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Traditional research on machine scheduling focuses on job allocation and sequencing to optimize certain
objective functions that are defined in terms of job completion times. With regard to environmental con-
cerns, energy consumption becomes another critical issue in high-performance systems. This paper
addresses a scheduling problem in a multiple-machine system where the computing speeds of the
machines are allowed to be adjusted during the course of execution. The CPU adjustment capability
enables the flexibility for minimizing electricity cost from the energy saving aspect by sacrificing job
completion times. The decision of the studied problem is to dispatch the jobs to the machines as well
as to determine the job sequence and processing speed of each machine with the objective function com-
prising of the total weighted job tardiness and the power cost. We give a formal formulation, propose two
heuristic algorithms, and develop a particle swarm optimization (PSO) algorithm to effectively tackle the
problem. Since the existing solution representations do not befittingly encode the decisions involved in
the studied problem into the PSO algorithm, we design a tailored encoding scheme which can embed all
decisional information in a particle. A computational study is conducted to investigate the performances
of the proposed heuristics and the PSO algorithm.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In traditional scheduling research, the processing speeds of ma-
chines are assumed to be static. This paper investigates a schedul-
ing problem with heterogeneous parallel machines that exhibits
the flexibility to adjust their processing speeds for each individual
job. The flexibility of machine speed adjustment comes from real
world applications that invoke intense computing tasks on a clus-
ter of computers. The clock-rate of a processor is determined by
the frequency of an oscillator crystal. It was commonly accepted
that a computer runs at its highest speed so as to attain the best
performances. When a computer runs at a higher speed/frequency,
it will not only consume more electricity but also produce more
heat. To cool down the high temperature, the computer needs to
activate extra devices, like fans, thus causing more energy con-
sumption. In scheduling problems, most of the objective functions
are regular, i.e. non-decreasing in terms of job completion times.
No ground seems to exist for slowing down the machine speeds
to defer the processing of jobs. Nevertheless, if the delivery is not
urgent or the implied cost of deference is offset by the reduction
of energy cost, it is reasonable to reduce the processing speeds of
the processors.
ll rights reserved.
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Nowadays more and more industrials not only pursuit better
work efficiency, but also focus on energy-saving issues. Slower
paces are attracting more considerations in different industries.
For example, in maritimes, ships with lower voyage speeds are
much preferred due to a lower consumption of energy. Demands
for lower electricity costs also arise in the IT industry. Cloud com-
puting has emerged as a booming business model. While some ser-
vice providers start developing a wide variety of services to attract
more users or customers, others on the other hand focus on how to
optimize work schedules for efficiency. Cloud computing service
providers host a larger number of processors that are deployed
to fulfill the orders of computing tasks placed by clients. In addi-
tion to customer satisfaction and efficient utilization of facilities,
lower electricity consumption is also crucial to the service provid-
ers. Koomey (2007) showed that the electricity used for servers
worldwide, including their associated cooling and auxiliary equip-
ment, cost 7.2 billion US dollars in 2005. The cost in that year had
doubled when compared with consumption in 2000. Therefore, the
electricity issue is not negligible but critical because energy con-
sumption plays one of the key roles in the overall cost structure.
To attain energy saving objectives, the CPU frequency can be ad-
justed through the dynamic voltage scaling technique. The CPU
adjustment technique allows for flexibility to seek for potential
balance between job completion times and energy cost.

This paper considers the objective function with a weighted
sum of the total job tardiness penalty and the total power cost.
The former one is an efficiency indicator in traditional schedule
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Nomenclature

Notation
J set of jobs fJ1; J2; . . . ; Jng to be scheduled
j index 1 6 j 6 n of jobs
M set of machines fM1;M2; . . . ;Mmg for scheduling
i index 1 6 i 6 m of machines
l index 1 6 l 6 n of positions on the machines
s index 1 6 s 6 li of speeds of machine Mi, where li is

the number of different speeds of machine Mi

‘j processing load of job Jj
dj due date of job Jj
Cj completion time of job Jj
Tj tardiness of job Jj, i.e. maxfCj � dj;0g
wj penalty of unit-time tardiness

Sis s-th processing speed of machine Mi

eis energy consumption (per time unit) of machine Mi at
speed Sis

tjis execution time of job Jj if assigned to machine Mi at
speed s; tjis ¼ ‘j=Sis

pjis actual power consumption of job Jj if it is executed by
machine Mi at speed Sis, i.e. tjis � eis

Decision variables
xjils if job Jj is assigned to the lth position on machine Mi at

speed Sis, then xjils ¼ 1; otherwise, xjils ¼ 0
bil starting time of the job at the lth position on machine Mi
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problems to reflect both customer service (concerning average
waiting time) and internal inventory management (concerning
work-in-process parts). This weighted combinatorial objective
function can significantly close to the business considerations in
schedule planning. The machines exhibit the possibility to allow
the shop floor manager to select their processing speeds by adjust-
ing CPU frequencies. Higher speeds permit a shorter processing
makespan of jobs, yet more power cost will be incurred. The sched-
uling policy thus rests in the trade-off between the performance
measures defined in job completion times and the total power cost.
To be more precisely, we have to (a) dispatch the jobs to the ma-
chines; (b) sequence the jobs on each machine; and (c) select the
processing speed for each job.

The remainder of the paper is organized as follows: In Section 2,
we first give a formal definition of the studied problem and present
the notations that will be used throughout this paper. An integer
linear programming (ILP) model follows. Literature review on re-
lated scheduling problems and the concept of energy saving is also
presented. Since the studied problem is strongly NP-hard, we
adopt approximation approaches to produce approximate sched-
ules in a reasonable time. Two heuristic algorithms are proposed
in Section 3. Then, in Section 4, we introduce the meta-heuristic
particle swarm optimization (PSO). The development of a PSO algo-
rithm, especially the tailor-designed encoding scheme, for the
studied problem is introduced in Section 5. Section 6 is dedicated
to a computational study for appraising the effectiveness of the
proposed algorithms. Concluding remarks and suggestions for sev-
eral future research subjects are given in Section 7.
2. Problem statements and literature review

This section presents a formal definition of the allocation and
scheduling of jobs from the aspect of parallel-machine scheduling.
Following the problem definition is an integer linear programming
(ILP) model that describes the studied problem.

2.1. Problem definition and ILP

Consider a set of n jobs fJ1; J2; . . . ; Jng to process on a set of m
heterogeneous machines fM1;M2; . . . ;Mmg. The jobs can be pro-
cessed on any machine. Each job Jj is characterized by a processing
load ‘j and a due date dj, before which the job is assumed to be fin-
ished, and a weight indicating the penalty of unit-time tardiness
wj. Due to the operating characteristics, we can select the machine
frequency to adjust the processing speed for the jobs. A higher fre-
quency allows the machines to run faster at the cost of more en-
ergy consumption. The actual processing time of a job Jj thus
depends on the speed selected for the machine in charge of it.
The decision is to assign and schedule the jobs to the machines
as well as to select appropriate execution speeds for processing
the jobs. The objective function to minimize is the weighted sum
of the tardiness penalties of jobs and the energy consumption of
the machines. Total weighted tardiness and energy consumption
cost may not be added up in a natural way for they are not of
the same type of measures. Yet it is possible to adopt a normaliza-
tion through a common measurement, say a monetary base. The
weighted sum of two criteria adopted in this paper is for demon-
strating the significance of the proposed models and solution
approaches.

In the following, we introduce the notations that will be used
throughout the paper and the integer programming formulation.

In the following, we present an integer linear programming
model of the studied problem, which is denoted as the WTPC
(Weighted Tardiness and Power Consumption) problem.

