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Maximum stiffness design of laminated 
composite plates via a constrained global 

optimization approach 
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Department of Mechanical Engineeting, National Chiao Tung University, Hsin-Chu 30050, Taiwan, Republic of China 

The optimal lamination arrangements of laminated composite plates with 
maximum stiffness subject to side constraints are investigated via a 
constrained multi-start global optimization approach. In the optimal design 
process, the deformation analysis of laminated composite plates is 
accomplished by utilizing a shear deformable laminated composite finite 
element and the optimal design problem, which has been converted into an 
unconstrained minimization problem via the general augmented Lagrangian 
method, is solved by utilizing the proposed unconstrained multi-start global 
optimization technique to determine the optimal fiber angles and layer 
group thicknesses of the laminated composite plates for attaining maximum 
stiffness and simultaneously satisfying the imposed side constraints. The 
feasibility of the proposed constrained multi-start global optimization 
algorithm is validated by means of a simple but representative example and 
its applications are demonstrated by means of a number of examples on the 
maximum stiffness design of symmetrically laminated composite plates. The 
effects of length-to-thickness ratio, aspect ratio, and number of layer groups 
upon the optimum fiber angles and layer group thicknesses of the plates are 
investigated. 

INTRODUCTION 

In recent years, the increasing use of laminated 
composite materials in the construction of 
mechanical, aerospace, marine and automotive 
structures has made the design of laminated 
composite structures an important research 
topic. The common objective in the optimal 
design of laminated composite structures is to 
design layer orientations, layer thicknesses or 
number of layers which will give the minimum 
weight of the structure and satisfy the imposed 
constraints. A selected list of some of the lit- 
erature published in this area is given in the 
references. lP7 Recently, a number of research- 
ers have studied the optimal design of 
laminated composite plates for attaining better 
behavioral performances.8-12 Although a sub- 
stantial amount of effort has been devoted to 
this area, as indicated by the extensive literature 
published on the subject, a vast proportion of 
the published work is limited to simple plates 

consisting of a very few layers. As is well known, 
laminated composite plates may be composed 
of many layers of different orientations and 
even a relatively simple composite plate may 
possess many design variables. The increase in 
the number of design variables when coupled 
with the highly nonlinear way in which strains 
and deflections vary with changes in fiber ori- 
entation can result in great difficulties in 
obtaining convergence to a local minimum 
when conventional optimization techniques 
used by the previous researchers are employed. 
Furthermore, it appears to be extremely expen- 
sive if not intractable to find the global 
optimum using the conventional optimization 
techniques. For these reasons the aforemen- 
tioned works on the optimal design of 
laminated composite plates were restricted to 
fairly simple cases and the results have there- 
fore found only limited applications in practical 
design. It is obvious that if a broader applica- 
tion of optimal design in laminated composite 
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structures is desired, more efficient and reliable 
global optimization techniques will be required. 

Recently, Kam & Snyman13 have proposed 
an unconstrained global optimization technique 
for the design of fiber angles of laminated com- 
posite plates with maximum stiffness. The 
unconstrained global optimization method has 
also been successfully used in designing lami- 
nated composite plates for maximum buckling 
strength or vibration frequency.‘4-‘5 In this 
paper, the previously proposed unconstrained 
global optimization method is extended to treat 
layer group thicknesses as design variables and 
include side constraints. In the optimal design 
process, the finite element analysis of the lami- 
nated plates is accomplished using a shear 
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as shown in Fig. 1. The plate is composed of a 
finite number of layer groups in which each 
layer group contains several orthotropic layers 
of same fiber angle and uniform thickness. The 
x and y coordinates of the plate are taken in the 
midplane of the plate. The displacement field is 
assumed to be of the form 

where u 1, u 2, u3 are displacements in the X, y , z 
directions, respectively, and uo, vo, w the asso- 
ciated midplane displacements; $I and I,+~ are 
shear rotations. 

