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When the robot comes to a home-like environment, its programming becomes very demanding. The concept of
learning by demonstration is thus introduced, which may remove the load of detailed analysis and programming
from the user. Following this concept, in this article, we propose a novel approach for the robot to deduce the
intention of the demonstrator from the trajectories during task execution. We focus on the tool-handling task,
which is common in the home environment, but complicated for analysis. The proposed approach does not pre-
define motions or put constraints on motion speed, while allowing the event order to be altered and allowing for
the presence of redundant operations during the demonstration. We apply the concept of cross-validation to
locate the portions of the trajectory that correspond to delicate and skillful maneuvering, and apply an algorithm
based on dynamic programming previously developed to search for the most probable intention. In experiments,
we applied the proposed approach for two different kinds of tasks, the pouring and coffee-making tasks, with the
number of objects and their locations varied during demonstrations. To further investigate our method’s
scalability and generality, we also performed intensive analysis on the parameters involved in the tasks.

Keywords: intention deduction; learning by demonstration; tool-handling task

1. Introduction

Due to progress in service robots, more robots are
entering home and office environments. It can be
expected that many challenging problems will emerge
when they deal with these highly uncertain and varying
environments, such as path planning and manipula-
tion, among others (Choset et al. 2004, Lu and Hwang
2009). One issue of interest is how to teach the robot to
perform daily jobs effectively. To relieve the human
operator of detailed task analysis and program coding,
researchers have proposed letting the robot learn how
to execute the task from observing human demonstra-
tion by itself (Kuniyoshi et al. 1994). Among them,
Calinon et al. (2007) proposed an approach using
Gaussian mixture regression and Lagrange optimiza-
tion to extract unchanged motions from multiple
demonstrations. The proposed approach demands the
order of the operating motions be the same during
demonstrations. Dautenhahn and Nehaniv (2002)
proposed an approach for the robot to learn from
human demonstration by imitation, referred to as
the correspondence problem, and later the team
developed a system that can learn two-dimensional
(2D) arranging tasks (Alissandrakis et al. 2005a,b).

Pardowitz et al. (2006) proposed a hierarchical struc-

ture for the robot to deal with complex tasks while the

motion order can be changed, and later they went on

analyzing human motion features for high-level tasks

(Pardowitz et al. 2007). With both symbolic and

trajectory levels of skill representation, Ogawara

et al. (2003) proposed a method that determines the

essential motions from the possible motions. In this

article, we also propose an approach for the robot to

learn the human intention from her/his demonstration.

To allow the human operator more natural manipu-

lation during demonstration, the proposed approach

(a) does not need to pre-define motions; (b) does not

constrain the operator to perform the task using a

certain motion speed or motion type; (c) allows the

order of the events to be altered; and (d) allows some

redundant operations.
Pardowitz et al. (2007) classify the motions of

human manipulations into three different types by

their goals: transport operations for moving objects,

device handling for changing the internal states of the

objects, and tool handling for using tools to interact

with objects. We focus on the tool-handling task,

which is common in daily life. This kind of task is
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complicated for analysis, because the tool can operate
on multiple objects sequentially without leaving the
hand. Based on the concept of cross-validation, but
with some modification, we propose an approach to
identify the portions of the trajectory corresponding to
the delicate and dexterous maneuvers of the demon-
strator, referred to as motion features. These motion
features, in some sense, exhibit human skills in
executing a certain task. The challenge for the pro-
posed approach is how to find the correct intentions,
among all possible ones, that lead to the demonstrated
trajectories. To tackle the complexity, we apply the
method of dynamic programming previously devel-
oped for search (Chan et al. 2010, 2011). For demon-
stration, experiments based on two different kinds of
tasks, the pouring and coffee-making tasks, were
performed. During the experiments, the locations of
the operated objects and the operating sequence varied,
and the motion features derived from the demon-
strated trajectories were used for task execution under
different experimental settings. To demonstrate the
scalability and generality of the proposed approach
further, we performed intensive analysis on the param-
eters involved in the tasks, such as numbers of objects
and demonstrations, among others.

