopt the design of experiment (DOE) methodology to determine the three parameters �,� and �.
In the DOE methodology, we firstly choose 10 sets of ð�,�, �) as shown in Table 2. Different choices of ð�,�, �)

imply that different weightings are imposed on the three metrics. Therefore, each set of ð�,�, �) essentially represents
a unique GA-COMBO program; the scheduling results and performance obtained by each of these 10 GA-COMBO

programs are then very likely to be different. That is, by running the 10 GA-COMBO programs, we could obtain 10

such data sets f �i,�i, �ið Þjyig i¼ 1, . . . , 10, where yi is the obtained performance of ith GA-COMBO program.
With the 10 data sets f �i,�i, �ið Þjyig, we could apply the response surface method (RSM) to obtain a polynomial

function y ¼ f �,�, �ð Þ, typically called the response surface. Then, by the application of typical DOE software, we

could obtain an optimal set of parameters ð��,��, ��Þ. In turn, we could propose a GA-COMBO program embedded

with ð��,��, ��Þ which is seemingly optimal to solve the scheduling problem.

Table 2. Simplex centroid design points for a
mixture experiment.

Design point � � �

1 1 0 0
2 0 1 0
3 0 0 1
4 1/2 1/2 0
5 1/2 0 1/2
6 0 1/2 1/2
7 1/3 1/3 1/3
8 2/3 1/3 1/3
9 1/3 2/3 1/3
10 1/3 1/3 2/3
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6. Numerical experiments

Numerical experiments are carried out to compare the five proposed scheduling algorithms (GA-EDD, GA-SPT,
GA-FIFO, GA-LFO, and GA-COMBO). These five algorithms are coded with Visual Cþþ, and the DOE and
RSM methods used in the GA-COMOBO are implemented with MINITAB (Minitab Inc. 2003). Personal
computers equipped with PENTIUM Dual-Core 2.8GHz CPU and 1Gb memory are used in the experiments.
Parameters used in the five GA-algorithms are given as follows: N¼ 100, Pc¼ 0.8, Pm¼ 0.2, Tb¼ 1,000,
Tf¼ 100,000, where N represents the population size, Pc is the mutation rate, Pm is the crossover rate, Tb and Tf

respectively define the two criteria for terminating the GA program.

6.1 Experimental design

As stated, the scheduling context addresses a dual flow shop, which is composed of two neighbouring flow shops. In
the numerical experiments, the transportation time between the two flow shops is 10min, 50min, 100min, and
200min. We consider four scenarios (denoted by S1, S2, S3 and S4), which involve four sets of processing times and
job due dates as shown in Table 3. Consider that there are N jobs to be scheduled. The processing times and due date
of each job are sampled from the uniform distributions of each scenario in Table 3.

The two flow shops may have different processing efficiency; that is, the processing time of an operation required
in one shop may be multiple times that required in the other shop. We consider two cases of processing efficiency:
P1¼ (1 : 1) and P2¼ (1 : 3), in which P1 denotes that the two shops have the same efficiency, and P2 denotes that one
shop is three times that of the other shop in processing an operation.

In summary, an experiment run can be represented by a 6-tuple vector (A,S,P, J,T,R), where A denotes an
algorithm, S denotes a processing time scenario, P denotes a processing efficiency ratio between the two flow shops,
J denotes the options of job size, T denotes the setting of transportation time, and R denotes the number of
experiment replicates. As stated, we have five algorithms, four processing time scenarios, two processing efficiency
ratios, five options of job size (J¼ 20, 40, 60, 80, 100), four settings of transportation time (T¼ 10min, 50min,
100min, 200min), and for each test case we perform 15 replicates and take their average outcome as the obtained
result. As a result, we have to carry out 12,000 experiment runs; that is, 5 (algorithms) take their average processing
efficiency ratio)� 5 (job size)� 4 (transportation times)� 15 (replications).