The plate constitutive equations are written 

u 0,x 

VO,Y 

W.Y+$Y I 1 w,, + $x 
uo,y+vo,x 

F- 
L:I + $y,x 

(2) 

deformable finite element and the original con- 
strained optimization problem is converted into 
an unconstrained one via the general augmen- 
ted Lagrangian approach.16 The converted 
unconstrained optimization problem is then 
solved using the previous unconstrained global 
optimization algorithm to determine the opti- 
mal layups of the laminated composite plates. 
The feasibility of the present optimization algo- 
rithm is first validated by means of a simple but 
representative example. A number of examples 
on the maximum stiffness design of symmet- 
rically laminated composite plates subject to 
thickness constraints are given to illustrate the 
applications of the proposed method and study 
the effects of length-to-thickness ratio, aspect 
ratio, and number of layer groups upon the 
optimal solution of the plates. 

FINITE ELEMENT ANALYSIS OF 
LAMINATED COMPOSITE PLATES 

Consider a rectangular plate of area a x b and 
uniform thickness h subject to transverse load 

where N1, N2,. . . , ibfb are stress resultants; 

material components A,, B, and D, are given 

bY 

s 

h/2 
(4@,&)= _-h,2 Q$ym)(b,z2)dz 

(i,j=1,2,6) 

and 

s 

h/2 

A,=k;k,& A,= Q$+ dz _h,2 

(34 

(i,j=4,5; a=6-i, p=6-j) (3b) 

where Q, are material constants; the super- 
script m denotes layer number, and ki are shear 
correction factors which can be evaluated from 
the exact expressions given by Whitney.17 The 
derivation of the governing equations for the 
plate is based on the virtual work equation. The 
introduction of virtual displacements 6ui to the 
plate under static equilibrium gives the virtual 
work equation asl8 

s 
(~~&~) dV_ 

s 
pi6ui dS=O (4) 

V Sl 
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Fig. 1. Laminated composite plate. 

where I/ is the volume and pi surface tractions 
acting over the area S1 of the plate. Herein, the 
finite element method developed by Kam & 
Chang” is adopted in the derivation of the 
load-displacement equations for the plate. The 
element has eight nodes and the quadratic for- 
mulation of the serendipity family with reduced 
integration of the 2 x 2 Gauss rule has been 
used for constructing the element stiffness 
matrix. 

KA=P (5) 

where K, A, P are the structural stiffness matrix, 
displacement vector and load vector, respec- 
tively. 

When the nodal displacements of the plate 
have been solved from eqn (5), the strain 
energy U stored in the plate is computed as 

U=+ A’KA. (6) 

The rates of change of strain energy with 
respect to design variables Xi are 

au 1 

ax,=-7 
At (7) 

MAXIMUM STIFFNESS DESIGN 

The objective of the present optimal design of a 
laminated composite plate with given plate 
thickness and number of layer groups NL sub- 
jected to thickness constraints is the selection of 
fiber angles and thicknesses of the layer groups 
which gives the maximum stiffness of the plate. 
It is noted that the minimization of plate strain 
energy is equivalent to the maximization of 

plate stiffness.8 In mathematical form, the opti- 
mal design problem is stated as 

minimize U= U(h, 0) 

subject to 0” I Oi I 180” 

hi>0 i=l,...,NL (8) 
r NL 1 

1 H=x h,-h=O 1 
L i=l -I 

where h=(hl,h2 ,..., hNL)f, 8=(81,8z ,...) 6,)’ 
are the vectors of layer group thicknesses and 
fiber angles, respectively. 