2. Proposed approach

The tool-handling task involves interactions between
tools and objects (Ogawara et al. 2001). The resultant
trajectory from task execution can be divided into two
types of motions: delicate motion (D) for delicate
maneuver and move motion (M) between the delicate
motions (Ogawara et al. 2003). The delicate motion is
more the focus, since it serves to achieve the goal; by
contrast, the move motion is not that critical; while the
delicate and move motions are executed alternately.
We, thus, take the intention deduction problem to be
that of locating the delicate motion from the demon-
strated trajectory, and illustrate the proposed
approach as follows. In Section 2.1, we describe
the process of intention deduction, refined from our
previous work (Chan et al. 2011). Also, in Section 2.2,
we design a series of experiments for investigating its
extensibility and robustness.

2.1. Intention deduction

Figure 1 shows the conceptual diagram of the pro-
posed approach for intention deduction from demon-
stration. In Figure 1, the robot first observes a series of
human demonstrations and records the corresponding
trajectories and environmental states. From these

recorded motion data, the robot searches for the
possible intentions that lead to the delicate motions.
The derived intentions can then be used to generate
new trajectories that respond to new environmental
states. Let us take the pouring task shown in Figure 2,
as an example. In Figure 2(a), three vessels A, B, and C
are arbitrarily located on the table. Also, in Figure 2(b)
and (c), the operator pours the content from vessel A to
vessels B and C, respectively, and then places vessel A
back on the table. During the demonstrations, the
initial locations of the vessels may vary, and so does
the pouring sequence. From the recorded trajectories
and corresponding locations of the vessels (environ-
mental states), the proposed approach will identify the
intention of the operator, i.e., the portions of the
trajectory that correspond to the two pouring actions
(delicate motions). With the derived intention, the
robot is then able to execute the pouring task with the
vessels located at various locations and possibly altered
pouring sequences.

Before the discussion on the process of intention
deduction, we first describe how the motion can be
generated under new environmental states when the
human intention has already been derived. We start
with the representation of the intention I. Assume that
there are N delicate motions and S objects involved in
a demonstrated task. Because the intention is closely
related to the delicate motions of the maneuver, I is
formulated as a set of delicate motions, DnðtÞ, associ-
ated with the corresponding objects Objs:

I ¼ fD1ðtÞ,D2ðtÞ, . . . ,DNðtÞ;Obj1,Obj2, . . . ,ObjSg,

ð1Þ

where DnðtÞ stands for the part of the demonstrated
trajectory for delicate motion n and Objs the position
and orientation of an object s. Note that, because an
object may correspond to one, several, or no delicate
motions, the number of delicate motions may not be
equal to that of the objects. We then introduce the
motion index (MI), which serves as an index linking to
I. MI is formulated as an ordered set of the time-point
pairs, dj ¼ fnj, lj, sjg, which provides the starting time
nj, end time lj, and number of the operated object sj
for each of delicate motions D:

MI ¼ fd1, d2, . . . , dNg, ð2Þ

Figure 1. Conceptual diagram of the proposed approach.
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With MI representing I, Figure 3 shows the process
for motion generation. According to MI, the motion

cutting module locates the delicate motions Dj from the
demonstrated motion in order. To respond to the new

environmental state, the motion adjustment module
moves these Dj to match the new locations of the

objects and becomeDGj
: Finally, the motion connection

module uses the move motionMGj
to connect every two

DGj
smoothly. As its accuracy is not that critical,MGj

is
generated using the cubic polynomial. With both DGj

and MGj
, we now have a feasible trajectory QG

corresponding to the new environmental state:

QG ¼ fMG1
,DG1

,MG2
,DG2

, . . . ,DGN
,MGNþ1

g: ð3Þ

Figure 4(a) shows an example for motion cutting
based on the pouring task (Figure 2) and Figure 4(b)

that of motion generation. In Figure 4(a), the

demonstrated trajectory during task execution is proj-

ected on the X–Y plane, where the yellow and green

rectangles indicate the locations of vessels B and C.

The yellow and green trajectories are the delicate

motions determined by the motion cutting module

according to the given MI. In Figure 4(b), the yellow

and green rectangles indicate the locations of vessels B

and C in the new environmental state. In responding to

these new locations of vessels B and C, the delicate

motions identified in Figure 4(a) are transformed to be

the yellow and green trajectories by the motion

adjustment module. Finally, the three move motions,

the red trajectories, are utilized to connect the two

delicate motions smoothly.
From the motion generation process discussed

above, we can take the intention deduction process as

that of finding proper motion index MI. To find the

Figure 4. Examples for: (a) motion cutting and (b) motion generation based on the pouring task shown in Figure 2.

