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Abstract Nonogram is one of logical games popular in
Japan and Netherlands. Solving nonogram is a NP-complete
problem. There are some related papers proposed. Some use
genetic algorithm (GA), but the solution may get stuck in
local optima. Some use depth first search (DFS) algorithm,
the execution speed is very slow. In this paper, we propose a
puzzle solving algorithm to treat these problems. Based on
the fact that most of nonograms are compact and contiguous,
some logical rules are deduced to paint some cells. Then, we
use the chronological backtracking algorithm to solve those
undetermined cells and logical rules to improve the search
efficiently. Experimental results show that our algorithm can
solve nonograms successfully, and the processing speed is
significantly faster than that of DFS. Moreover, our method
can determine that a nonogram has no solution.

Keywords Japanese puzzle · Nonogram · Depth first
search · Chronological backtracking

1 Introduction

Nonogram, also known as Japanese puzzle, is one of log-
ical games popular in Japan and Netherlands. The ques-
tion “Is this puzzle solvable?” is a NP-complete problem

C.-H. Yu · H.-L. Lee · L.-H. Chen (�)
Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan, ROC
e-mail: lhchen@cc.nctu.edu.tw

C.-H. Yu
e-mail: Sharon@debut.cis.nctu.edu.tw

H.-L. Lee
e-mail: huilung@debut.cis.nctu.edu.tw

[1, 2]. Some related papers [3, 4] solved this problem by
non-logical algorithms, and the execution speed is slow. In
the following, we will give a brief review.

1.1 Nonograms

Figure 1(a) shows a simple nonogram. The positive integers
in the top of a column or left of a row stand for the lengths
of black runs in the column or row respectively. The goal
is to paint cells to form a picture that satisfies the following
constraints:

1. Each cell must be colored (black) or left empty (white).
2. If a row or column has k numbers: s1, s2, . . . , sk , then

it must contain k black runs—the first (leftmost for
rows/topmost for columns) black run with length s1, the
second black run with length s2, and so on.

3. There should be at least one empty cell between two con-
secutive black runs.

It is evident that the puzzle in Fig. 1(a) has a unique so-
lution shown in Fig. 1(b). However, the puzzle in Fig. 2 has
two solutions, Fig. 2(b) is the first solution, Fig. 2(c) is the
second solution, and the puzzle in Fig. 3 has no solution (i.e.
no corresponding picture). Hence, there may be none, exact
one, or more than one solution for given integral numbers.
Note that a puzzle solution can be considered as a black-

white picture. Here, we use as a colored (black) cell,

as an empty (white) cell, and as an unknown cell
(i.e. an undetermined cell).

1.2 Constraint satisfaction problem

Formally speaking, the constraint satisfaction problem
(CSP) is composed of a finite set of variables, X1,X2,
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. . . ,Xn, each of Xi is associated with a domain Di of pos-
sible values, and a set of constraints, C1,C2, . . . ,Cn [5].
The solution of CSP is to find a legal assignment that any
variable will be assigned a value without violating any con-
straint. In fact, a nonogram can be modeled as a CSP. Each
cell in a nonogram is a variable with domain: black, white
or grey. The chronological backtracking (CB) is a depth
first search based algorithm and commonly used for solv-
ing CSP. The algorithm chooses one variable at a time and
backtracks to the last decision when it becomes unable to
proceed [5]. For obtaining the solution efficiently, CB algo-

Fig. 1 Nonogram. (a) A simple puzzle. (b) The solution of (a)

Fig. 2 A puzzle with two solutions. (a) A puzzle example. (b) The
first solution. (c) The second solution

rithm with look ahead strategy will be applied to reduce the
search space and detect illegal assignment.

1.3 Previous works

In 2003, Batenburg [3] proposed an evolutionary algorithm
for discrete tomography (DT). DT is concerned with the re-
construction of a discrete image from its projections [4].
Nonograms can be considered as a special form of the DT
problem. Figure 4 shows an example to explain the differ-
ence between them. Batenburg and Kosters [4] modified the
evolutionary algorithm to solve nonogram. Since the evolu-
tionary algorithm in [3] will converge to a local optimum,
the obtained solution may be incorrect.