The solution of the above constrained optimi- 
zation problem using the conventional 
optimization techniques16 can only yield a local 
minimum, not to mention the difficulty that may 
be encountered in enforcing convergence of the 
solution. Herein, a constrained multi-start 
global optimization method is presented for 
solving the above optimal design problem for 
attaining the global optimum solution. The 
above problem of eqn (8) is first converted into 
an unconstrained optimization problem by cre- 
ating the following general augmented 
Lagrangian16 

‘P(Q,hJ,rP)=U(O,h)+~ [A;xj+rPxf] 
j=l 

+[A NL+1H+@f2] 

with 
(9) 

gj(hj)=-hi<0 j=l,...,NL (10) 

where 5, rP are multipliers. 
The update formulae for the multipliers J.j 

and rP are 

A~i”“=A~+2r+~ j=l,...,NL+l 

(11) 

where the superscript n denotes iteration num- 
ber; y is a constant; rp”” is the maximum value 
of rP. The initial values of the multipliers and 
the values of the parameters (y,r,““) are chosen 
as 

Aq=l*O j=l,...,NL+l 

r”,=0*4 

y= 1.25 

(12) 
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r$-= 100 

The maximum stiffness design of the laminated 
composite plate has thus become the solution of 
the following unconstrained optimization prob- 
lem 

Minimize !P(8,h,&r,) 

with respect to 8 and h 

subject to O”rQi<180” i=l,...,NL (13) 

The above unconstrained optimization prob- 
lem can be solved straightforwardly by using the 
previously proposed unconstrained multi-start 
global optimization algorithm.‘3V20 The basic 
idea of the unconstrained multi-start global 
optimization method is to solve the problem of 
unconstrained minimization of a differentiable 
objective function F(y), y?YCR” and FCC’, 
with several local minima Fj and corresponding 
local minimizers fjm It is noted that, for 
example, in the optimal design of laminated 
composite plates, y and F(y) become [Q,h] and 
Y (0, h), respectively. In the global minimization 
process, a series of starting points are selected 
at random from the region of interest and a 
local minimization algorithm is used from each 
starting point. The search trajectories used by 
the local minimization algorithm are derived 
from the equation of motion of a particle of 
unit mass in an n-dimensional conservative 
force field, where the potential energy of the 
particle is represented by F(y(t)). In such a 
field the total energy of the particle, consisting 
of its potential kinetic energies, is conserved. 
The motion of the particle is simulated and by 
monitoring its kinetic energy an interfering 
strategy is adopted which ensures that potential 
energy is systematically reduced. In this way the 
particle is forced to follow a trajectory towards 
a local minimum in potential energy, f. It is 
noted that if the trajectory leaves the domain of 
interest at the point Qp where one or more of 
the components Q,, take on values such that 
either oppi> n or epi<O, then the constraints are 
imposed by continuing the trajectory at the 
point 0$ with components identical to 0, except 
for the components corresponding to the vio- 
lated constraints. These components are 
replaced as follows 

t3j,i=Opi-m7c if Op,i>7t 

and 

Q~i=Opj+m7c if 8pi<O; m=1,2,3,... (14) 

Here the value of m is chosen in such a way 
that 6& satisfies the constraints. By uninterrupt- 
ing the motion of the particle with conserved 
total energy, other lower local minima, includ- 
ing in particular the global minimum, are 
obtained and recorded when the particle is trav- 
eling along its path. The motion of the particle 
is stopped once a termination criterion is sat- 
isfied. The same procedure is applied to the 
other starting point. As the process of searching 
for the global minimum continues, a Bayesian 
argument is used to establish the probability of 
the current overall minimum value of F being 
the global minimum, given the number of starts 
and number of times this value has been ach- 
ieved. The multi-start procedure is terminated 
once a target probability, typically 0.998, has 
been exceeded. The main advantage of this 
multi-start global optimization algorithm is that 
it can determine the global optimal solution in a 
very efficient and effective way. 

