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A finite element formulated on the basis of the layerwise linear 
displacement theory is used to study the first-ply failure of moderately thick 
laminated composite plates. In the finite element formulation, a laminated 
composite element is divided into a number of mathematical layer groups 
and displacements are assumed to vary linearly in each layer group which 
contains eight nodal points. The accuracy of the finite element in predicting 
displacements and stresses has been verified by comparing results with 
experimental data and previously obtained analytical results. The finite 
element is used to determine the first-ply failure loads of a number of 
laminated composite plates on the basis of several phenomenological 
failure criteria. The capabilities of the failure criteria in predicting first-ply 
failure loads are investigated by comparing the finite element first-ply 
failure loads with the experimental ones. It has been found that the failure 
criteria can yield reasonably good results for the cases considered. 

1 INTRODUCTION 

Due to their high stiffness/strength to weight 
ratios and long fatigue life, laminated composite 
materials have recently found extensive appli- 
cations in the construction of mechanical, aero- 
space, marine and automotive structures which, 
in general, require high reliability. For relia- 
bility assurance, the predictions of the failure 
process of laminated composite structures and 
the maximum loads that the structures can with- 
stand before failure occurs have thus become an 
important topic of research. In particular, the 
first-ply failure analysis of laminated composite 
plates subjected to transverse loads has drawn 
close attention in recent years.le9 For example, 
Turvey’-4 used analytical methods to study the 
linear and nonlinear first-ply failure loads of 
simply supported symmetrically and anti- 
symmetrically laminated composite plates based 
on the classical lamination theory; Reddy and 
his associates5T6 used the finite element method 
which is formulated on the basis of the first 
order shear deformation theory to calculate the 
linear and nonlinear first-ply failure loads of 
laminated composite plates based on several 
phenomenological failure criteria; Kam and his 
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associates7-lo studied the first-ply failure loads, 
first-ply failure probabilities and ultimate loads 
of linear and nonlinear laminated composite 
plates. Most of the previous works, however, 
have been concentrated on first-ply failure 
analysis of thin laminates under transverse 
loads. Not much work on failure of moderately 
thick laminates has been reported in the lit- 
erature. In this paper, a finite element 
formulated on the basis of the layerwise linear 
displacement theory is presented for studying 
the deformation and first-ply failure of thick 
laminated composite plates. The accuracy of the 
proposed finite element method is validated via 
the comparison of the present finite element 
results with those reported in the literature. Its 
ability in predicting first-ply failure loads of 
laminated composite plates is studied using 
experimental data. 

2 LAYERWISE LINEAR DISPLACEMENT 
THEORY 

The laminated composite plate under consid- 
eration is made of a number of orthotropic 
layers of equal thickness. The x and y coor- 
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dinates of the plate are taken in the midplane 
of the plate which has area a x b and thickness 
h. In the plate analysis, the thickness of the 
laminated composite plate in Fig. la is divided 
into a number of mathematical layer groups in 
which the displacement components of 
layer group are assumed to vary linearly. 

(i) Displacement in x-direction 

u1= U”+tl$xI 

and 

each 

the mid-plane; $Xi, $yi, $zi are rotational 
degrees of freedom of the ith layer group; NL is 
number of layer groups; ti is the thickness of the 
ith layer group. It is noted that no summation is 
performed in the above equations if (i -2) is 
less than k. Figure 2 shows the displacements of 
the layer groups across plate thickness in the X- 
direction. 

U~=U,+:$X~+ ‘i2 tk$.xk+5i$xi 

k = 2,4, ~~ 

(i = 2, 4, 6, . . . , NL - 1) 
(l) 
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(ii) Displacement in y-direction 

&=%+:$yi+ ‘i2 tk$yk+<i$yi 

k = 2,4,- 

(i = 2, 4, 6, . . . , NL - 1) (2) Yyz = z+-, Ynz = dz+z 
aY 

Vi= V(j-+ l/?y;1- 

i-2 

c tk$yk + &$yi 

k=3,5,- 

(i = 3, 5, 7, . . . , NL) 

(iii) Displacement in z-direction 

(i = 2, 4, 6, . . . , NL - 1) 

Wi=W(J-~$~I_ 

i-2 

c tk$zk + h$zi 

k = 3,5,- 

(i = 3, 5, 7, . . . , NL) 

where [i is the local coordinate for the ith layer 
group; Ui, vi, wi are displacement components in 
the x, y, z directions, respectively, for the ith 
layer group; uo, uo, w. are the displacements in 

The constitutive relations of a lamina with 
fiber angle 6 are expressed as 

where o,, . . . . zV are stress components; E,, . . . , 

yxu are strain components; Q, are material stiff- 
ness coefficients in the reference coordinate 
system. Expressions for evaluating &ii can be 
found in Ref. 11. Based on the linear elasticity 
theory, the strain-displacement relations are 
expressed as 

au aw au aw 

(5) 