Problem WTPC:

Minimize
Xn

i¼1

wjTj þ
Xm

i¼1

Xn

j¼1

Xn

l¼1

Xli

s¼1

tjiseisxjils ð1Þ

subject to
Xm

i¼1

Xn

l¼1

Xli

s¼1

xjils ¼ 1; 1 6 j 6 n; ð2Þ

Xn

j¼1

Xli

s¼1

xjils 6 1; 1 6 i 6 m; 1 6 l 6 n; ð3Þ

bi;lþ1 � bi;l ¼
Xn

j¼1

Xli

s¼1

xjilstjis; 1 6 i 6 m; 1 6 l 6 n� 1;

Tj P bi;l þ tjisxjils � ð1� xjilsÞM � dj; 1 6 i 6 m;1 6 s 6

li; 1 6 j; l 6 n; ð5Þ
Tj P 0; 1 6 j 6 n; ð6Þ
xjils 2 f0;1g; 1 6 i 6 m; 1 6 s 6 li;

1 6 j; l 6 n: ð7Þ
The objective function of Eq. (1) consists of two parts. The first part
is concerned about the total tardiness penalty, and the second part
gives the total power consumption resulted from the dispatching
decision. Constraints (2) confine each job to be processed on exactly
one position of some machine running at a specific speed. Con-
straints (3) reflect the fact that each position of any machine can
accommodate at most one job. Constraints (4) define the starting
time of the job in each position on the machines. The computation
of the tardiness Tj ¼ fCj � dj;0g of each job is given in constraints
(5) and (6). We would elaborate on constraints (5) in more details.
If job Jj is not scheduled at the lth position on machine i with speed
s, then xjils ¼ 0 and the inequality is automatically satisfied due to
the negative value �M. On the other hand, when xjils ¼ 1, the value
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of Tj will reflect the difference between the job completion time and
the job due date.
2.2. Literature review

As aforementioned in Section 1, the subject of energy saving
techniques draws considerable research attention. Adjusting CPU
speeds, by sacrificing job completion times, has been proven to
be one of the most significant and effective approaches (Bunde,
2006). The main idea of CPU speed adjustment is supported by dy-
namic voltage scaling (DVS), which equips the machines with the
ability to change their computing states or clock frequencies. With
the possibility to change the processing speeds of machines, many
of the traditional scheduling problems can be discussed again.
Some researchers have combined the idea of energy saving and
DVS with traditional scheduling problems. Zhu, Melhem, and Chil-
ders (2003) proposed two algorithms for task scheduling with and
without precedence constraints on multiprocessor systems. Zhu,
Mosse, and Melhem (2004) designed a greedy slack stealing
scheme to solve the AND/OR model of real-time applications and
showed that their scheme outperforms other existing ones. Ge,
Feng, and Cameron (2005) proposed distributed performance-di-
rected DVS scheduling strategies for use in scalable power-aware
HPC clusters and obtained significant energy savings (36%) without
increasing the required execution time. Kumar and Palani (2012)
applied the DVS technique to reduce the energy consumption of
the embedded system technology to mobile systems. They used
genetic algorithm for solving the problem of minimizing schedule
length subject to an energy consumption constraint and the prob-
lem of minimizing energy consumption subject to a schedule
length constraint. Rizvandi, Zomaya, Lee, Boloori, and Taheri
(2012, chap. 17) addressed the energy issue with task scheduling
and presented the MFS-DVFS algorithm to reduce energy con-
sumption. Akgul, Puschini, Lesecq, Miro-Panades, and Benoit
(2012) applied DVFS techniques to mobile computing platforms
where performance constraints, such as task deadlines, are given.
They recast the problem in a linear program and solve the problem
by the simplex algorithm.

The objective function considered in this paper comprises the
minimization of total weighted tardiness and power cost. For the
single-machine scheduling problem, Lawler (1977) designed a
pseudo-polynomial time algorithm for solving the 1jj

P
Tj prob-

lem. The complexity status remained open until Du and Leung
(1990) gave an NP-hardness proof to confirm the intractability of
the 1jj

P
Tj problem. The weighted version of this problem,

1jj
P

wjTj, is known to be NP-hard in the strong sense (Lenstra,
Rinnooy Kan, & Brucker, 1977). In the case of parallel machines,
Lenstra et al. (1977) showed the problem with two machines to
be ordinary NP-hard. For the case with a fixed number of machines,
Garey and Johnson (1978) gave an proof of ordinary NP-hard. The
case with an arbitrary number of machines turns to be NP-hard in
the strong sense (Garey & Johnson, 1978). Hence, the complexity of
the total weighted tardiness of parallel machines is also NP-hard in
the strong sense. Some well-known meta-heuristics are applied to
solve parallel-machine total weighted tardiness problems (Anghin-
ofi & Paolucci, 2007; Runwei, Mitsuo, & Tatsumi, 1995).

The studied WTPC problem is concerned about (a) assigning the
jobs to the machines, (b) determining the processing sequence of
the jobs on each machine, and (c) selecting the processing speed
for each job, such that the weighted sum of tardiness penalty
and power cost in minimum. From the intrinsic complexity of
the scheduling problem with the objective function of total tardi-
ness, WTPC is obviously strongly NP-hard. As a consequence, it is
very unlikely to design polynomial or pseudo-polynomial time
algorithms to solve the problem to optimality. This paper develops
two heuristics and a meta-heuristic algorithm to derive approxi-
mate solutions.
3. Heuristics

This section introduces two construction heuristics, based upon
the earliest due date (EDD) rule, and the weighted shortest pro-
cessing time (WSPT) rule, respectively. The jobs are then dis-
patched to the machines by the list scheduling algorithm
(Graham, 1966), which assigns the first unscheduled job to the
machine with the shortest completion time until all jobs are
dispatched.

The EDD rule, proposed by Jackson (1955), guarantees the opti-
mality in the minimization of the maximum lateness on a single
machine. It has been widely adopted to deal with due-date related
objective functions. For example, Baker (1974) showed that based
on the EDD rule, if there is at most one tardy job, the minimum to-
tal tardiness is guaranteed. Therefore, we adopt the EDD rule and
expect that it will work reasonably well when the number of tardy
jobs is small. This first heuristic algorithm is outlined in the
following:

Due-date-based heuristic HEDD.

Step 1. Sort the jobs in non-decreasing order of due dates.
Step 2. Remove the first job, say Jj, from the list and assign it to the

machine which has the shortest completion time.
Step 3. Select the machine speed that minimizes the contributions

(weighted tardiness and power cost) that Jj will make to
the objective function.

Step 4. Execute job Jj by using the speed selected in Step 3. Update
the completion time of the machine.

Step 5. Repeat Steps 2–4 until all jobs are processed.

To solve the single-machine scheduling problem of minimizing
the total weighted completion time, Smith (1956) proposed the
WSPT rule that sequences the jobs in non-decreasing order of the
ratio between job processing time and job weight. In view of a spe-
cial case where all jobs have a common due date, the total
weighted tardiness is minimized by the WSPT rule. This stimulates
the adoption of the WSPT rule for dealing with the problem of min-
imizing the total weighted tardiness, especially when most jobs
tend to be tardy.

WSPT-based heuristic HWSPT

Step 1. Sort the jobs in non-decreasing order of the ratio between
processing load and weight, ‘j=wj.

Step 2. Remove the first job, say Jj, from the list and assign it to the
machine which has the shortest completion time.

Step 3. Select the machine speed that minimizes the contributions
(weighted tardiness and power cost) that Jj will make to
the objective function.

Step 4. Execute job Jj by using the speed selected in Step 3. Update
the completion time of the machine.

Step 5. Repeat Steps 2–4 until all jobs are processed.

The comparison between the two heuristics would be carried
out in Section 6. In the next section, we develop a meta-heuristic
to produce better solutions at the cost of longer computing time.
4. Particle swarm optimization

In the nature, some animals exhibit social behavior, like a flock
of birds find food sources or a school of fish avoid predators. These
kinds of animals can transfer their own messages to each other and
achieve some goals in a collective way. Particle swarm optimization
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(PSO) is a swarm-based intelligence algorithm. Kennedy and Eber-
hart (1995) studied the above-mentioned behavior of swarms in
the nature, such as birds, and fish and developed the PSO frame-
work for dealing with hard optimization problems. PSO has been
widely applied to many scheduling problems. Dye and Ouyang
(2011) deployed PSO algorithms for solving joint pricing and lot-
sizing problem. Önüt, Tuzkaya, and Dog̈aç (2008) studied multi-
ple-level warehouse layout design problem by applying PSO algo-
rithms. Ai and Kachitvichyanukul (2009) used PSO algorithms for
solving the capacitated vehicle routing problem.

In PSO algorithms, each solution is represented as a particle,
which is analogous to a bird flying through the solution space. Each
particle is associated with two key parameters, current position and
current velocity. The current position is used to evaluate the dis-
tance of the current solution away from the best position of any
swarm particle so far. The current velocity, represented a vector,
dictates the direction and the speed at which the bird is flying.
At any time, each particle position is influenced by the best posi-
tion that the particle has ever visited. The performances of the par-
ticles in different positions are measured by their fitness values,
which reflect the objective function values of the studied problem.
The general framework of the PSO algorithm is described below.