NUMERICAL EXAMPLES 

The aforementioned constrained global optimi- 
zation technique will be applied to the design of 
symmetrically laminated composite plates with 
simply supported or fixed edges subjected to the 
center point load P. The boundary conditions 
for the two types of support are shown in Fig. 2. 
The material properties used in the following 
design are given as 

El 
-= 181.0, 

E2 

Eo 
-= 10.3, 

G12 
-=7*17 

Eo Eo 

G23 
-=3*O, ~,~=0*25, G12=G13, Eo=l*O GPa 
Eo 

The advantage of using the present method 
in designing laminated composite plates is first 
illustrated by means of an example on the 
design of simply supported symmetric four-lay- 
ered and centrally loaded plates with various 
aspect ratios. The results obtained by the pres- 
ent approach are listed in Table 1 in 
comparison with those obtained by using other 
method. The minimization routine BCONF of 
the IMSL mathematical package2’ has been 
used to solve the above optimal design prob- 
lems for determining the fiber angles and 
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Fig. 2. Boundary conditions of laminated plates. 

Table 1. Optimal solutions obtained via different design methods for a simply supported symmetric four-layered and 
centrally-loaded plate (u/h= 10, WC=WC[E,bh3/( pu3)] x ld) 

Design method 

(i) Present method (ii) Previous method13 (iii) BCONF” 

Fiber Normalized @‘;. Fiber Normalized I&“ Difference Fiber 
Aspect angles layer group 

Normalized @c 
angles 

r;;: (degrees) thickness 
layer group 

(degrees) thickness 
(ii)-(i) 

angles layer group 
thickness 

(hi=hJh) (hi=hJh) 
__ % (degrees) 

(ij (hi=hJh) 

0,5 [58*9”/ [0.09575/ 0.84 
- 59.7”],? 

[72W/ [0.25/ 0.89 5.95 
0.404251, - 56.0”],s 

[59.5”1 0.86 
0.25],T 

[0.1107/ 
-56.2”],s 0.3893], 

1.0 [45”/ [0.09660/ 2.76 [45”/ [0.25/ 3.21 1630 
- 45”lS 0.40340], - 46.0”], 

[45”/ 
0.25], 

[0.1121/ 2.78 
- 46.0”],s 0.38791, 

1.2 [41.2”/ IO.096491 3.64 [40.0”/ [0.25/ 4.23 16.21 3.69 
-41.5”],s o.40351],Y -41.0”], 

[40.9? 
0.251, 

[0.1126/ 
-41.0”], 0.38741, 

thicknesses of layer groups. The BCONF rou- 
tine can minimize a function of y1 variables 
subject to side constraints using a quasi-Newton 
method and finite-difference gradient. In solv- 
ing the optimal design problems, the present 
method has used ten starting points to find the 
global optimal solution with probability O-998 
while the BCONF routine has used 28 starting 
points in obtaining the results listed in Table 1. 
Furthermore, the present method has no con- 
vergence problem while the successful use of 
BCONF routine greatly depends on the choice 
of the starting point. For the BCONF routine, 
divergence of solution may occur if the starting 
point is close to the bounds of the constraints. 
Therefore, this proves that the present 
approach is comparatively efficient and can 
yield plates with greater stiffness. The present 

method is then used to study the optimal design 
parameters of simply supported or clamped 
laminated composite plates. The optimal layer 
group parameters (fiber angles and normalized 
thicknesses) of the simply supported plates with 
various aspect ratios (b/a=O-5, 1.0, l-2), num- 
bers of layer groups (NL =4, 6, 8) and 
length-to-thickness ratios (a/h=5, 100) are tabu- 
lated in Tables 2 and 3 while those for the 
plates with fixed edges are in Tables 4 and 5. It 
is noted that as shown in Tables 2 and 3 for the 
simply supported plates the plate thickness is 
controlled by one layer group whose fiber angle 
normally falls in the range from approximately 
- 61” to -40”. For example, the layer group of 
fiber angle -56.0” contributes 82% of plate 
thickness for the four-layered plate with 
b/a=O-5 and a/h=5 in Table 2. On the other 
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Table 2. Optimal solutions of simply supported symmetrically laminated composite plates subjected to center point load 
(a/h=5, W,=W,{E,W/(pa3)] x 103) 

Aspect 
ratio (b/u) 