Figure 2. A pouring task: (a) the setting of the vessels; (b) pouring vessel A to vessel B; and (c) pouring vessel A to vessel C.

Figure 3. Process for motion generation.
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optimal MI among all MI candidates, we introduce

first the process for MI evaluation, shown in Figure 5.

This process evaluates the fitness of the MI candidates

derived from the demonstrated motion, based on a

reasoning that proper MI should lead to a generated

motion very similar to the human demonstrated

motion, which includes all the delicate motions. In

Figure 5, from the demonstrated motions, we select

one demonstrated motion as the validating motion and

the rest as the training motions. We will discuss the

selection of validating and training motions later. For

an MI candidate derived from the validating motion,

the motion generation module, described above, gen-

erates motions based on the training motions and the

environmental state corresponding to the validating

motion; the generated motions, with their lengths set to

be equal to that of the validating motion, are then

compared with the validating motion via the motion

comparison module, yielding the differences between

them (marked as errors). Because the operator may

perform the demonstrations at different speeds and

possibly with different orders for the events involved,

the corresponding delicate motions are likely to occur

at various sampling rates, or to appear in different

portions of the demonstrated trajectories. To tackle

this, our strategy is to let each of the delicate motions

of the validating motion be compared with every

portion of the training motion, accompanied by

altering sampling rates. Through this comparison

process, the generated motion, whose delicate motions

lead to the minimum difference when compared with

those of the validating motion, is determined as the

output and sent to the motion comparison module for

the following comparison. As a high search complexity

is expected, we come up with an approach analogous

to that of dynamic time warping in execution (Sakoe

and Chiba 1978).
We go on with the process for MI generation,

shown in Figure 6, in which, among all the demon-

strated motions, one demonstrated motion is first

selected as the validating motion, denoted as QV, and

the rest as the training motions, QT, for each sequence

of the process. The process will be repeated until each

of the demonstrated motions serves as the validating

motion once. In the next step, the MI generator will

locate all possible MI candidates from QV: Because the
proposed approach does not constrain the human

operator to perform the task with certain motion speed

or motion type, and also allows the order of the events

to be altered during demonstration, there is in fact no a

priori knowledge for the selection of MI. The criterion

for MI generation is thus to let an MI candidate

correspond to every portion of QV with a duration

longer than 0.3 s, as a human cannot cognize an

event until 0.3 s after it happens (Sutton et al. 1965).

It can be expected that there will be a huge number of

MI candidates. That is why we employ the method

of dynamic programming in the search for the

optimal MI.
With the MI evaluation process in Figure 5 and the

MI generation process in Figure 6, Figure 7 shows the

entire process for optimal MI derivation. For the outer

dotted block in Figure 7, the inputs are the demon-

strated motions and each of them serves as the

validating motion once. Via theMI generation process,

MI candidates along with the validating and training

motions are sent into the MI evaluation process to

determine which MI candidate leads to the minimum

error, identified as an optimal MI candidate. As each

validating motion corresponds to one optimal MI

candidate, the outputs of the outer dotted block are the

Figure 6. Process for MI generation.

Figure 5. Process for MI evaluation.
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optimal MI candidates for each of them. Finally, the

optimal MI is determined to be the one with

the minimum error among all optimal MI candidates.
For mathematical formulation of this optimal MI

derivation process, we start with the description of MI

for a given validating motion QV, denoted as MIV :

MIV ¼ dV1
, dV2

, . . . , dVN

� �
, ð4Þ

with

dVj
¼ nVj

, lVj
, sVj

� �
, ð5Þ

where dVj
indexes the delicate motion DVj

with nVj
, lVj

,

and sVj
the starting time, end time, and number of the

operated object. According to MIV, QV can then be

expressed as the combination of a series of delicate and

move motions:

QV ¼ MV1
,DV1

,MV2
,DV2

, . . . ,DVN
,MVNþ1

� �
: ð6Þ

On the other hand, with the same MIV, the

generated motion Qi
G for each training motion Qi

T

can be formulated as:

Qi
G ¼ Mi

G1
,Di

G1
,Mi

G2
,Di

G2
, . . . ,Di

GN
,Mi

GNþ1

n o
, ð7Þ

where Di
Gj

and Mi
Gj

are its delicate and move motion,

respectively. Di
Gj

can be determined via the MI

evaluation process above, in which the minimization

between Di
Gj
and DVj

is dealt with, and Mi
Gj
determined

by function MG, which utilizes the cubic polynomial

to smoothly connect the two delicate motions, Di
Gj�1

and Di
Gj

:

Mi
Gj
¼MGðD

i
Gj�1

,Di
Gj
Þ: ð8Þ

To determine the optimal motion index MI�V, QV

will be compared with all QG generated according to

every MIV: Because we are looking for an MIV that

may induce all the necessary delicate motions, MI�V
should not induce too much deviation between the

delicate motions for QV and QG, and consequently
between the move motions for them. By taking Emax as
the maximum difference between the delicate and move
motions for QV and those QG generated for all the
training motions corresponding to some MIV, we
determine MI�V, among all MIV, to be the one that
leads to the smallest Emax :

MI�V ¼ argmin
MIV

Emax, ð9Þ

Emax ¼
XN
j¼1

EDðDVj
Þ þ

XNþ1
j¼1

EMðDVj�1
,DVj
Þ, ð10Þ

where

EDðDVÞ ¼ max
i
kDV �Di

Gk
2, ð11Þ

EMðDVa
,DVb
Þ ¼max

i
kMVðDVa

,DVb
Þ�MGðD

i
Ga
,Di

Gb
Þk2

ð12Þ

where ED computes the difference between the respec-
tive delicate motions for QV and those QG, and EM

that for the move motions, with MV as a function
which outputs the move motion part between two
delicate motions of the validating motion, DVa

and
DVb

: Because each demonstrated motion serves as the
validating motion once, the final optimal motion index
MI�� for all demonstrated motions will be further
chosen as that MI�, among those for each QV, with
the smallest corresponding Emax, denoted as E�: As the
lengths LV for QVsmay not be the same, E� needs to be
normalized before the comparison. MI�� is then
formulated as:

MI��V ¼ argmin
MI�

V

E�=LV: ð13Þ

The search for MI�� is of high complexity, as
exhibited in Equations (9)–(13). As an attempt to
enhance search efficiency, we employ the method of

Figure 7. Process for optimal MI derivation.
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dynamic programming (Cormen et al. 1990) and let the
computation of E� in Equation (13) be expressed in a
recursive formulation:

E� ¼ min
dVk

ERðDVk
Þ þ EMðDVk

,DVNþ1
Þ, ð14Þ

with

ERðDVk
Þ ¼min

dVk�1

ðERðDVk�1
ÞþEMðDVk�1

,DVk
ÞÞþEDðDVk

Þ,

ð15Þ

where ERðDVk
Þ stands for the minimum difference

between the motions from the first move motion to a
given delicate motion; dVk

and dVk�1
, described in

Equation (5), index the delicate motions DVk
and

DVk�1
; and 1 � k � N: Because the number of delicate

motions is not known in advance, N and k are not
specific numbers. Also, note that the first move motion
is generated between DV0

and DV1
, and the last one

between DVN
and DVNþ1

, with DV0
and DVNþ1

taken as
the first and last points of the trajectory, respectively.
In Equation (14), E� is derived as the minimum one for
all ERðDVk

Þ with ERðDVk
Þ computed recursively via

Equation (15). With Equations (14) and (15), dynamic
programming can take advantage of the table gener-
ated for ERðDVk

Þ to simplify the computation in
deriving E�:

Time complexity for this optimal MI derivation
process is related to the number (R) and length ðLVÞ of
the demonstrated motions and the number (S) of
objects involved in the task. Here, the lengths of the
demonstrated motions are assumed to be close. In
Equations (14) and (15), the generation of the table for
ERðDVk

Þ takes up most of the time consumed. The
table has OðL2

V � SÞ elements, and each element deals
with the complexity of the order of OðR � L3

V � SÞ:
During the entire process, the table needs to be
generated R times. The final time complexity is thus
computed to be on the order of OðR2 � L5

V � S
2Þ:

Based on the discussions above, the algorithm for
intention derivation algorithm is formulated as
follows:

Algorithm for intention derivation: Find the intention
of the task through R demonstrations.