Let xt
j denote the current position of particle j at iteration t, and v t

j

the velocity of particle j at iteration t. The velocity and position of solu-
tion j at the next iteration are computed by the following equations:

v tþ1
j ¼ xv t

j þ c1 � rand1 � ðpbestj � xt
j Þ

þ c2 � rand2 � ðgbest � xt
j Þ ð8Þ

xtþ1
j ¼ xt

j þ v tþ1
j ð9Þ

where:

x: The inertia weight is a constant defined by the user to
regulate the impact of the current velocity on the
velocity of the next iteration.

ck: The acceleration coefficients for k ¼ 1;2, where c1 is
the acceleration coefficient indicating the attraction
to the previous best position of the current particle,
c2 is the acceleration coefficient indicating the attrac-
tion to the previous best position of the swarm, and
rand1 and rand2 are random numbers generated from
the uniform interval [0,1].

pbesti: The best position ever visited in the historical course of
particle i.

gbest: The best position ever visited by the swarm.

As in Eq. (8), the current velocity of a particle is a linear combina-
tion of three types of velocities: (a) the inertia velocity which is
related to its previous velocity; (b) the velocity to the best location
found by the particle and (c) the velocity to the best location found
by the swarm. Eq. (9) indicates that the current position of a parti-
cle is the previous position plus the adjustment induced by the cur-
rent velocity. A larger x value implies that the current velocity
encounters a higher traction force from the previous velocity.
Empirical studies of PSO with inertia weights have shown that a
relatively larger x value implies a more global search ability and
on the other hand a relatively smaller x value results in faster con-
vergence. Larger c1 values exploit more personal behavior, while
larger c2 values exploit more the global swarm behavior. The
trade-off among the inertia weight (i.e. the previous velocity),
the explorations (i.e. the global search) and the exploitations (i.e.
local search) of search space is crucial to the efficiency and effec-
tiveness of PSO algorithms. Through the adjustment of the position
and the velocity of each particle iteratively, PSO algorithms could
obtain near-optimal solutions when it reaches the convergence
conditions or the stop criteria.
Most PSO algorithms start with a population of random solu-
tions, each of which is associated a random velocity. Each particle
keeps track of its potential best solution ðpbestÞ, which is the best
solution in its movement history, and the global best solution
ðgbestÞ, which is the best solution ever visited thus far by all parti-
cles of this swarm.

PSO ALGORITHM

Step 1. Set the particle dimension equal to the number of jobs n.
Step 2. Randomly generate a set of particle positions xj and veloc-

ities v j for initialization.
Step 3. For each generated particle, calculate its fitness value.
Step 4. Check if the fitness value is better than pbest or not. If yes,

update pbest.
Step 5. If the minimum pbest in the swarm is better than gbest,

then replace gbest with the minimum pbest.
Step 6. For each particle, use Eq. (8) to calculate the new velocity

and Eq. (9) to update the position.
Step 7. Repeat from Step 3, until the stopping criteria are satisfied.

One of the key designs to the success of PSO algorithms is con-
cerned about the representation of solutions. A proposed represen-
tation must reflect the characteristics of the studied problem as
well as permit easy manipulation in the course of PSO execution.
The WTPC problem involves decisions of allocation, sequencing
and state tuning. It is not intuitive to construct a mapping between
the particles of PSO and the solutions of WTPC. In general PSO algo-
rithms, a particle can completely express the action of a solution,
including the relative position in the solution space and the motion
from the previous position to the current position. In the context of
the WTPC problem, a solution should clearly indicate the machine
each job is assigned to and the position and speed at which each
job is processed on the machine it resides. The challenge is the
necessity to encode at least four types of information, namely jobs,
machines, positions and speeds in the representation of solutions.

A straightforward resolution approach is to construct a 4-
dimensional array for encoding solutions and let each dimension
denote one type of information. Nevertheless, there is no straight-
forward 4-dimensional velocity array befitting for the structure
and inherent information of particles. The above-mentioned 4-
dimensional array would not work when applied to Eq. (9). Another
alternative design is to use a 4-level linked list to encode the solu-
tions. Unfortunately, we cannot interpret the physical meaning of
the acceleration coefficient times a linked list (Eq. (8)). Therefore,
we need to design a more flexible solution encoding method, which
is feasible and meaningful to the PSO algorithm, and also conve-
nient for computing objective function values. In the next section,
we will elaborate on the PSO solution encoding scheme.
5. The framework of PSO for WTPC

This section describes how PSO is adapted to solve the WTPC
problem. As aforementioned, how the solutions are represented
for further manipulations is crucial to the success of PSO deploy-
ment. Some solution representations applied to PSO for parallel
machine scheduling problems are studied. Then, we analyze the
solution structure of the WTPC problem. Since the existing solution
representations are not necessarily suitable for WTPC, we need to
design a new encoding method. An example solution is given for
illustrating the design.
5.1. Existing solution representations

There are several types of solution representations in the
deployment of PSO for coping with parallel-machine scheduling



Table 1
Comparison of solutions produced by CPLEX and two heuristics.

R Time CPLEX HEDD Dev. (%) HWSPT Dev. (%)

m ¼ 3; n ¼ 5
0.1 195.32 1387.44 1871.75 25.87 1932.96 28.22
0.2 45.86 872.74 1193.90 26.90 943.95 7.54
0.3 4.08 915.89 1088.31 15.84 1242.29 26.27
0.4 24.22 647.95 869.33 25.47 764.51 15.25
0.5 283.40 893.68 1091.66 18.14 1157.01 22.76

0.6 12.30 558.32 590.45 5.44 623.17 10.41
0.7 7.08 505.32 544.85 7.26 811.75 37.75
0.8 5.47 1060.59 1241.56 14.58 1252.18 15.30
0.9 13.69 596.64 672.91 11.33 709.08 15.86
1.0 19.22 993.15 1094.14 9.23 1246.23 20.31

m ¼ 3; n ¼ 10
0.1 60 min 1877.00 2327.45 19.35 3096.92 39.39
0.2 60 min 1757.94 2437.20 27.87 3049.67 42.36
0.3 60 min 1536.94 2274.49 32.43 2786.02 44.83
0.4 60 min 1315.97 1778.45 26.00 2465.03 46.61
0.5 60 min 1640.72 2876.04 42.95 3149.07 47.90

0.6 60 min 1982.68 2567.91 22.79 3836.15 48.32
0.7 60 min 2118.40 2984.72 29.03 3733.19 43.25
0.8 60 min 2004.27 3042.41 34.12 2819.48 28.91
0.9 60 min 1810.99 2386.82 24.13 3408.94 46.88
1 60 min 1623.79 2031.01 20.05 3006.34 45.99

m ¼ 5; n ¼ 10
0.1 60 min 1429.50 1786.19 19.97 2218.51 35.56
0.2 60 min 1441.12 1935.80 25.55 2376.91 39.37
0.3 60 min 1472.24 2676.17 44.99 2400.67 38.67
0.4 60 min 1297.86 2101.38 38.24 2224.99 41.67
0.5 60 min 1144.63 1805.87 36.62 2164.71 47.12

0.6 60 min 1660.90 2297.67 27.71 3066.80 45.84
0.7 60 min 1974.28 3387.65 41.72 3794.63 47.97
0.8 60 min 1422.05 1936.61 26.57 2225.21 36.09
0.9 60 min 1112.78 1586.97 29.88 2052.13 45.77
1.0 60 min 1454.65 2093.35 30.51 2786.00 47.79
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problems. Kashan and Karimi (2009) proposed a discrete encoding
approach to solve the parallel-machine scheduling problem of
makespan minimization. An array with a length equal to the num-
ber of jobs is adopted to represent the solutions. The value stored
in the jth position of the array corresponds to the machine to
which the jth job is assigned.

Niu, Zhou, and Wang (2010) used a similar array structure and
proposed a real number encoding scheme to tackle parallel-ma-
chine scheduling of minimizing the total tardiness. In each real
number used, the integer part denotes the machine that the job
is allocated to, and the fractional part stands for a relative execu-
tion order of the jobs on that machine.

5.2. The solution structure of WTPC problem

In the WTPC problem, besides for job dispatching and job
sequencing, an additional solution encoding mechanism to de-
scribe the decision of machine speed selection. In previous papers,
the integer part and the fractional part of real numbers in the solu-
tion encoding scheme are both used. One possibility for the speed
selection is to use the positive sign and negative sign to express
additional solution information. Yet it could be limited to binary
choices, low speed or high speed. Therefore, we would like to ex-
tend the use of integer part and fractional part of real numbers
to denote the selection of multiple machine speeds. Unlike the
method of Niu et al. (2010) for encoding job sequencing, we need
to know the exact execution speed of each job. Moreover, each ma-
chine could have distinct abilities to adjust its speeds. In other
words, li, the number of different speeds of machine Mi, varies
across the machines. This flexibility demands an encoding mecha-
nism which is flexible enough for precisely indicating the execu-
tion speed for each job.