In 2004, Wiggers [6] proposed a genetic algorithm (GA)
and a depth first search (DFS) algorithm to solve nonograms.
He also compared the performance of these two algorithms.
For a puzzle of small size, DFS algorithm is faster than GA;
otherwise, GA is faster. However, both methods are slow,
and the GA algorithm may get stuck in local optima. In the
following, we will give a brief description for the DFS algo-
rithm.

1.4 Depth first search (DFS)

In DFS, all possible solutions of each row are generated.
Figure 5 gives an example to illustrate the DFS algorithm.
Figure 5(a) shows a nonogram. Figure 5(b) shows the cor-
responding DFS tree of Fig. 5(a), (r.i1, . . . , r.ij , . . . , r.ik) in
each node stands for the first black run of row r starting at
position i1, and the j th black run of row r starting at posi-
tion ij . Figure 5(c) shows all possible solutions in the tree.
Each possible solution corresponds to a path from root to
a leaf node, find all paths using DFS and then use the col-
umn information (the numbers in the top of each column) of
the puzzle to verify each possible solution. A possible so-
lution will be considered as a true solution, if it satisfies all
columns’ restrictions. Through the verification process, we

Fig. 3 A puzzle with no
solution. (a) A puzzle example.
(b) If the first five cells are black
in row 3, there is no solution in
rows 2 and 4. (c) If the last five
cells are black in row 3, there is
no solution in row 4
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Fig. 4 DT problem and nonogram. (a) DT problem. (b) Nonogram

can see that only the fourth possible solution in Fig. 5(c) is
the true one.

Note that both of the evolutionary algorithm presented
in [4] and the genetic algorithm (GA) described in [6] will
converge to a local optimum, so sometimes the obtained so-
lution may get stuck in local optima. Although the DFS al-
gorithm proposed in [6] can always find a correct solution,
it takes much longer time than GA when solving large puz-
zles. To solve these problems, in this paper, we consider the
nonogram as a CSP problem. The CB algorithm will be ap-
plied to search for solution. In order to speed up the search,
some logical rules (LR) are considered as CSP filters to de-
termine as many unknown cells as possible in a nonogram.
On the other hand, LRs are used for detecting unsatisfiable
cases and reducing the search space.

The remainder of this paper is organized as follows. The
proposed algorithm is presented in Sect. 2. In Sect. 3, sev-
eral experimental results are shown. Finally, conclusions are
made.

2 Proposed method

In a general nonogram game, we usually paint those cells
which can be determined immediately at first. Then, the rest
of undetermined cells will be solved by guess. Based on this
fact, we propose a method to solve nonograms automati-
cally. At first, a puzzle will be solved by logical rules until all
logical rules can not be applied. Then, the proposed method
will use CB to visit a possible solution (an internal node) in
a row and the column information is used to do verification.
All logic rules will be immediately applied first before we
use CB to visit the next node. The proposed method will re-
currently run these steps until we obtain a solution (a leaf
node).

2.1 The first phase: logical rules (LR)

One may use some rules [7] to solve nonograms. In this
phase, eleven rules with a new concept of range of a black
run are proposed. These rules can be divided into three main
parts. The first part is used to determine which cells should
be colored or left empty, the second part is used to refine
the ranges of black runs, and the third is used to determine
which cells should be colored or left empty and to refine the
ranges of black runs.

Note that in [7], the rules of “ ” and

“ ” are similar to our rules. Some are composed
of our several rules. Some are the same as ours. Our pro-
posed rules 1.3, 1.4, 2.1, 2.3, 3.1, 3.3-2, and 3.3-3 are new

idea. And our rules do not include the rules of “ ”

in [7] since the rules of “ ” provide an undeter-
mined guess. In our method, our rules are used for reducing
the search space. Hence, the rules must provide a determined
answer to eliminate some cases.

In the beginning, all cells in a puzzle are considered as
unknown. Then each rule is applied in each row and then
in each column. The total eleven rules are executed sequen-
tially and iteratively. In some iterations, some unknown cells
will be determined. However, in some iterations, maybe
only the ranges of some black runs are refined. Thus, if
no unknown cell is determined and no black run’s range is
changed, we will stop using logical rules and start to apply
CB algorithm.