0.5 

1.0 

1.2 

Optimal 
solution 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

4 

[54.3”/ - 56.0”], 
[O-08806/0.4 11 94],v 

2.9758 

[45”/ - 45*0”], 
[0.09143/0.40857], 

6.35447 

[41.6”/-42.0”], 
[0.09156/O-40844], 

7.9575 

Number of layer groups (AK) 

6 8 

[86.1”/3.3”/-54W’], [86~1”/3~3”/68~8”/ - 543”], 
[0~01540/0~07210/0~41250], [0.00556/@01598/ 

0.06748/0.41098], 
2.5426 2.5424 

[79.6”/38+9’=/ - 44.1°],T [81~3°/27~80/45~30/-44.11, 
[0.01465/0.07977/O-405581. [0~01309/0~02601/ 

0.05833/0.40257], 
6.3159 6.2953 

[ -41-T/-42.9”/-41.9”], [84~5“/28~9”/40~40”/-41.9”], 
[0~09211/000007/0-407821, [O-O1 184/0.03601/ 

0.05052/0.40146],T 
7.9440 7.8605 

Table 3. Optimal solutions of simply supported symrpetrically laminated corn 
load (u/h=lOO, WC=WC[E,bh3/(pa3)] x 1 ) $” 

site plates subjected to center point 

Aspect 
ratio (b/u) 

Optimal 
solution 

4 

Number of layer groups (NL) 

6 8 

0.5 Fiber angle 
Layer group thickness 

hi/h 
Deflection PC 

1.0 Fiber angle 
Layer group thickness 

hJh 
Deflection WC 

1.2 Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

[59W - 60.3qS [60.0”/- 60.2”/66.1”], 
[0.10249/0.39751], [0~10204/0~39776/0~00020]. 

0.2710 

[45”.0/- 45$qS 
[0.10368/0.39632],T 

0.2709 

[ - 45~0°/45~00/ - 45*0”], 
[0~00050/0~10397/0~39553], 

1.4954 

[41.0”/-4OY], 
[0.10392/0.39608],T 

1.4954 

[41W-40*9°/-40~90], 
[0~04850/0~05530/0~39620], 

2.0973 20971 

[ - 57~O”/60~Oo/65~70/ - 60.4”], 
[0+IO060/0~10280/ 
0WO40/0~39620],~ 

0.2709 

[ - 45.2”/-45.2”/ - 45.2”/45.0”], 
[0~01309/0~02601/ 
0.05833/0.40257], 

1.4952 

[ -41w41v-37~6”/-41*4”], 
[0~00003/0~10388/ 
0~00001/0~39608], 

2.0971 

hand, aspect ratio b/u has some effects on the 
optimal fiber angles of the simply supported 
plates. For instance, the optimal fiber angles 
change from [54*3/- 56.01s for b/a =O-5 to 
[41+6/-42.01s for b/a = 1.2 as shown in Table 2. 
As for the clamped plates, the results in Tables 
4 and 5 show that for thin plates (a/h= 100) the 
optimal fiber angles tend to be a combination of 
0” and 90”. However, for some thick plates (al 
h =5) or for thin plates with b/a = 1 and NL =6 
and 8, the optimal fiber angles may deviate 
from 0” or 90”. For example, it is interesting to 
point out that for the clamped plate with bl 
a= 1.0, the optimal fiber angles change from 
[0/9O]s for u/h= 100 to [45/-451s for u/h=5 as 
shown in Table 4. On the other hand, aspect 
ratio b/u may have some effects on the optimal 
fiber angles of the clamped plates. For instance, 