5.3. New encoding method of problem WTPC

With reference to the above mentioned solution representa-
tions and difficulties encountered in the studied problem, we de-
sign a new solution encoding representation to overcome the
difficulties. We first randomly generate n real numbers from a uni-
form distribution on the interval ½1;mþ 1Þwith a 3-digit fractional
part. For example, if m ¼ 6 machines are available, then we may
generate such real numbers as 2:783;3:513;6:987, and so forth.
Such a real number is used to encode the information of the three
decisions: job dispatching, job sequencing, and machine speed
selection. The integer part stores the index of the machine to which
the job is assigned. The fractional part represents the processing
order of the job on its machine. For example, the job Jj1

annotated
by the real number 2:415 and the job Jj2

annotated by the real
number 2:873 are both processed on machine M2, and the job Jj1
precedes the job Jj2

because :415 < :873. Moreover, the last 2 digits
of the fractional part are also used to indicate the speed selected
for the job execution. Suppose the last 2 digits of the fractional part
are q1 and q2. For machine Mi that permits li different speeds, if
b100� ðr � 1Þ=lic 6 q1 � 10þ q2 < d100� r=lie, then the job is
executed on machine Mi at speed Sir for 1 6 r 6 li. For example,
if the last two digits of the factional part are 4 and 5 and there
are three different speeds on the machines, then this job will be
processed at the second speed.

5.4. Example of the new encoding method

The following numerical example solution is given to illustrate
the proposed encoding scheme. Suppose that there are 6 jobs, 3
machines, and 3 different speeds on each machine. The detail inter-
pretation of the solution p ¼ ½2:554;1:263;1:711;3:487;2:822;
2:176� is as follows:
Job J1 is executed on machine M2 at speed S22.
Job J2 is executed on machine M1 at speed S12.
Job J3 is executed on machine M1 at speed S11.
Job J4 is executed on machine M3 at speed S33.
Job J5 is executed on machine M2 at speed S21.
Job J6 is executed on machine M2 at speed S23.
The job sequence on machine M1 is ðJ2; J3Þ.
The job sequence on machine M2 is ðJ6; J1; J5Þ.
The job sequence on machine M3 is ðJ4Þ.

The proposed solution representation approach makes a good
use of all the digits of the real numbers. Another advantage is that
a PSO algorithm can easily compile the stored information of a real
number to realize the corresponding schedule and to calculate its
objective function value. For a given solution, we sort the array
in non-decreasing order of the real numbers. Knowing the integer
part of a job, we can assign the job to the corresponding machine.
Based on the preprocessing calculation of the processing time of
each job on each machine under distinct speeds, the completion
times of all jobs on all machines can be computed in OðnÞ time.
Hence, the objective function values, total weighted tardiness
and total power cost, of a solution in the proposed representation
approach can be computed in Oðn log nÞ time.

As mentioned above, PSO algorithms iterate for exploring solu-
tion space until the defined convergence conditions or the stopping
criteria are met. Considering the efficiency without sacrificing
solution quality, we use limits on the elapsed CPU time and the
number of iterations as the stopping criteria in the PSO algorithm.
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That is, the PSO algorithm will keep searching for optimal solutions
until the specified limits are reached.
6. Computational experiments

This section presents a computational study for examining the
performances of the designed solution algorithms. The test in-
stances were generated as follows. The processing loads lj of the
jobs were randomly generated by the uniform distribution
Uð1;100Þ. The tardiness penalty weights wj of the jobs were drawn
from Uð1;10Þ. The generation of due dates followed the scheme
Table 2
Summary of the experiments setting.

ðc1; c2Þ n

E1 (1,1)
E2 (1,2) {30,50}
E3 (2,1)

E4 min of fE1; E2; E3g {30,50}
E5 max of fE1; E2; E3g {30,50}

Table 3
Results of experiment E1; ðc1; c2Þ ¼ ð1;1Þ.

R x ¼ 0:2 x ¼ 0:4 x ¼ 0:6

Obj. Dev. (%) Obj. Dev. (%) Obj.

30-3
0.1 8120.4 1.95 8066.7 1.28 7964.7
0.2 8779.2 17.27 7901.0 5.54 7486.1
0.3 7996.3 8.02 8053.1 8.79 7402.4
0.4 8490.9 21.05 8432.3 20.22 7014.3
0.5 8938.5 22.68 7716.4 5.90 7286.2
0.6 9044.5 35.29 8414.6 25.87 6685.3
0.7 9110.4 31.65 8995.9 29.99 6920.3
0.8 8521.5 11.51 8068.8 5.58 7642.2
0.9 9028.0 23.85 8427.2 15.61 7289.2
1.0 8549.9 20.13 8770.3 23.22 7117.4

30-5
0.1 19868.8 12.84 18852.4 7.07 17607.4
0.2 18939.4 7.40 18485.8 4.83 17633.7
0.3 20991.3 15.30 18760.4 3.05 18205.3
0.4 19318.3 8.33 18248.4 2.33 17832.3
0.5 20594.9 6.29 19375.7 0.00 19598.6
0.6 20655.9 17.02 17923.1 1.53 17652.2
0.7 20721.7 20.78 18269.8 6.49 17157.1
0.8 20068.1 22.37 19129.0 16.64 16399.7
0.9 20405.6 12.35 18162.2 0.00 20780.6
1.0 19948.1 15.96 18701.5 8.71 17203.1

50-3
0.1 7555.9 13.62 6810.7 2.41 6650.3
0.2 7655.4 13.11 7822.2 15.57 6768.3
0.3 7756.7 14.11 7422.7 9.20 6797.3
0.4 7888.0 27.44 6818.9 10.17 6189.5
0.5 8021.5 15.71 6932.6 0.00 7071.5
0.6 7826.4 19.90 7117.9 9.05 6527.2
0.7 7309.6 8.89 6986.0 4.07 6712.6
0.8 7578.9 7.55 7046.7 0.00 7325.1
0.9 7974.0 21.25 7017.5 6.70 6576.6
1.0 7204.7 5.53 6827.0 0.00 6933.3

50-5
0.1 17011.5 19.60 15200.0 6.86 14224.1
0.2 15241.5 2.81 14825.3 0.00 15462.5
0.3 15959.8 1.49 15725.5 0.00 16063.0
0.4 16790.9 13.97 14732.2 0.00 15872.8
0.5 15719.0 8.73 14457.0 0.00 15327.9
0.6 15941.2 14.22 14810.8 6.12 13956.7
0.7 17484.1 17.28 14907.4 0.00 16353.4
0.8 16311.8 13.73 15781.3 10.03 14342.8
0.9 18199.5 24.69 15653.0 7.25 14595.3
1.0 17588.7 29.20 13613.5 0.00 15900.3
proposed by Hall and Posner (2000). A parameter R was to adjust
the period of due dates to reflect relative tightness. The mean value
of due dates is equal to a half of the average total processing load
on each machine divided by the average machine processing speed,
namely

D ¼ 1
2
�
P

jlj

m
�
P

i

P
sSisP

ili
:

Therefore, D is an estimate of the makespan of the jobs and machine
characteristics in the generated instance. The due dates were drawn
from the uniform distribution U½Dð1� RÞ;Dð1þ RÞ�, where R is a
m x;R Solution Approaches

{3,5} f0:1;0:2; . . . ;1:0g PSO

{3,5} HEDD;HWSPT

{3,5} HEDD;HWSPT

x ¼ 0:8 x ¼ 1:0

Dev. (%) Obj. Dev. (%) Obj. Dev. (%)

0.00 8305.9 4.28 10432.2 30.98
0.00 8235.7 10.01 9927.5 32.61
0.00 8928.9 20.62 11394.7 53.93
0.00 8568.3 22.15 10416.5 48.50
0.00 8722.5 19.71 10605.9 45.56
0.00 8877.2 32.79 10287.3 53.88
0.00 10535.1 52.23 10271.6 48.43
0.00 8348.3 9.24 10367.4 35.66
0.00 8480.9 16.35 10487.6 43.88
0.00 9923.2 39.42 11140.0 56.52

0.00 22801.9 29.50 27369.0 55.44
0.00 23799.4 34.97 29842.0 69.23
0.00 22856.9 25.55 29639.2 62.81
0.00 23391.0 31.17 27584.0 54.69
1.15 24707.6 27.52 29014.3 49.75
0.00 24426.1 38.37 27609.9 56.41
0.00 23803.5 38.74 27689.0 61.39
0.00 23371.2 42.51 26896.4 64.01