The strain in each layer group can be obtained 
by substituting eqns (l)-(3) into eqn (5). For 
instance, strains in an even number layer group 
are written as: 

au0 tl wxl i-2 
ahk ahi 

&x; - --+-- 
ax 2 ax + tk 

-++i- 
k=2,4- ax ax 

au0 h wyl i-2 

-p+- 
atiYk atiyi 

5; - ay -+ c 
2 aY 

tk -+ ci- 

k=2,4- aY aY 



First-ply failure analysis 585 

aw0 t1 Wzl i-2 

yui = $xi +-++ - 
a&k 

ax 2 ax + 1 ‘k- 
k=2,4,- 8X 

atizi 

+ ti - 

ax 

i-2 + 1 tk 
ahk ahk 
-+- 

k=2,4,- ay ax 

(i = 2, 4, 6, . . . , NL - 1) 

Similarly, no summation is performed 
above equation if (i - 2) is less than k. 

3 FINITE ELEMENT FORMULATION 

in the 

i- 
corner nodal point 

8T7 
4. .3 

_( integration point 

1’ ‘2 

5 6 

(a) Laminated plate (b) Integration points in a layer group 
of an element 

Fig. 1. Geometry and loading conditions of a laminated composite plate. 
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Fig. 2. Layerwise displacement components and local coordinates of layer groups. 

In the finite element formulation, the plate is 
discretized into a number of elements which are 
connected together via the nodes at the layer 
groups of the elements. The displacements at 
any point in each layer group are obtained via 
interpolation based on the layer nodal displace- 
ments and appropriate shape functions. 

uO=Nti vO=Nfi wO=N@ 

ti.xi = N$.xi $_vi = N$yi 
(7) 

where N is a 1 x ND shape function vector; n 
denotes layer group nodal displacement vector; 
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ND is number of layer group nodes. Herein, a 
quadratic (ND = 8) formulation of the serendip- 
ity family with reduced integration of 2 x 2 
Gauss rule is used for each layer group in con- 
structing the element stiffness matrix. In view of 

eqns (4)7 (6) and (7) the load-displacement 
equations of the laminated plate are obtained 
via the standard finite element procedure as 

KV=P (8) 

K, V, P are structural stiffness matrix, nodal 
displacement vector, and nodal force vector, 
respectively. In the stress analysis, the stresses 
at the four corner nodes in Fig. lb are obtained 
from those at the integration points using the 
following extrapolation equations, 

-0*5(oz+cL$) i = 0, 2 
(9) 

-05(cQ+a3) i=o, 2 

where ai (i = 1, . . . , 4) are stresses at integration 
points; oj (i = 5, . . . , 8) are the corresponding 
stresses at the corner points. It is noted that the 
stress components in the thickness (2) directions 
obtained by the present finite element model do 
not satisfy equilibrium conditions at the inter- 
faces between layer groups. To remedy this 
shortcoming, the plate thickness is divided into 
several regions and each region contains a num- 
ber of layer groups. In each region the stress 
components in the z-direction are approximated 
by the following cubic equation, 

aiz(x,y, 2) = ao+alz+azz2+a3z3 i=x,y,z 

(10) 

The constants ai (i = 0, . . . , 3) are determined 
by the use of the least squares method with the 
observation of the stress boundary conditions at 
the top and bottom surfaces of the plate and 
the stress continuity conditions at the boundary 
of two neighbouring regions. The stresses 
obtained in the finite element analysis are then 
used to study the first-ply failure of the lami- 
nated plate. The load that makes the first-ply 
fail will be calculated based on five different 
failure criteria.’ 

(i) Maximum stress criterion (Independent) 

The maximum stress criterion states that the 
stresses in the principal material directions must 
be less than the respective strengths, otherwise 
fracture is said to have occurred, that is, 

61 <x,; 03 <z,; fJ5 < s 
(11) 

c2 < YT; a,<R; qj<S 

where cl, rr2, rr3 are normal stress components, 
04, ~5, 06 are shear Stress COmpOnentS, XT, YT, 

ZT are the lamina normal strengths in the 1, 2, 
3 directions and R, S are the shear strengths in 
the 23 and 12 planes, respectively. When cl, cr2, 
cr3 are of a compressive nature they should be 
compared with XC, YC, ZC which are normal 
strengths in compression along the 1, 2, 3 direc- 
tions, respectively. 