6.2 Experimental results

As stated, the five algorithms are compared by a performance metric: the coefficient of variation of lateness (CVS).
Herein, the performance metric of each algorithm is respectively denoted by CVGA-EDD, CVGA-FIFO, CVGA-SPT,
CVGA-LFO, and CVGA-Combo. To compare the five algorithms, we take GA-Combo as the benchmark, and define a
solution quality indicator �x¼ (CVx�CVGA-Combo)/CVx, where the subscript x denotes an algorithm other than
GA-COMBO. A positive �x value denotes that GA-COMBO outperforms the x algorithm; conversely, a negative �x
value denotes that GA-COMBO is worse.

Table 4 shows the experiments results in which the transportation time is set at 10min. Notice that in the table �x
in each cell is the average of 15 replicates. The table indicates that GA-COMBO outperforms the other four
algorithms. In addition, at four various settings of transportation time, we found that GA-COMBO also
outperforms the other four algorithms (see Table 5).

Table 3. Due dates and processing times of four various scenarios.

Scenarios

Due date
(min.) of each

job

Processing time
(min.) in Stage 1 of
dual flow-shop

Processing time
(min.) in Stage 2 of
dual flow-shop

Processing time
(min.) in Stage 3 of
dual flow-shop

S1 U(400, 600) U(1, 6) U(5, 105) U(5, 105)
S2 U(400, 420) U(5, 105) 2.741 2.741
S3 U(150, 250) U(1, 6) U(1, 6) U(1, 6)
S4 U(130, 150) U(10, 30) 2.741 U(25, 30)
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Now we proceed to analyse the effect of transportation time on job routes. Intuitively, the increase of
transportation time tends to increase the cycle time of a job which undergoes a cross-shop travelling route.
Therefore, while the transportation time is increased, the number of jobs with cross-shop travelling routes tends to
be reduced. As a result, the number of jobs wholly processed in a single-shop would increase.

To characterise the effect of transportation time on job routes, we define a single-shop routing indicator (�),
which denotes the percentage of experiment runs that include at least one job travelling with a single-shop route. In
turn, ð1� �Þ, defined as the cross-shop routing indicator, denotes the percentage of experiment runs in which all job
travels in a cross-shop route.

As stated, an experiment run can be described by a vector (A,S,P, J,T,R). Consider the GA-COMBO algorithm
at a particular setting of transportation time, we have to carry out 600 experiment runs,
600¼A *S *P * J *T *R¼ 1* 4 * 2 * 5 * 1 * 15. Of the 600 experiment runs, the values of � and ð1� �Þ at various
settings of transportation time are shown in Table 6. The table indicates that � consistently increase while the
transportation time constantly increases. This implies that the GA-COMO scheduling algorithm tends to advocate
the use of single-shop routings while the transportation time is increased. Consider an extreme case, in which the
transportation time is close to infinite, we would expect that each job will undergo a single-shop route; that is, no job
will undergo a cross-shop route.

6.3 Analysis of results

The experiment results are further analysed herein. See Table 4, the optimal weighing factors of �, �, � appears to be
problem dependent. In addition, the GA-COMBO suggest to give a high weighting to EDD in scenario S1, a high
weighting to SPT in scenario S2, a high weighting to LSF in scenario S3, and about equal weighting to the three
dispatching rules in scenario S4. This implies that (�,�, �) for all instances in a particular scenario appear to be
similar; and (�,�, �) are significantly varied among different scenarios. Such profoundly interesting results are due
to that the four scenarios are intentionally designed based on some criteria. By referring to Table 3, we shall explain
the criteria for designing each scenario.

Scenario S1 involves three design criteria. First, jobs are with high variation in their due dates (i.e. the range
is 200). Second, the job processing times of the first stage are with low variation (i.e. the range is only five).

Table 5. Average rx for each of the four scenarios under different T.