14.42 21725.7 19.62 28124.9 54.85
0.00 24334.6 41.45 28532.0 65.85

0.00 8626.2 29.71 10655.7 60.23
0.00 8306.3 22.72 9701.1 43.33
0.00 8430.8 24.03 11174.8 64.40
0.00 7291.3 17.80 9450.2 52.68
2.00 9186.9 32.52 9529.0 37.45
0.00 7707.0 18.08 10197.6 56.23
0.00 7910.2 17.84 10624.2 58.27
3.95 8478.9 20.32 10281.9 45.91
0.00 7833.9 19.12 9568.2 45.49
1.56 9068.8 32.84 10787.4 58.01

0.00 20242.7 42.31 21936.7 54.22
4.30 21361.2 44.09 20901.2 40.98
2.15 21862.5 39.03 22804.7 45.02
7.74 20498.7 39.14 21537.0 46.19
6.02 22554.5 56.01 23236.4 60.73
0.00 22144.2 58.66 20698.5 48.31
9.70 19592.2 31.43 21991.1 47.52
0.00 21014.7 46.52 23523.7 64.01
0.00 23087.1 58.18 23057.5 57.98

16.80 22640.6 66.31 23003.1 68.97
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control parameter of the due-date ranges and selected from
f0:1;0:2; . . . ;1:0g. Regarding the feature of CPU clock frequency
adjustment, we assumed three distinct CPU frequencies. The CPU
frequencies on distinct machines were assigned from the uniform
distribution Uð1;2Þ. The energy consumption of each machine was
given to the third power of the corresponding machine frequency.
It is expected that using a higher execution speed incurs a higher
power consumption per time unit.

All the proposed algorithms were coded in C and executed on a
personal computer equipped with an Intel Core 2 Quad Q8200
2.33 GHz CPU and 2 GB of RAM. The commercial software ILOG
CPLEX 7.0 was used to solve the integer linear programming model
for small-size problems. The derived solutions are used for com-
parisons with the heuristic solutions. The experiment results are
shown in Table 1. We set the time limit as 60 min in the CPLEX
runs. Once the CPLEX solution-finding process reached the time
limit, it aborted and output the incumbent best solution. The first
column of the table contains different due-date parameters, R.
We show the computational times and solutions obtained from
CPLEX in the next two columns. The two heuristics, HEDD and
HWSPT , took less than 0.01s to get the objective function values.
Therefore, we only list the output objective values. We also show
Table 4
Results of experiment E2; ðc1; c2Þ ¼ ð1;2Þ.

R x ¼ 0:2 x ¼ 0:4 x ¼ 0:6

Obj. Dev. (%) Obj. Dev. (%) Obj.

30-3
0.1 7004.1 0.00 8292.3 18.39 10227.4
0.2 7344.8 0.00 8030.8 9.34 9399.6
0.3 6878.1 0.00 7964.1 15.79 9001.5
0.4 7393.3 0.00 8347.7 12.91 8689.0
0.5 7667.5 5.93 7238.5 0.00 9084.9
0.6 7411.5 0.00 8237.0 11.14 8572.0
0.7 7507.7 0.00 8708.0 15.99 8982.1
0.8 6940.9 0.00 7190.1 3.59 9391.4
0.9 6451.5 0.00 8098.3 25.53 9605.7
1.0 6554.6 0.00 8308.4 26.76 9341.4

30-5
0.1 15631.9 0.00 19519.1 24.87 23384.6
0.2 14489.1 0.00 20964.6 44.69 25485.9
0.3 15856.9 0.00 20082.0 26.65 24023.4
0.4 14450.6 0.00 19530.8 35.16 23556.5
0.5 15058.5 0.00 20405.0 35.50 26020.1
0.6 15638.4 0.00 19226.7 22.95 25513.1
0.7 14821.6 0.00 19803.0 33.61 25679.2
0.8 13840.1 0.00 21160.5 52.89 25424.3
0.9 14448.9 0.00 20326.2 40.68 27525.3
1.0 13744.5 0.00 19803.7 44.08 25054.6

50-3
0.1 6690.4 0.00 7200.2 7.62 8737.5
0.2 6387.2 0.00 8507.7 33.20 8577.7
0.3 6427.6 0.00 7809.4 21.50 8820.4
0.4 6599.7 0.00 7240.7 9.71 8193.9
0.5 6689.2 0.00 7153.4 6.94 9473.5
0.6 6416.2 0.00 7898.9 23.11 8534.9
0.7 6205.4 0.00 7249.6 16.83 8793.1
0.8 6341.8 0.00 7464.0 17.70 9532.1
0.9 6466.0 0.00 7443.1 15.11 8773.5
1.0 6133.2 0.00 7392.1 20.53 9411.1

50-5
0.1 12909.4 0.00 17090.5 32.39 20412.5
0.2 11858.5 0.00 17010.7 43.45 21849.0
0.3 12102.3 0.00 18053.2 49.17 21703.2
0.4 12201.6 0.00 17088.0 40.05 20431.0
0.5 12215.9 0.00 16781.2 37.37 20972.5
0.6 11976.6 0.00 16974.4 41.73 20446.1
0.7 14023.5 0.00 17116.6 22.06 21060.3
0.8 12676.9 0.00 17965.1 41.72 20511.4
0.9 12742.9 0.00 18299.5 43.61 20205.1
1.0 12817.4 0.00 15848.9 23.65 20933.3
the percentage deviation from the solutions obtained by CPLEX
and two heuristics in the row (dev.%). The percentage deviations
(dev.%) are defined as

objðHEDDÞ � objðCPLEXÞ
objðHEDDÞ

� 100%:

and

objðHWSPTÞ � objðCPLEXÞ
objðHWSPTÞ

� 100%:

With regard to the required computing time, the deviation between
CPLEX and two proposed heuristics varies in a great range. In the
case of ðm; nÞ ¼ ð5;10Þ, the deviation even grows up to more than
40% in some instances. For the cases with a higher deviation be-
tween the heuristic solutions and the CPLEX solutions, we examine
the derived schedules and find that there is one machine totally va-
cant. This is due to the fact that all scalable processing speeds of
that machine are relatively higher than those on other machines.
If jobs are assigned to that machine with relatively higher process-
ing speeds, the power cost of that machine is much larger than
other machines. Thus, that machine would not be selected by the
x ¼ 0:8 x ¼ 1:0

Dev. (%) Obj. Dev. (%) Obj. Dev. (%)

46.02 10925.4 55.99 11543.5 64.81
27.98 9624.7 31.04 10565.7 43.85
30.87 10312.6 49.93 12537.8 82.29
17.53 10157.8 37.39 11313.5 53.02
25.51 10901.8 50.61 11726.7 62.00
15.66 11401.3 53.83 11353.7 53.19
19.64 11097.0 47.81 12250.4 63.17
35.31 10102.7 45.55 11349.2 63.51
48.89 11053.9 71.34 11965.1 85.46
42.52 11788.6 79.85 12755.7 94.61

49.60 26942.7 72.36 28996.9 85.50
75.90 27033.3 86.58 30910.3 113.33
51.50 25578.4 61.31 28779.5 81.50
63.01 25928.2 79.43 27525.2 90.48
72.79 27937.3 85.53 28226.4 87.44
63.14 26869.5 71.82 27360.0 74.95
73.26 27168.1 83.30 27453.0 85.22
83.70 27358.1 97.67 28878.3 108.66
90.50 25796.1 78.53 27316.5 89.06
82.29 28484.6 107.24 28881.6 110.13

30.60 9578.4 43.17 9757.2 45.84
34.30 9183.7 43.78 10457.8 63.73
37.23 9914.2 54.24 10804.4 68.09
24.16 8863.9 34.31 9675.1 46.60
41.62 9486.1 41.81 9504.0 42.08
33.02 9563.8 49.06 9805.0 52.82
41.70 9598.8 54.68 10807.6 74.16
50.31 9960.6 57.06 10063.2 58.68
35.69 9533.1 47.43 10263.9 58.74
53.45 10302.8 67.98 10999.1 79.34

58.12 20098.9 55.69 22119.9 71.35
84.25 20806.2 75.45 20585.5 73.59
79.33 22062.0 82.30 22342.5 84.61
67.45 21992.1 80.24 22200.1 81.94
71.68 21730.3 77.89 22606.8 85.06
70.72 23537.7 96.53 20274.2 69.28
50.18 21405.2 52.64 20786.2 48.22
61.80 21489.8 69.52 24135.3 90.39
58.56 21917.0 71.99 21499.3 68.72
63.32 23612.7 84.22 23207.1 81.06
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heuristics. However, the proposed heuristics, which is based upon
list scheduling, would anyhow allocate at least one job on each
machine. Thus, encountering such special instance patterns, the
proposed heuristic will deteriorate due to the processing with high-
er power consumption costs. The hardness of the studied problem
lies in job scheduling, job dispatching issues as well as in speed
selection. The EDD rule and the WSPT rule reflect the intuitive ideas
behind the scheduling and dispatching parts. Since the speed selec-
tion issue is addressed in the heuristic without retrospective correc-
tions, the performances could be then less favorable. This inspires
the necessity in the development of meta-heuristics that address
all decision issues and provide iterative correction mechanisms.