Since all rules are applied to each row and column, we
only take a row as an example to explain the proposed algo-
rithm.

Preliminary for run range

The position where a black run may be placed plays an im-
portant role. An idea about the range (rjs,rje) of a black
run j is proposed, where rjs stands for the left-most possi-
ble starting position of run j , and rje stands for the right-
most possible ending position. That is, black run j can only
be placed between rjs and rje . If the range of each black
run is estimated more precisely, we can solve puzzle more
quickly. Note that for each black run, we must reserve some
cells for the former black runs and the later ones. Figure 6
gives an example to illustrate the idea. Figure 6(a) shows a
special row with three black runs of lengths 1, 3, and 2, re-
spectively. Figure 6(b) shows the left-most possible solution
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Fig. 5 An example to illustrate
the DFS algorithm for solving
nonogram. Only solution (4) is
correct

and the left-most possible starting position of each run. Fig-

ure 6(c) shows the right-most possible solution and the right

most possible ending position of each run.

Thus, in the beginning, the initial range of a black run in

a row is set between its left-most possible position and its

right-most possible position. In the following, we will give
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Fig. 6 An illustration of an
initial black run range.
(a) A special row of a puzzle.
(b) The left-most possible
solution of (a). (c) The
right-most possible solution
of (a)

a formal formula to calculate the initial run range of each
black run.

Initial run range estimation

Let the size of each row with k black runs be n and the cells
in the row with index (0, . . . , n − 1), we can use the follow-
ing formula to determine the initial range of each black run.

r1s = 0,

rjs =
j−1∑

i=1

(LBi + 1), ∀j = 2, . . . , k

rje = (n − 1) −
k∑

i=j+1

(LBi + 1), ∀j = 1, . . . , k − 1

rke = n − 1

(1)

where LBi is the length of black run i.
Using formula (1), we can get the initial ranges of the

three black runs in Fig. 6(a), which are (0, 2), (2, 6), and
(6, 9), respectively.

Rules in Part I

There are five rules in this part, all are used to determine
which cells to be colored or left empty.

Rule 1.1

For each black run, those cells in the intersection of all the
possible solutions of the black run must be colored. In fact,
the intersection of all possible solutions is the intersection
of the left-most possible solution of the black run and the
right-most possible solution of the black run. It is obvious
that the intersection exists when the length of the black run’s
range is less than two times the actual length of the black
run. Figure 7 shows an example. Consequently, we provide
Rule 1.1 to paint the cells sure to be colored. In the rule, ci

stand for the cell with index i.

Rule 1.1 For each black run j , cell ci will be colored when
rjs + u ≤ i ≤ rje − u, where u = (rje − rjs + 1) − LBj

Fig. 7 An example of Rule 1.1

Rule 1.2

When a cell does not belong to the run range of any black
run, the cell should be left empty. Rule 1.2 is provided to do
this work.

Rule 1.2 For each cell ci , it will be left empty, if one of the
following three conditions is satisfied

(1) 0 ≤ i < r1s ,
(2) rke < i < n,
(3) rje < i < r(j+1)s for some j,1 ≤ j < k.

Rule 1.3

For each black run j , when the first cell crjs
of its run range

is colored and covered by other black runs, if the lengths of
those covering black runs are all one, cell crjs−1 should be
left empty. Similarly, when the last cell crje

is colored and
covered by other black runs, if the lengths of those cover-
ing black runs are all one, cell crje+1 should be left empty.
We provide Rule 1.3 to determine whether cells crjs−1 and
crje+1 should be left empty. Taking Fig. 8 as an example, the
colored cell crjs

in Fig. 8(a) is the starting cell of the range
of the last black run with length 3. It is also covered by the
third black run with length 1. Thus, it must be the third black
run with length 1 (see Fig. 8(b)) or the head cell of the last
black run (see Fig. 8(c)). No matter what case, the cell crjs−1

should be left empty.