(ii) Maximum stress criterion (Polynomial) 

The polynomial type maximum stress criterion 
can be expressed as 

(01 -xT)(g1 +XC>(CT2--T)(~2+YC)((T3-ZT) 

x (~~+ZC)(~~-R)(Q~+R)(~~-S)(~~+S) 

x (a,-S)(&j+S) = 0 (12) 

(iii) The Hoffman’s criterion 

The Hoffman’s criterion can be expressed as 

1 1 1 1 

y 
_p +- +- 

X,x, YTYC ZTZc 
(c2-03)2 

-_- 

1 1 
-++-- 

yTyC ZTZC > 
(01 - (J2)2 

+ F2>1 
( > 

(iv) The Tsai-Hill criterion 

The Tsai-Hill criterion can be expressed as 

(13) 
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Table 1. Material properties of composite materials 

El 
E2 

E3 
GE = G,s 
G23 

012 = VI3 

u23 

Material constants 

Material I 

25 x lo6 psi 
lo6 psi 
lo6 psi 
0.5 x lo6 psi 

lo6 0.5 x psi 
0.25 
0.25 

Material II 

142.50 Gpa 
9.79 Gpa 
9.79 Gpa 
4.72 Gpa 
1.192 Gpa 
0.27 
0.25 

XT 
XC 
Y,=Z, 
Y,=Z, 
R 
S=T 

Strength 

Material I 

- 

Material II 

2193.5 Mpa 
2457.0 Mpa 

41.3 Mpa 
206.8 Mpa 

61.28 Mpa 
78.78 Mpa 

-( 
1 1 12 

-F+F+F c203 
> 

1 1 1 
- (- X2 

-FfF Cl63 
1 

(14) 

The values of X, Y, 2 are taken as either X,, Yr 
and ZT or as X,, Yc and Zc depending upon 
the sign of crl, (TV and g3, respectively. 

(v) Tsai-Wu criterion 

The Tsai-Wu criterion can be expressed as 

FiOi+FqOicj>l (15) 

where 

F,=$-f 
T C 

1 1 1 
F11 = - ; F22 = 

xT& 

- ; F33 = - 
YTYC ZT-ZZ 

Fd4 = -$ ; F,, = + ; Fe6 = 5 

1 
F,2= - 

2/x= ; 

Table 2. Properties of laminated plates and load 
applicator 

Plate 

Length a 
Ply thickness hi 
Lamination 

Load applicator radius r 

Values 

100 mm 
0.155 mm 
w90"41,, P~9@3ls 
5.0 mm 

1 
F13 = - 

2 &X&T& ; 

1 
F 23 = - 

4 EXPERIMENTAL INVESTIGATION 

To verify the validity and accuracy of the pro- 
posed finite element, several centrally loaded 
laminated composite square plates of various 
lamination arrangements and side-to-thickness 
ratios were tested to failure. The laminated 
composite plates were made of graphite/epoxy 
(Q-1115) prepreg tapes supplied by Toho Co., 
Japan, with the material properties (Material 
II) determined experimentally and given in 
Table 1. The experimental apparatus consists of 
a lo-ton Instron testing machine, an acoustic 
emission (AE) system (AMS3), a linear vertical 
displacement transducer (LVDT), a data acqui- 
sition system, a steel load applicator with a 
spherical head, and a fixture for clamping the 
specimens. The dimensions of the laminated 
plates and the load applicator are given in 
Table 2. The fixture was made up of two steel 
frames which were connected together by four 
bolts. A stroke control approach was adopted in 
constructing the load-deflection relations for 
the laminated plates. The loading rate was slow 
enough for inertia effects to be neglected. Dur- 
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Table 3. Nondimensional deflections and stresses of [O“/!M“], plate under transverse sinusoidal load 

Pagan0 & Hatfield’* 
Present (3 lal:rs) 
Reddy FEM 
Panda & Natarajan14 
Mawenya & Davies” 
Pagan0 & Hatfield’* 
Present (3 la&:rs) 
Reddy FEM 
Panda & Natarajan14 
Mawenya & Davies” 

1.709 0.559 
1.685 0.561 
1534 0.484 
1.448 0.532 
2.034 0.542 
l-189 0.543 
1.182 0.554 
1.136 0.511 
1.114 0.557 
1.273 0.546 

- 

0.309 
0.316 
0.287 
0.307 

- 

0.0276 
0.0277 
0*0234 
0.0250 
0.0292 
0.0230 
0.0234 
0.0214 
0.0231 
0.0239 

dz3W _ h*a _ h*T 
*=- cc- z=- 

p0a4 ’ poa2 ' poa2 

{4G12+[&+(1+2~12)~2]/(1-U12U21)}~~ 
a= 

12 

*: Evaluated at Gauss point. 
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Data Acquisition 
Systein 

Fig. 3. A schematic description of the experimental setup. 

ing loading, the LVDT displacement gage and 
data acquisition system were used to measure 
deflection data and construct the load-displace- 
ment curve of the laminated plate under testing. 
In addition, two acoustic emission sensors were 
used to measure the stress waves released at the 
AE sources in the laminated plate. The meas- 
ured acoustic emissions were converted by the 
AMS3 (AE) system to a set of signal describers 
such as peak amplitude, energy, rise time and 
duration which were then used to identify the 
first-ply failure load of the laminated plate. A 

schematic description of the experimental pro- 
cedure is shown in Fig. 3. As an example, Fig. 4 
shows the load-displacement curve obtained 
from experiment and Fig. 5 the load-energy 
relations derived from the AE system for the 
[oOJ900,]s plate. 