For the large-size data, we only compared the proposed heuris-
tics and the PSO algorithm because CPLEX failed to report a decent
solution before the time limit is elapsed. This experiment consists
of two parts. The first part is carried out by considering the relative
values of the acceleration coefficients used in PSO. Three settings
are of interest, namely, ðc1; c2Þ ¼ ð1;1Þ; ðc1; c2Þ ¼ ð1;2Þ, and
ðc1; c2Þ ¼ ð2;1Þ. The three settings address the relative importance
of the two parameters. In each of the three settings, another PSO
coefficient x varies within f0:1;0:2; . . . ;1:0g for all tests. The
second part is designed to compare the solutions provided by the
proposed PSO algorithm and the two heuristics.
Table 5
Results of experiment E3; ðc1; c2Þ ¼ ð2;1Þ.

R x ¼ 0:2 x ¼ 0:4 x ¼ 0:6

Obj. Dev. (%) Obj. Dev. (%) Obj.

30-3
0.1 6944.8 0.00 8709.4 25.41 9984.5
0.2 7108.9 0.00 7853.6 10.48 9737.0
0.3 6500.5 0.00 8287.5 27.49 9046.6
0.4 7127.1 0.00 9075.5 27.34 8627.4
0.5 7300.0 0.00 7602.3 4.14 9027.4
0.6 6856.8 0.00 8723.8 27.23 8802.9
0.7 7454.4 0.00 9084.7 21.87 9081.8
0.8 6773.0 0.00 8152.6 20.37 9251.9
0.9 6285.8 0.00 8241.5 31.11 9578.0
1.0 6415.2 0.00 8440.8 31.58 9601.7

30-5
0.1 15285.3 0.00 20242.0 32.43 22697.3
0.2 14189.8 0.00 20958.2 47.70 24526.9
0.3 14892.6 0.00 21962.9 47.48 24431.5
0.4 14788.2 0.00 19996.9 35.22 22495.5
0.5 14537.0 0.00 20785.7 42.98 25759.3
0.6 14654.6 0.00 19832.1 35.33 24195.9
0.7 14585.6 0.00 19123.8 31.11 24409.8
0.8 13251.8 0.00 21694.6 63.71 25629.5
0.9 14816.4 0.00 19963.3 34.74 27867.8
1.0 13620.7 0.00 19826.2 45.56 23538.0

50-3
0.1 6744.7 0.00 7268.5 7.77 8462.6
0.2 6384.0 0.00 8718.3 36.56 8547.4
0.3 6428.4 0.00 8028.8 24.90 8591.2
0.4 6425.0 0.00 7425.1 15.57 8125.1
0.5 6617.3 0.00 7421.1 12.15 9238.1
0.6 6553.7 0.00 7851.6 19.80 8202.1
0.7 5977.5 0.00 7376.5 23.40 8376.6
0.8 6400.3 0.00 7559.9 18.12 9270.7
0.9 6529.6 0.00 7313.7 12.01 8683.1
1.0 5736.9 0.00 7196.6 25.44 9193.6

50-5
0.1 12988.5 0.00 16884.1 29.99 19685.3
0.2 12449.2 0.00 16390.5 31.66 21152.1
0.3 12044.0 0.00 18162.3 50.80 21117.5
0.4 12314.6 0.00 16696.2 35.58 19767.7
0.5 12833.9 0.00 17019.1 32.61 20917.3
0.6 11383.3 0.00 17036.0 49.66 20099.1
0.7 13439.8 0.00 17052.6 26.88 21425.4
0.8 12306.6 0.00 17830.2 44.88 19534.2
0.9 13089.4 0.00 17928.2 36.97 19512.7
1.0 12612.8 0.00 16006.3 26.91 20281.5
The settings of the computational experiments are summarized
in Table 2. Settings E1; E2 and E3 are designed to examine the per-
formances of the proposed PSO under the three combinations of
the values of ðc1; c2Þ. For each of the setting, instances were gener-
ated with different inertia weights, different numbers of machines
and different numbers of jobs. In the setting E4, we compare the
best solution yielded in among E1; E2 and E3 with the solutions pro-
duced by the two heuristics. For further contrast, we conducted
setting E5 to compare the worst solutions yielded in among E1; E2

and E3 with the solutions produced by the two heuristics.
Since a certain kind of randomness exists in the execution of the

PSO algorithm, in each scenario of the experiment we invoked the
PSO Algorithm 10 times and computed the average values.

Tables 3–5 summarize the computational results. The tables are
headlined with the number of jobs and the number of machines.
For example, ‘‘30-3’’ indicates that n ¼ 30 jobs were to be dis-
patched to m ¼ 3 machines. The number in each cell was obtained
through 10 repetitions of the PSO algorithm. The effectiveness of
the PSO algorithm is measured by the average objective function
values reported. Each row corresponds to a specific value of the
due-date range control parameter, R. The performance of the PSO
algorithm under a specific inertia x value is indicated by two val-
ues, namely, the average objective function values (obj.) and the
x ¼ 0:8 x ¼ 1:0

Dev. (%) Obj. Dev. (%) Obj. Dev. (%)

43.77 10402.1 49.78 11691.4 68.35
36.97 9760.8 37.30 10896.9 53.29
39.17 10248.0 57.65 12068.8 85.66
21.05 10246.0 43.76 11741.1 64.74
23.66 10722.4 46.88 11864.6 62.53
28.38 10901.3 58.99 11466.3 67.23
21.83 11310.0 51.72 11530.0 54.67
36.60 10260.7 51.49 11481.0 69.51
52.38 11194.7 78.10 12039.4 91.53
49.67 11708.2 82.51 12431.0 93.77

48.49 25301.6 65.53 28799.5 88.41
72.85 27800.2 95.92 30344.8 113.85
64.05 25342.4 70.17 30147.6 102.43
52.12 25410.3 71.83 28171.3 90.50
77.20 28312.1 94.76 29065.0 99.94
65.11 26564.4 81.27 28412.8 93.88
67.36 26309.6 80.38 27080.5 85.67
93.40 26922.8 103.16 27723.1 109.20
88.09 25025.5 68.90 28547.5 92.68
72.81 27699.4 103.36 27597.0 102.61

25.47 9552.8 41.63 10091.9 49.63
33.89 9126.5 42.96 9957.6 55.98
33.64 9592.9 49.23 10847.6 68.74
26.46 8395.7 30.67 9001.5 40.10
39.61 9647.7 45.80 9671.5 46.15
25.15 9010.1 37.48 10232.0 56.13
40.14 9448.2 58.06 11014.5 84.27
44.85 9870.7 54.22 9988.8 56.07
32.98 9401.2 43.98 9416.8 44.22
60.25 9986.1 74.07 10565.8 84.17

51.56 20124.6 54.94 21914.0 68.72
69.91 21149.4 69.89 21785.2 74.99
75.34 20646.5 71.43 20846.6 73.09
60.52 20158.5 63.70 22120.2 79.63
62.98 22050.7 71.82 23112.4 80.09
76.57 22960.8 101.71 20466.7 79.80
59.42 21653.8 61.12 20896.2 55.48
58.73 21405.2 73.93 22155.1 80.03
49.07 23614.3 80.41 22567.5 72.41
60.80 21972.3 74.21 23446.8 85.90



Table 6
Comparison of the best solutions of PSO with the solutions of two heuristics.