Rule 1.3 For each black run j , j = 1, . . . , k

(1) If the lengths of all black run i covering crjs
with i �= j

are all one, cell crjs−1 will be left empty.
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Fig. 8 An example of Rule 1.3.
(a) One row in a puzzle with a
partial painting result. (b) The
cell crjs

belongs to the third
black run with length one.
(c) The cell crjs

is the head cell
of the last black run

Fig. 9 An example of Rule 1.4. (a) One partial painting row of a puz-
zle with maxL = 3. (b) The new black segment length after coloring
ci is 4 > 3. (c) The cell ci should be left empty

(2) If the lengths of all black run i covering crje
with i �= j

are all one, cell crje+1 will be left empty.

Rule 1.4

There may be some short black segments in a row. If two
consecutive black segments with an unknown cell between
them (see Fig. 9(a)) are combined into a new black segment
(see Fig. 9(b)) with length larger than the maximal length
maxL of all black runs containing part of this new seg-
ment, the unknown cell should be left empty (see Fig. 9(c)).
Rule 1.4 is provided to deal with this situation.

Rule 1.4 For any three consecutive cells ci−1, ci , and
ci+1, i = 1, . . . , n − 2.

Let maxL be the maximal length of all black runs con-
taining the three cells.

Assumption: cells ci−1 and ci+1 are black, cell ci is un-
known. If we color ci and find that the length of the new
black segment containing ci is larger than maxL, ci should
be left empty.

Rule 1.5

Some empty cells like walls may obstruct the expansion of
some black segments, we can use this property to color more
cells. Figure 10 gives an example. In this figure, we do not
know ci belonging to which black run. However, an empty
cell ci−2 obstructs the black segment containing ci to ex-
pand to the left side of ci−2. Hence, no matter ci belongs
to the run with length 3 or the run with length 4, cell ci+1

should be colored.
On the other hand, for a black segment covered by a se-

ries of black runs, which have the same length and overlap-
ping ranges, if the length of the black segment equals to the
length of those black covering runs, the two cells next to the
two ends of the black segment are set as empty (see Fig. 11).
Rule 1.5 is proposed to deal with the above two situations.

Rule 1.5 For any two consecutive cells ci−1 and ci, i =
1, . . . , n − 1.

Constraint: cell ci−1 must be empty or unknown, and cell
ci must be black.

Fig. 10 An example of
Rule 1.5. Top: one partial
painting row of a puzzle.
Middle: all possible solutions
for ci . Bottom: the result of
applying Rule 1.5 to top figure
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Fig. 11 An example of Rule 1.5. Top: all black runs containing ci and
ci+1 have the same length 2. Bottom: ci−1 and ci+2 are left empty after
applying Rule 1.5 to top figure

1. Let minL be the minimal length of all black runs cover-
ing ci .

2. Find an empty cell cm closest to ci,m ∈ [i − minL +
1, i − 1]. If cm exists, color each cell cp with i + 1 ≤ p ≤
m + minL.

3. Find an empty cell cn closest to ci, n ∈ [i + 1,

i + minL − 1]. If cn exists, color each cell cp with
n − minL ≤ p ≤ i − 1.

4. If all black runs covering ci have the same length as that
of the block segment containing ci .
(1) Let s and e be the start and end indices of the black

segment containing ci

(2) Leave cells cs−1 and ce+1 empty.

Rules in Part II

This part contains three rules, which are designed to refine
the ranges of black runs.

Rule 2.1

For two consecutive black runs j and j + 1, the start (end)
point of run j should be in front of the start (end) point of
run j + 1. Based on this property, Rule 2.1 is provided to
update the range of each black run j with rjs ≤ r(j−1)s or
rje ≥ r(j+1)e .

Rule 2.1 For each black run j , set

{
rjs = (r(j−1)s + LBj−1 + 1), if rjs ≤ r(j−1)s

rje = (r(j+1)e − LBj+1 − 1), if rje ≥ r(j+1)e

Rule 2.2

There should have at least one empty cell between two con-
secutive black runs, so we should update the range of black
run j if cell crjs−1 or crje+1 is colored. Rule 2.2 is proposed
to treat this situation.