for a/h=5 the optimal fiber angles change from 
[50*4/-52.61s for b/u=O-5 to [40.7/--38*l]s for 
b/u= 1.2 as shown in Table 4. similar to the 
simply supported plates, plate thickness is gen- 
erally controlled by one layer group. For 
example, the layer group of 90” possesses 93% 
of the thickness of the four-layered plate with al 
h= 100 and b/u=O-5 in Table 5. It is also worth 
noting that the number of layer groups has 
insignificant effects on the total plate thickness 
for both the simply supported and clamped lam- 
inated composite plates which have been 
optimally designed. In general, the use of only 
six layer groups can yield the approximately 
global maximum stiffness for the plates. Hence, 
in view of the fact that the use of fewer number 
of layer groups in design can greatly reduce the 
time for manufacturing composite laminates, 
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Table 4. Optimal solutions of clamped symmet@cally laminated composite plates subjected to center point load (u/h=5, 
W,=W,[E,W/@a3)] x Id) 

Aspect 
ratio (b/a) 

0.5 

1.0 

1.2 

Optimal 
solution 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

4 

[50+‘/ - 52.6”]S 
[0.08676/0.41324], 

2.5162 

[45W - 45.0”], 
[0~08596/0~41404], 

5.8337 

[40.7”/ - 38.1”], 
[0~08486/0~41514], 

7.1491 

Number of layer groups (AX) 

6 8 

[ -4~1°/-71~30/52~5”], [5.4”/74.5’/ - 46.5”/- 55.4”], 
[0~01865/0~06280/0~41855], [0.021490/0.05745 

0~00002/0~42104],~ 
2.4438 2.4327 

[84.1”/22.2”/-44.4”], [86.2“/7.6”/479’ - 42.9”], 
[0~02265/0~06050/0~41585], [0~01309/0~02601/ 

0.05833/0.40257], 
5.6573 5-6154 

[96.3”/ - 20.4”/38+3”], [94.4”/-7.85”/-44.3°/37.1”],T 
[0~02255/0~06593/0~41152], [0~02089/0~04075/ 

0.03364/0.40472],T 
6.9241 6.8802 

Table 5. Optimal solutions of clamped symmetr&ally laminated composite plates subjected to center point load (u/h=lOO, 
W,=W,[E,bh3/(pu3)] x ld) 

Aspect 
ratio (u/b) 

0.5 

1.0 

1.2 

Optimal 
solution 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC. 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

Fiber angle 
Layer group thickness 

hi/h 
Deflection WC 

4 

[00/900], 
[0.03519/0.46481], 

0.1170 

[00/900], 
[0.08521/0.41479],T 

0.7747 

[OY90°], 
[0.08521/0.41479j. 

0.9771 

Number of layer groups (NL) 

6 8 

[90°/oo/90q, [0”/90”/0”/90”], 
[0~00450/0~03590/0~45960], [0.03515/0+04072/ 

0~00001/0~42412], 
0.1170 0.1168 

[4.9”/85.7”/ -- 7.3”lS [3~O”/81~30/8~O”/-79~lo].~ 
[0~02650/0~01043/0~45960], [0.03998/0.03607/ 

0.05806/0.36589], 
0.7724 0.7720 

[o”/900/o”], [0°/900/900/oo], 
IO*001 70/0.045 lo/O.438201 c 10.00172/0,04055/ 

I” L 2.. 

iIO5050/0.43721], 
0.9764 0.9758 

the optimal number of layer groups obtained 
herein demonstrates one of the merits of the 
present design method. 

CONCLUSION 

Optimal lamination arrangements of laminated 
composite plates designed for maximum stiff- 
ness subject to side constraints were 
investigated via a constrained multi-start global 
minimization approach. Results for symmetri- 
cally laminated multi-layer plates of various 
aspect ratios, different numbers of layer groups 
and boundary conditions subject to center point 
load were obtained. The effects of aspect ratio, 
length-to-thickness ratio and number of layer 

groups on the optimal lamination arrangements 
were studied. It has been shown that the pres- 
ent constrained optimization technique can 
yield the global optimal design of laminated 
composite plates without considering many 
design variables. The constrained multi-start 
global minimization algorithm is of promise for 
further applications to the optimal design of 
more complex laminated composite structures. 
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