5 RESULTS AND DISCUSSION 

The accuracy of the proposed finite element in 
predicting displacements and stresses is first 
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Fig. 4. Load-displacement curve of the [0”8/903, plate. 
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Fig. 5. Load-energy relations derived from AE system 
for the [O”~900,].T plate. 

studied by comparing results with experimental 
data or analytical results reported in the lit- 
erature. The static analysis of a simply 
supported [0”/90”], square plate of material I 
under sinusoidal transverse load is performed. 
The results for length-to-thickness ratio a/ 
h = 10 and 20 using 4 x 4 mesh for a quarter of 
the plate and three layer groups are listed in 
Table 3 in comparison with the results obtained 
by other researchers. It is noted that the stres- 
ses obtained by the present method are in good 
agreement with those obtained by the elasticity 
solution.12 Furthermore, the continuous dis- 
tribution of transverse shear stress z, obtained 
by the present method using five layer groups 
for a simply supported [O”/900/O”] square plate 
of a/h = 4 and material I in Fig. 6 illustrates the 

Fig. 6. Distribution of transverse shear stress T, for 
[0”/90”/0”] plate subject to sinusoidal load. 

feasibility and accuracy of the present method. 
A 32-layer [Og900,JS plate of material II was tes- 
ted and the load-displacement curve has been 
shown in Fig. 4. The center displacement of the 
plate under 1000 N was measured as O-24 mm. 
Using this present finite element method with 
4 x 4 mesh for a quarter of the plate and three 
layer groups, the displacement is computed as 
O-212 mm which gives an error of 11.6% when 
compared with the experimental results. 

Based on several phenomenological failure 
criteria, the present finite element is used to 
predict the first-ply failure loads of 16-layer 
[0”$/900,], and 32-layer [o”d90”,], plates whose 
actual first-ply failure loads have been deter- 
mined experimentally from the mean value of 4 
specimens for each type of lamination scheme 
via the AE system. For comparison purpose, the 
first-ply failure loads of the plates are also com- 
puted using the finite element constructed on 
the basis of the Mindlin plate theory.17 The 
analytical and experimental results are listed in 
Tables 4 and 5 for comparison. It is noted that 
the present finite element method coupled with 
the failure criteria can yield very good results 
when compared with the experimental ones. 

6 CONCLUSION 

A laminated composite material finite element 
formulated on the basis of the layerwise linear 
displacement theory was presented. The accu- 
racy of the finite element was verified by the 
experimental data obtained in this study and 
analytical results available in the literature. The 
finite element was used to study the first-ply 
failure load of moderately thick laminated 
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Table 4. Experimental and analytical first-ply failure loads of the [OY#JO”,], plate 

A. Experimental B. Analytical (N) 
(N) 

Failure criterion Present method Error Mindlin theory Error 
(BI) A -B1 

I I 

Q32) 

% 
A -B2 

I I 

% 
A A 

647.0 Polynomial maximum stress 654.11 
Tsai-Hill 658.85 

::; 716.20 10.7 
721.23 11.5 

Hoffman 654.80 1.2 716.91 10.8 
Tsai-Wu 696.72 7.7 75964 17.4 
Independent maximum stress 673.44 4.1 764.76 18.2 

‘IBble 5. Experimental and analytical first-ply failure loads of the [0”$90”,], plate 

A. Experimental 
(N) 

B. Analytical (N) 

Failure criterion Present method Error Mindlin theory Error 
(Bl) A -B1 

I I 

P2) 

% 
A-B2 

I I 

% 
A A 

2 136.0 Polynomial maximum stress 2 086.88 2.3 2391.98 12.0 
Tsai-Hill 2 100.81 1.6 2 405.44 12.6 
Hoffman 2 088.85 ;:; 2 393.69 12.1 
Tsai-Wu 2 207.07 2494.50 16.8 
Independent maximum stress 2 200.83 3-o 2 79346 30.8 

composite plates based on several phenomeno- 
logical failure criteria. Experiments were 
performed to determine the actural first-ply fail- 
ure loads of the plates. The comparison 
between the analytical and experimental results 
indicated that the present finite element cou- 
pled with phenomenological failure criteria are 
appropriate for the first-ply failure analysis of 
moderately thick laminated composite plates. 
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