Fig. 12 An example of Rule 2.3

Rule 2.2 For each black run j , set

{
rjs = (rjs + 1), if cell crjs−1 is colored
rje = (rje − 1), if cell crje+1 is colored

Rule 2.3

In the range of a black run j , maybe one or more than one
black segment exist. Some black segments may have lengths
larger than LBj , but some not. For each black segment with
length larger than LBj , if we can determine that it belongs
to the former black runs of run j or the later ones, we can
update the range of black run j . Rule 2.3 is provided to do
this work. Figure 12 gives an example, the original range of
the second black run is (4, 11). In (4, 11), the length of the
first black segment, FS, is 3 which is larger than the length
(2) of the second black run, FS belongs to the first black run.
The range of the second black run can be updated to (8, 11).

Rule 2.3 For each black run j , find out all black segments
in (rjs, rje). Denote the set of these black segments by B .

For each black segment i in B with start point is and end
point ie . If (ie − is + 1) is larger than LBj , set

⎧
⎪⎪⎨

⎪⎪⎩

rjs = (ie + 2), if black segment i only belongs to the
former black runs of run j

rje = (is − 2), if black segment i only belongs to the
later black runs of run j

Rules in Part III

This part is composed of three rules. The purpose of each
rule is not only to determine which cells should be colored
or left empty but also to refine the ranges of some black runs.

Rule 3.1

When several colored cells (see Fig. 13(a)) belonging to the
same black run are scattered, all unknown cells among them
should be colored to form a new black segment, and the run
range can also be updated (see Fig. 13(b)). Rule 3.1 is pre-
sented to treat this situation.

Rule 3.1 For each black run j , find the first colored cell cm

after r(j−1)e and the last colored cell cn before r(j+1)s color
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Fig. 13 An example of
Rule 3.1. (a) One partial
painting row of a puzzle.
(b) The result of applying
Rule 3.1 to (a)

Fig. 14 An example of
Rule 3.2. (a) One partial
painting row of a puzzle.
(b) The result of applying
Rule 3.2 to (a)

Fig. 15 An example of
Rule 3.3-1. (a) One partial
painting row of a puzzle.
(b) The result of applying
Rule 3.3-1 to (a)

all cells between cm and cn, and set
{

rjs = (m − u)

rje = (n + u)

where u = LBj − (n − m + 1)

Rule 3.2

As shown in Fig. 14(a), some empty cells may be scat-
tered over the range of black run j , so there will be sev-
eral segments bounded by these empty cells. The lengths of
some segments may be less than LBj , these segments can
be skipped and the run range can be updated. Rule 3.2 is
proposed to solve this situation. Figure 14(a) shows six seg-
ments in 3’s range. The first two and the last segments with
lengths less than 3 will be skipped and the run range can be
adjusted. Since the length of the forth segment is less than 3
and is covered only by one black run with length 3, it should
be empty. Figure 14(b) shows the result of applying Rule 3.2
to Fig. 14(a).

Rule 3.2 For each black run j , find out all segments
bounded by empty cells in (rjs, rje). Denote the number
of these segments to be b and index them as 0,1, . . . , b − 1.

Step 1. Set i = 0.

Step 2. If the length of segment i is less than LBj , i = i + 1
and go to step 2. Otherwise, set rjs = the start index
of segment i, stop and go to step 3.

Step 3. Set i = b − 1.
Step 4. If the length of segment i is less than LBj , i = i − 1

and go to step 4. Otherwise, set rje = the end index
of segment i, stop and go to step 5.

Step 5. If there still remain some segments with lengths less
than LBj , for each of this kind of segments, if the
segment does not belong to other black runs, all
cells in this segment should be left empty

Rule 3.3

This rule is designed for solving the situations that the range
of black run j do not overlap the range of black run j − 1
or j + 1. First, if black run j does not overlap the range of
black run j − 1, consider the following three cases:

Case 1: Cell crjs
is black (see Fig. 15(a)).

We can finish this black run (see Fig. 15(b)). Rule 3.3-1
is provided to treat this situation.

Rule 3.3-1 For each black run j with Crjs
colored and its

range not overlapping the range of black run j − 1,
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Fig. 16 An example of
Rule 3.3-2. (a) One partial
painting row of a puzzle.
(b) The result of applying
Rule 3.3-2 to (a)

Fig. 17 An example of
Rule 3.3-3. (a) One partial
painting row of a puzzle.
(b) The result of merging two
black segments. (c) The result of
applying Rule 3.3-3 to (a)

(1) Color cell Ci , where rjs + 1 ≤ i ≤ rjs + LBj − 1 and
leave cell Crjs−1 and Crjs+LBi

empty
(2) Set rje = (rjs + LBj − 1)

(3) If the range of black run j + 1 overlaps the range of
black run j , set r(j+1)s = (rje + 2)

(4) If r(j−1)e = rjs−1, r(j−1)e = rjs−2

Case 2: An empty cell cw appears after a black cell cb (see
Fig. 16(a)).