ðc1; c2Þ (1,1) (1,2) (2,1) HEDD HWSPT

R min min min Obj. Dev.
(%)

Obj. Dev. (%)

30-3
0.1 7964.7 7004.1 6944.8 16085.6 131.62 24478.6 252.47
0.2 7486.1 7344.8 7108.9 14739.4 107.34 22374.9 214.74
0.3 7402.4 6878.1 6500.5 14045.1 116.06 23886.4 267.45
0.4 7014.3 7393.3 7127.1 13922.5 98.49 23505.2 235.10
0.5 7286.2 7238.5 7300.0 13937.5 92.55 24019.1 231.82
0.6 6685.3 7411.5 6856.8 14479.6 116.59 24459.2 265.87
0.7 6920.3 7507.7 7454.4 15684.6 126.65 24715.5 257.14
0.8 7642.2 6940.9 6773.0 14750.3 117.78 23147.9 241.77
0.9 7289.2 6451.5 6285.8 14942.8 137.72 25299.5 302.49
1.0 7117.4 6554.6 6415.2 15122.2 135.72 24785.1 286.35

30-5
0.1 7964.7 7004.1 6944.8 36350.9 423.43 59237.7 752.98
0.2 7486.1 7344.8 7108.9 34392.9 383.80 59390.6 735.44
0.3 7402.4 6878.1 6500.5 39033.6 500.47 62421.5 860.26
0.4 7014.3 7393.3 7127.1 33507.6 377.70 59850.1 753.26
0.5 7286.2 7238.5 7300.0 34395.3 375.17 59654.2 724.12
0.6 6685.3 7411.5 6856.8 36756.6 449.81 59566.6 791.01
0.7 6920.3 7507.7 7454.4 36260.4 423.97 63760.2 821.35
0.8 7642.2 6940.9 6773.0 35852.2 429.34 57949.2 755.59
0.9 7289.2 6451.5 6285.8 38218.3 508.01 57064.7 807.84
1.0 7117.4 6554.6 6415.2 34093.6 431.45 61600.0 860.22

50-3
0.1 7964.7 7004.1 6944.8 17224.2 148.02 25808.6 271.62
0.2 7486.1 7344.8 7108.9 19863.2 179.41 29136.8 309.86
0.3 7402.4 6878.1 6500.5 17520.9 169.53 28814.5 343.27
0.4 7014.3 7393.3 7127.1 16830.5 139.95 27462.5 291.52
0.5 7286.2 7238.5 7300.0 18825.5 160.07 26371.7 264.33
0.6 6685.3 7411.5 6856.8 18963.6 183.66 28098.1 320.30
0.7 6920.3 7507.7 7454.4 15791.2 128.19 26303.3 280.09
0.8 7642.2 6940.9 6773.0 18136.4 167.77 27139.1 300.70
0.9 7289.2 6451.5 6285.8 17398.3 176.79 27118.7 331.43
1.0 7117.4 6554.6 6415.2 16978.0 164.65 27588.2 330.04

50-5
0.1 7964.7 7004.1 6944.8 51831.3 646.33 83221.2 1098.32
0.2 7486.1 7344.8 7108.9 52488.1 638.34 77014.6 983.35
0.3 7402.4 6878.1 6500.5 48300.9 643.03 73473.5 1030.27
0.4 7014.3 7393.3 7127.1 50368.2 618.08 80980.7 1054.51
0.5 7286.2 7238.5 7300.0 45309.8 525.96 73926.1 921.29
0.6 6685.3 7411.5 6856.8 49253.7 636.75 78208.4 1069.86
0.7 6920.3 7507.7 7454.4 50374.8 627.93 80297.6 1060.32
0.8 7642.2 6940.9 6773.0 50327.1 643.05 80561.8 1089.46
0.9 7289.2 6451.5 6285.8 51171.0 714.07 79596.4 1166.29
1.0 7117.4 6554.6 6415.2 50185.4 682.29 81320.5 1167.62
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percentage deviation from the best objective function values in this
row (dev.%). The percentage deviation (dev.%) of the PSO algorithm
with the inertia weight x0 2 f0:2;0:3; . . . ;1:0g is defined as

objðPSOx0 Þ �minx2f0:2;...;1:0gfobjðPSOxÞg
objðPSOx0 Þ

� 100%:

The execution of the PSO algorithm was terminated once either
1,000 iterations were reached or the specified convergence status
was encountered.

The results of the setting ðc1; c2Þ ¼ ð1;1Þ are summarized in Ta-
ble 3. Through each combination of due date variable R, the number
of jobs and the number of machines, we investigate the influence
caused by the different values of the PSO coefficient x. In terms
of the average objective function values, we can find that in most
of the runs, the best solutions are obtained at x ¼ 0:6. In two runs
of 30-5, three runs of 50-3 and six runs of 50-5, the PSO algorithm
with x ¼ 0:4 delivered the minimum objective function values.
This suggests that setting the inertia weight x around 0:5 can better
exhibit the strength of the proposed PSO algorithm. On the other
hand, for most of the cases, the inferior solutions were encountered
when the inertia weight x is 1:0. Moreover, in one run of 30-3 and
three runs of 50-5, the setting x ¼ 0:8 leads to the maximum objec-
tive function values. Larger inertia weight indicates larger the adop-
tion of previous velocity when determining the new velocity. This
highlights the phenomenon that each particle moves indepen-
dently by it own velocity, resulting in a type of straight-line routes.
Diversity required for probing different areas is diminished and
thus the solution quality is unfavorable.

Table 4 reports the results of the experiment framework E2. The
PSO coefficients ðc1; c2Þ ¼ ð1;2Þ reflect that the global best solu-
tions have double impact on the new velocity of each particle than
the local optimal solution of the particle itself. From the numerical
values, we can easily see that the setting x ¼ 0:2 leads to favorable
solutions with the minimum objective function values, yet the set-
ting x ¼ 1:0 again results in the worst performance in most of the
tests. Especially, for the cases of 30-3, 30-5 and 50-3, a clear trend
shows that the average objective function values increase as x val-
ues become larger.

The results of setting E3 are summarized in Table 5. The PSO
coefficients are ðc1; c2Þ ¼ ð2;1Þ to reenforce the impact of local
optimal solutions of the particles. For all test cases, the best solu-
tions were reported by the setting with x ¼ 0:2. In most of the
cases, the setting x ¼ 1:0 still leads to the worst solutions. In the
runs of 50-5 with R ¼ 0:6, the results of x ¼ 0:8 and x ¼ 1:0 are
rather inferior.

The second part of the computational study is to investigate the
relative performances of the PSO algorithm and the two heuristics.
In Table 6, each row shows the objective function values derived by
the two heuristics and the best results delivered by the PSO algo-
rithm under three different settings of c1 and c2. The numerical re-
sults clearly show the superiority of heuristic HEDD over heuristic
HWSPT . The PSO algorithm under different settings can produce
schedules whose objective function values are much smaller than
those produced by the heuristics. One of the most major reasons
behind the results could be the following observation: In the heu-
ristics, once a job is assigned to a machine at a favorable processing
speed, no adjustment is allowed during the remaining execution
course of the heuristics. For the jobs that are prone to be early, they
will be processed at the lowest possible speeds so as to save the
power cost. This policy on the other hand may induce inevitable
tardiness to the unscheduled jobs.

In Table 7, we show a comparison among two heuristics and the
worst results delivered by the PSO algorithm under three different
settings of c1 and c2. In the test of instances with 30 jobs and 50
jobs, the PSO algorithm even performed at least 11.27% and
43.37% better than two heuristics. Also the parameter setting
ðc1; c2Þ ¼ ð2;1Þ indices a higher probability of producing inferior
solutions in the 30-job instances. However, for the 50-job problem
instances, the parameter settings, ðc1; c2Þ ¼ ð1;1Þ and
ðc1; c2Þ ¼ ð1;2Þ are prone to be unfavorable.

For each job-machine combination as displayed by columns of
Table 8, we list the best objective function values and the param-
eter settings of ðc1; c2;xÞ corresponding to these results. The
experiment setting with x ¼ 0:2, which performs better than oth-
ers in most of experiments, is suggested to applied as the number
of machines and jobs increase. Due to the fact that the random va-
lue of the coefficients of parameters c1 and c2 may affect the pro-
cess of evolutionary solution significantly. The setting of
parameters c1 and c2 are hard to justify which one is better than
another. However, the experiment results suggest that using differ-
ent values of c1 and c2 can obtain better solutions than using the
same values.

Only under the case of 30 jobs with 3 machines, the PSO
algorithm achieves convergence with less than 1,000 iterations.
For the rest of job-machine combinations, the objective function
values are the incumbent best solutions while achieving 1000



Table 7
Comparison of the worst solutions of PSO with the solutions of two heuristics.