Step 1: Record the demonstrated trajectories for the
R demonstrations. Denote the recorded trajectory for
the ith demonstration as Qi: Set i¼ 1.

Step 2: Select Qi among the R recorded trajectories as
the validating motion QV and the rest as the training
demonstrations QT:

Step 3: Apply the method of dynamic programming,
based on Equation (9), to determine the optimal MI�

for QV: Let i ¼ iþ 1: If i � R, go to Step 2; otherwise,
go to Step 4.

Step 4: Utilize Equation (13) to determine the opti-
mal MI�� for the demonstrator among those MI� for
the R validating motions. MI�� is now ready to be used
for executing the task under new environmental states.

2.2. Experimental design for extensibility and
robustness

The proposed approach is developed for general tool-
handling tasks, with the appealing features that:
(a) there is no need for pre-defined motions, (b) there
are no constraints on motion speed or motion type,
(c) there is allowance for event-order altering, and
(d) allowance is made for redundant operations during
demonstration. To investigate its extensibility and
robustness, we designed a series of experiments based
on two different kinds of tasks: the pouring and coffee-
making tasks.

In the pouring task, the operator is asked to hold a
vessel and pour the content into other vessel(s), as
described in the example shown in Figure 2. The
experiments were designed to evaluate the influence
from the following factors:

. pouring order during execution;

. number of vessels to pour; and

. number of demonstrations used for MI
derivation.

We also analyzed the time complexity during task
execution, which is expected to match that predicted by
the algorithm for intention derivation in Section 2.1. In
the coffee-making task, the operator uses a spoon to
scoop coffee powder, sugar, or milk from the jars into
the coffee cup and stir. The number of jars is fixed for
the experiments, but the operator can access the same
jar(s) one or several times. In addition to the perfor-
mance on this coffee-making task, the effect of number
of demonstrations on MI derivation and time com-
plexity during task execution were also evaluated.
Meanwhile, we also analyzed how the presence of the
redundant motions affects system performance.

3. Experiment

During the experiments, we applied the proposed
approach for the pouring task shown in Figure 8
first. The experiment was divided into two stages:
(a) human demonstration and (b) robot execution.
Figure 8(a) shows the experimental setup for human
demonstration, which includes the human operator
and the electromagnetic motion tracking system

195Journal of the Chinese Institute of Engineers
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(FASTRAK, manufactured by Polhemus, USA).
There were five vessels randomly placed on the table.
The human operator held a vessel (vessel A) and
poured the content into the other vessels (vessels B, C,
D, and E) on the table. The Polhemus FASTRAK
tracking system, with a sampling rate of 30Hz for each
of the sensors, was used to measure and record the
demonstrated trajectories and positions of the objects.
These trajectories were recorded as 7-D sequences,
which consist of positions and orientations (in the form
of quaternion) in three and four dimensions, respec-
tively, with the position normalized by its standard
deviation. From these recorded trajectories, we applied
the intention derivation algorithm in Section 2.1 to
derive the intention of the human operator from all
possible intentions. We then moved on to the second
stage of the experiment, and let the Mitsubishi RV-2A
6-DOF robot manipulator follow the derived intention
to execute the pouring task under new environmen-
tal states, as shown in Figure 8(b). The proposed
approach was programmed mainly using C language,
executed in a PC with an Intel E6300 CPU, running at
1.86GHz with 3.62Gbyte RAM.

The pouring order for task execution could be the
same or arbitrary, and the vessels to pour into were
{B,C}, {B,C,D}, and {B,C,D,E}, respectively, lead-
ing to six combinations. For each combination, the
human operator demonstrated 18 times, and the total
number of demonstrations was 108. The locations of
the vessels varied during the demonstrations. For each
of the 6 combinations, 8 from the 18 demonstrations
were randomly chosen as the training data for the
intention derivation algorithm to derive the optimal
intention, and each one of the remaining 10 demon-
strations, which was with a pouring order the same as