Transportation
time T¼ 10min T¼ 50min T¼ 100min T¼ 200min

Scenarios rx rx rx rx

S1 70% 49% 48% 64%
S2 84% 94% 104% 110%
S3 20% 23% 20% 16%
S4 48% 47% 54% 67%
Average: 56% 53% 56% 64%

Table 6. Single-shop routing indicator (�) and cross-shop routing indicator (1� �) under different
transportation time.

Transportation
time T¼ 10min T¼ 50min T¼ 100min T¼ 200min

1� � 509 319 263 196
� 91 281 337 404
Total: 600 600 600 600
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Third, the total processing time of a job is proportional to its due date. Under such a design criteria, the processing
times and slack (due date � total processing time) of all jobs are with lower variation. In contrast, the due dates of
jobs are with higher variations. The GA-COMBO suggest the use of (�,�, �)¼ (1, 0, 0), which implies that EDD
seems to be the best dispatching rule in scenario S1.

Scenario S2 involves three design criteria. First, jobs are with low variation in their due dates (i.e. the range is 20
only). Second, the job processing times of the first stage are with high variation (i.e. the range is 100). Third, the
total processing time of a job is proportional to its due date. Under such a design criteria, the due dates and slack
(due date � total processing time) of all jobs are with lower variation. In contrast, the processing times of jobs are
with higher variations. The GA-COMBO suggest the use of (�,�, �)¼ (0, 1, 0), which implies that SPT seems to be
the best dispatching rule in scenario S2.

Scenario S3 involves three design criteria. First, jobs are with relatively high variation in their due dates (i.e. the
range is 100). Second, the job processing times of the first stage are with low variation (i.e. the range is only five).
Third, the total processing time of a job is not proportional to its due date; this is intended to result in a high
variation in slack (due date � total processing time). Under such a design criteria, the due dates and processing
times of all jobs are with lower variation. In contrast, the slack of jobs are with higher variations. The GA-COMBO
mostly suggest the use of (�,�, �)¼ (0, 0, 1), which implies that LSF seems to be the best dispatching rule in
scenario S3.

Scenario S4 involves three design criteria. First, jobs are with low variation in their due dates (i.e. the range is
20). Second, the job total processing times of the three stages are with low variation (i.e. the range is 20). This in turn
leads to that the slacks (due date � total processing time) of all jobs are also with low variation. The GA-COMBO
suggests that each value of �, �, � is a substantial amount, and cannot be ignored in most cases (see Table 4).

7. Concluding remarks

This study examines a dual flow shop scheduling problem. In the scheduling context, there are two neighbouring
flow shops and each flow shop involves three stages. Compared with processing times, the transportation time
between the two shops are significant while that between any two consecutive stages are trivial and can be ignored.
Such a scheduling problem, unlike a single flow shop with parallel machines, has been rarely examined in literature.

The scheduling problem involves two decisions: (1) assigning operation to stages, and (2) sequencing operations
at each stage. We propose five GA-based algorithms (GA-EDD, GA-SPT, GA-FIFO, GA-LSF and GA-COMBO)
to solve the scheduling problem. These five GA-based algorithms adopt a common algorithmic architecture in
searching an optimal operation assignment decision, in which different operation sequencing criteria are embedded.
The four sequencing criteria (EDD, SPT, FIFO, and LSF) have been widely used in literature, while the COMBO
criterion is developed by applying the DOE and RSM methods.

Numerical experiments indicate that the GA-COMBO algorithm outperformed the other four proposed
algorithms; in particular it appears much better in a complex environment with high variation processing times.
That is, the GA-COMBO algorithm is quite adaptive, adaptive to dealing with the high variation situations. This
advocates the use of the GA-COMBO algorithm in scheduling complex scenarios.

One extension to this research is the scheduling of three or more flow shops. This extension increases the
complexity of job assignment decisions – how to assign an operation of a job to one among the various flow shops.
To reduce computational complexity, we may have to consider an alternative approach; that is, most jobs (say,
80%) are assigned to a particular shop (i.e. cross-shop production is prohibited), and the remaining 20% jobs are
allowed for cross-shop production.
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