ðc1; c2Þ (1,1) (1,2) (2,1) HEDD HWSPT

R max max max Obj. Dev. (%) Obj. Dev. (%)

30-3
0.1 10432.2 11543.5 11691.4 16085.6 37.58 24478.6 109.37
0.2 9927.5 10565.7 10896.9 14739.4 35.26 22374.9 105.33
0.3 11394.7 12537.8 12068.8 14045.1 12.02 23886.4 90.52
0.4 10416.5 11313.5 11741.1 13922.5 18.58 23505.2 100.20
0.5 10605.9 11726.7 11864.6 13937.5 17.47 24019.1 102.44
0.6 10287.3 11401.3 11466.3 14479.6 26.28 24459.2 113.31
0.7 10535.1 12250.4 11530.0 15684.6 28.03 24715.5 101.75
0.8 10367.4 11349.2 11481.0 14750.3 28.48 23147.9 101.62
0.9 10487.6 11965.1 12039.4 14942.8 24.12 25299.5 110.14
1.0 11140.0 12755.7 12431.0 15122.2 18.55 24785.1 94.31

30-5
0.1 27369.0 28996.9 28799.5 36350.9 25.36 59237.7 104.29
0.2 29842.0 30910.3 30344.8 34392.9 11.27 59390.6 92.14
0.3 29639.2 28779.5 30147.6 39033.6 29.47 62421.5 107.05
0.4 27584.0 27525.2 28171.3 33507.6 18.94 59850.1 112.45
0.5 29014.3 28226.4 29065.0 34395.3 18.34 59654.2 105.24
0.6 27609.9 27360.0 28412.8 36756.6 29.37 59566.6 109.65
0.7 27689.0 27453.0 27080.5 36260.4 30.96 63760.2 130.27
0.8 26896.4 28878.3 27723.1 35852.2 24.15 57949.2 100.67
0.9 28124.9 27525.3 28547.5 38218.3 33.88 57064.7 99.89
1.0 28532.0 28881.6 27699.4 34093.6 18.05 61600.0 113.28

50-3
0.1 10655.7 9757.2 10091.9 17224.2 61.64 25808.6 142.20
0.2 9701.1 10457.8 9957.6 19863.2 89.94 29136.8 178.61
0.3 11174.8 10804.4 10847.6 17520.9 56.79 28814.5 157.85
0.4 9450.2 9675.1 9001.5 16830.5 73.96 27462.5 183.85
0.5 9529.0 9504.0 9671.5 18825.5 94.65 26371.7 172.67
0.6 10197.6 9805.0 10232.0 18963.6 85.34 28098.1 174.61
0.7 10624.2 10807.6 11014.5 15791.2 43.37 26303.3 138.81
0.8 10281.9 10063.2 9988.8 18136.4 76.39 27139.1 163.95
0.9 9568.2 10263.9 9416.8 17398.3 69.51 27118.7 164.21
1.0 10787.4 10999.1 10565.8 16978.0 54.36 27588.2 150.82

50-5
0.1 21936.7 22119.9 21914.0 51831.3 134.32 83221.2 276.23
0.2 21361.2 21849.0 21785.2 52488.1 140.23 77014.6 252.49
0.3 22804.7 22342.5 21117.5 48300.9 111.80 73473.5 222.19
0.4 21537.0 22200.1 22120.2 50368.2 126.88 80980.7 264.78
0.5 23236.4 22606.8 23112.4 45309.8 94.99 73926.1 218.15
0.6 22144.2 23537.7 22960.8 49253.7 109.25 78208.4 232.27
0.7 21991.1 21405.2 21653.8 50374.8 129.07 80297.6 265.14
0.8 23523.7 24135.3 22155.1 50327.1 108.52 80561.8 233.79
0.9 23087.1 21917.0 23614.3 51171.0 116.69 79596.4 237.07
1.0 23003.1 23612.7 23446.8 50185.4 112.54 81320.5 244.39

Table 8
Best parameter settings of PSO.

R 30-3 30-5 50-3 50-3

Obj. ðc1; c2;xÞ Obj. ðc1; c2;xÞ Obj. ðc1; c2;xÞ Obj. ðc1; c2;xÞ

0.1 6944.8 (2,1,0.2) 15285.3 (2,1,0.2) 6650.3 (1,1,0.6) 12909.4 (1,2,0.2)
0.2 7108.9 (2,1,0.2) 14189.8 (2,1,0.2) 6384.0 (2,1,0.2) 11858.5 (1,2,0.2)
0.3 6500.5 (2,1,0.2) 14892.6 (2,1,0.2) 6427.6 (1,2,0.2) 12044.0 (2,1,0.2)
0.4 7014.3 (1,1,0.6) 14450.6 (1,2,0.2) 6189.5 (1,1,0.6) 12201.6 (1,2,0.2)
0.5 7238.5 (1,2,0.4) 14537.0 (2,1,0.2) 6617.3 (2,1,0.2) 12215.9 (1,2,0.2)
0.6 6685.3 (1,1,0.6) 14654.6 (2,1,0.2) 6416.2 (1,2,0.2) 11383.3 (2,1,0.2)
0.7 6920.3 (1,1,0.6) 14585.6 (2,1,0.2) 5977.5 (2,1,0.2) 13439.8 (2,1,0.2)
0.8 6773.0 (2,1,0.2) 13251.8 (2,1,0.2) 6341.8 (1,2,0.2) 12306.6 (2,1,0.2)
0.9 6285.8 (2,1,0.2) 14448.9 (1,2,0.2) 6466.0 (1,2,0.2) 12742.9 (1,2,0.2)
1.0 6415.2 (2,1,0.2) 13620.7 (2,1,0.2) 5736.9 (2,1,0.2) 12612.8 (2,1,0.2)
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iterations. The PSO algorithm produced better solutions when
x ¼ 0:2 (34 of the 40 cases as shown Table 7). Moreover, for the
cases of 30 jobs on 5 machines, 50 jobs on 3 machines and 50 jobs
on 5 machines, the PSO parameters ðc1; c2;xÞ are either (1,2,0.2) or
(2,1,0.2), which implies that distinct values of c1 and c2 achieves
better solutions than the setting with identical values of c1 and c2.

Here we summarize the experiment results. The comparison
results between CPLEX and the two heuristics on small-size
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instances show that the performance of the heuristics is highly re-
lated to the machine speeds of the test instances. CPLEX needs
more than 60 min to solve even the small-size problem instances.
The experiment has already demonstrated the proposed PSO
algorithm could obtain quality results but took more computing
times, when compared to the heuristics. The computing time re-
quired by PSO algorithms could be acceptable if the benefits of less
tardiness penalty and lower power cost can be realized. Another
important point to highlight is that cloud computing systems
usually have more than thousands of computers in the real world.
Taking the effectiveness and the efficiency of scheduling simulta-
neously in the context of cloud computing, the proposed PSO algo-
rithm can be considered as a viable solution approach.

7. Conclusions

This paper investigated a scheduling problem with heteroge-
neous unrelated parallel machines to minimize the weighted
sum of tardiness penalty and power consumption cost. The power
consumption cost varies due to the flexibility of adjustment of CPU
frequencies (dynamic voltage scaling) for processing the jobs. Jobs
executed at a higher machine speed for time saving incurs more
energy cost. We formulated an integer linear programming model.
Since the studied scheduling problem is NP-hard in the strong
sense, we designed two heuristics and a PSO algorithm to produce
approximate solutions. A major contribution of the PSO design is
the encoding scheme proposed to represent a schedule as a parti-
cle. We carried out a computational study to assess the perfor-
mances of the proposed algorithms and using CPLEX to solve the
studied problem. The two heuristics and the PSO algorithm under
distinct settings of PSO coefficients were tested for larger-size data
of the problems. Statistics showed that the PSO algorithm can pro-
vide quality solutions in an acceptable time. The proposed encod-
ing scheme of the PSO algorithm can be easily applied to other
processing contexts with adjustable machine speeds.

For further research, it could be interesting to extend the pro-
posed approach to dealing with other performance criteria. Further
attempts to use Pareto front based method to evaluate the fitness.
Some interesting metrics as hyper-volume are very suitable for
multi-objective optimization based on Pareto front (Zitzler & Thi-
ele, 1998). We can also introduce the concept of CPU frequency
adjustment to the traditional machine scheduling problems by
allowing speed adjustment during the execution of each individual
job. Moreover, applying the proposed encoding method to more
complex machine environments might be an interesting and chal-
lenging direction. Machine eligibility is an example in which not all
but only specific machines are eligible for processing each specific
job. This may introduce a type of complexity in the manipulation of
particles. It is also worthwhile to design other versions of PSO algo-
rithms to continue pursuing the best performance in solving flow-
shop scheduling problems. Hybrid PSO algorithms with other
metaheuristics (Xia & Wu, 2005; Zhang, Shao, Li, & Gao, 2009) or
integrating PSO algorithms with discrete Lagrange multipliers
(Nezhad & Mahlooji, 2011) or designing new PSO features, e.g.
dynamically adjusting acceleration coefficients as the course of
iterations continues, are other possible research directions.
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