that corresponding to the optimal intention, chosen as
the testing data to evaluate the performance of the
derived optimal intention. We performed the intention
derivation and evaluation processes five times. Figure 9
shows a typical result for intention derivation for a
four-vessel pouring task, in which {B,C,D,E} were the
vessels to pour into with an arbitrary pouring order. In
Figure 9, delicate motions related to vessels B, C, D,
and E were identified from the trajectory of vessel A,
marked by the yellow, green, blue, and purple blocks,
respectively. It was observed that the delicate motions
were located at those portions with evident tilt-angle
changes, implicating the pouring action. The derived
intention for demonstration 3 was determined to be
optimal among all. We then let the robot manipulator
follow this derived optimal intention to execute the
pouring task, in which the vessels were placed in new
locations. Figure 10 shows the trajectories generated
by the robot manipulator and human operator. Figure
10(a) shows the trajectories of vessels A in the X–Y
plane, where color rectangles of yellow, green, blue,
and purple indicate vessels {B,C,D,E}, respectively,

Figure 8. Experimental setups for the pouring task: (a) human demonstration and (b) robot execution.

Table 1. Average position error between the trajectories of
human operator and robot manipulator.

Vessels Pouring order Error

2 Same 0.052
Arbitrary 0.051

3 Same 0.049
Arbitrary 0.049

4 Same 0.052
Arbitrary 0.045
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Figure 10(b) its variations of the height, and Figure

10(c) its variations of the tilt angle. In Figure 10, the

black line is used for the human operator, and the

color lines for the robot manipulator (red for move

motions and others for delicate motions). In Figure

10(a), the trajectory of the robot manipulator basically

followed that of the human operator. Even with some

deviations, the robot manipulator still managed to

accomplish the pouring task.
To further demonstrate the performance of the

proposed approach, Table 1 lists the average position

errors between the trajectories of the human operator

and robot manipulator for the six combinations of the

pouring task. The average position errors were com-

puted based on the results from the five-time intention

derivation and evaluation processes performed for

each combination, described above. From the close-

ness of the errors presented in Table 1, the number of

vessels and pouring order did not have much effect on

the proposed approach. We then analyzed the effect of

the pouring order. Table 2 lists the average path length

and demonstrating time for task demonstration with

the arbitrary and same pouring orders. It was observed
that the demonstrations with the arbitrary order led to
smaller average path length and shorter demonstrating
time, when the number of vessels was above two. It
might be because the human operator could conduct
the demonstrations more naturally. A short and fast
demonstration also implies fewer samples in the
motion, thus alleviating the computational load. We
also investigated how the number of demonstrations

Figure 10. Experimental results for the four-vessel pouring task executed by both the human operator and robot manipulator
under new environmental states: (a) trajectory in the X–Y plane; (b) variation of the height; and (c) variation of the tilt angle of
vessel A.

Figure 9. Derived intentions for the four-vessel pouring task.

Table 2. Average path length and demonstrating time for
the two pouring orders.

Vessels
Pouring
order

Path
length (m)

Demonstrating
time (s)

2 Same 1.017 3.450
Arbitrary 0.973 3.452

3 Same 1.436 4.900
Arbitrary 1.320 4.569

4 Same 1.776 6.396
Arbitrary 1.523 5.856
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affected the performance of the proposed approach.
Figure 11(a) shows the relationship between the
average position error and number of demonstrations,
where the number of demonstrations increased from
two to eight. From the observation on Figure 11(a),
the proposed approach demanded at least five dem-
onstrations for evident error reduction for the 4-vessels
pouring task, while two demonstrations was enough
for the two- and three-vessel cases. This implies that
the increase of number of vessels did raise the
complexity for the proposed approach to tackle. As
for the aspect of computational load, Figure 11(b)
shows the relationship between the computing time
and number of demonstrations. In Figure 11(b), the
computing time approximately increases in line with
the square of number of demonstrations, which
matches the predicted time complexity discussed in
Section 2.1.

To evaluate its extensibility, we then applied the
proposed approach for a coffee-making task shown in
Figure 12. For this coffee-making task, we employed a
spoon A, a coffee cup B, and jars C, D, and E,
containing coffee powder, sugar, and cream, respec-
tively. The location of cup B might vary, while those of
jars B, C, and D were fixed. During task execution, the
human operator held spoon A to scoop the coffee
powder, sugar, and cream once from jars C, D, and E,
respectively, into cup B, and then stir. The human
operator demonstrated the task 22 times. Using the
same procedure executed in the pouring task above, we
randomly selected eight demonstrations as the training
data for intention derivation and performed the
intention derivation and evaluation processes five
times. We had also conducted the task for cases
without involving the scooping on jar D or E,
indicating no sugar or cream was used in coffee

Figure 12. Experimental setups for the coffee-making task: (a) human demonstration and (b) robot execution.

Figure 11. The effect of the number of demonstrations for the pouring task: (a) average position error vs. number of
demonstrations and (b) computing time vs. number of demonstrations.

198 H.-Y. Chan et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
08

 2
7 

A
pr

il 
20

14
 



making, and also cases involving multiple scooping on
the coffee powder, sugar, or cream. Experimental
results show that the proposed approach handled all
these cases well.

Figure 13 shows a typical result for intention
derivation for the coffee-making task involving the
scooping of coffee powder, sugar, and cream once. In
Figure 13, delicate motions related to jars C, D, and E
and cup B were identified from the trajectory of spoon
A, marked by two kinds of color blocks (green for jars
C, D, and E, and yellow for cup B). The derived
intention for demonstration 2 was determined to be
optimal, and used by the robot manipulator to execute
the task again with cup B in a new location. Figure 14
shows the trajectories generated by the robot manip-
ulator and human operator. Figure 14(a) shows the
trajectories of spoon A in the X–Y plane, where color
rectangles of yellow, green, blue, and purple indicate
cup B and jars C, D, and E, respectively, Figure 14(b)
shows variations of height, and Figure 14(c) variations
of tilt angle. In Figure 14, the black line is used for the
human operator, and the color lines for the robot

manipulator (red for move motions and others for
delicate motions). In Figure 14(a), the trajectory of the
robot manipulator followed that of the human oper-
ator to a certain extent. Meanwhile, the robot
manipulator accomplished this coffee-making task
successfully. Figure 15(a) shows the relationship
between the average position error and number of
demonstrations, implicating the proposed approach
might need at least four demonstrations for evident
error reduction. Also, Figure 15(b) shows the relation-
ship between the computing time and number of
demonstrations, which also yields that the computing
time approximately increases in line with the square of
the number of demonstrations.

For further evaluation on its robustness, we ana-
lyzed how the presence of redundant operations during
demonstration may affect system performance. The
analysis was based on the two-vessel pouring task.
Among a group of two-vessel demonstrations, we
gradually added in some demonstrations involving
three or four vessels, taken as the introduction of the
redundant operations. With this, we attempted to find

Figure 13. Derived intentions for the coffee-making task.

Figure 14. Experimental results for the coffee-making task executed by both the human operator and robot manipulator under
new environmental states: (a) trajectory in the X–Y plane; (b) variation of the height; and (c) variation of the tilt angle of
spoon A.
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out whether the proposed approach could still suc-
cessfully recognize that the demonstrations were
intended for the two-vessel pouring task, even with
some proportion of the demonstrations involving
redundant operations. Table 3 lists the number of
successes out of 10 tests where the number of demon-
strations involving 3 or 4 vessels increased from 1 to 4
out of a total of 8 demonstrations. The proposed
approach still reached quite high a success rate at 80%,
when the demonstrations involving redundant opera-
tions consisted of half of the total demonstrations,
since they usually led to larger Emax in deriving the
optimal MI, formulated in Equation (9).

4. Conclusion

In this article, we have proposed a novel approach for
intention deduction from demonstrated trajectories for
tool-handling tasks. The proposed approach does not
demand pre-specified motions or put constraints on
motion speed during demonstration, and it allows the
event order to be altered and the presence of redundant
operations. The demonstration can thus be executed in
a natural and effective manner. In realization, the
concept of cross-validation and the algorithm based on
dynamic programming have been employed to search
for the optimal intention. We have performed a series

of experiments and analyses to demonstrate extensi-
bility and robustness based on both the pouring and
coffee-making tasks. In future work, we will apply the
proposed approach for various types of tasks related to
home-like environments.
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Nomenclature

D delicate motion
E the difference between generated

motion and validating motion
G generated motion
i an index of training motions or gen-

erated motions
j, k an index of delicate motions or move

motions
M move motion
MI an index linking to a set of delicate

motions
Q a motion consists of delicate motions

and move motions
T training motion
V validating motion
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