It should be true that each cell after cw will not belong
to black run j . Rule 3.3-2 is provided to refine the range of
black run j as shown in Fig. 16(b).

Rule 3.3-2 For each black run j with its range not over-
lapping the range of black run j − 1, if an empty cell cw

appears after a black cell cb with cw and cb in the range of
black run j . Set rje = w − 1

Case 3: There is more than one black segment in the range
of black run j (see Fig. 17(a)).

In (rjs, rje), find the first and second black segments. If
the length of the new run after merging these two black seg-
ments by coloring those cells between these two segments is
larger than LBj , then these two segments should not belong
to the same run. Otherwise, keep checking the length of the
new run after merging the first and third black segments. The
process will be repeated until all black segments in (rjs,rje)

have been checked or a black segment i is found such that
the length of the new run after merging the first black seg-
ment and black segment i is larger than LBj . Rule 3.3-3 is
provided to deal with this situation. Figure 17 gives an ex-
ample. In Fig. 17(a), the black run with length 4 covers two
black segments. The length after merging these two black

segments is 5 (see Fig. 17(b)), which is larger than 4, thus
we can update the run range as shown in Fig. 17(c).

Rule 3.3-3 For each black run j with its range not overlap-
ping the range of black run j − 1, if there is more than one
black segment in the range of the black run j , find out all
black segments in (rjs,rje).

Denote the number of these black segments to be b and
index them as 0,1, . . . , b − 1.

Step 1. Set i = 0
Step 2. Find the first black cell cs in black segment i

Step 3. Set m = i + 1
Step 4. If m < b, find the first black cell ct and the end black

cell ce in black segment m,

If (e − s + 1) > LBj , stop and set rje = t − 2. Otherwise,
m = m + 1 and go to step 4.

If the range of black run j does not overlap the range
of black run j + 1, we can use the similar way to treat this
situation.

2.2 The second phase: chronological backtracking with LR
filter

The chronological backtracking (CB) is a depth first search
based algorithm [5] and commonly used for solving CSP.
CB is an exhaustive search, so it can find the puzzle solution
eventually. Since the CB is time-consuming, here we use the
LR to raise the processing speed.

One thing should be mentioned at first, we use row in-
formation to build a DFS tree, and the column information
is used immediately to do verification when a row is used
to create a layer. It means that every layer of the DFS tree
is composed of row information, and all nodes in each layer
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Fig. 18 An example of
chronological backtracking with
LR filter. (a) A given puzzle.
(b) The result after applying
LRs to (a). (c) Seven possible
solutions for row 1. (d) The
result after visiting node PS11
and doing column verification.
(e) The result after applying
LRs to (d). (f) Ten possible
solutions for row 2. (g) The
result after visiting node PS21
and doing column verification.
(h) The result after applying
LRs to (g). (i) The result after
visiting the next node (the first
possible solution in row 3) of
the DFS tree and doing column
verification. (j) The result after
applying LRs to (i)

are the possible solutions (PS) for the corresponding row.
Figure 18 gives an example for CB with LR filter.

First, we run the LRs to the nonogram of Fig. 18(a) until
LRs can not be applied. We obtain the result as shown in
Fig. 18(b). There are seven possible solutions for row 1 (see
Fig. 18(c)). Next, we visit the first possible solution PS11 of
row 1 in layer 1 of the DFS tree. Then the column infor-
mation is used to do verification. We will obtain the result
as shown in Fig. 18(d). Subsequently, we apply the LRs to
Fig. 18(d) and the result is shown as Fig. 18(e). There are ten
possible solutions for row 2 (see Fig. 18(f)). Then, we visit
the first possible solution PS21 of row 2 in layer 2 of the
DFS tree. We use the column information to do verification.
We obtain the result as shown in Fig. 18(g). Subsequently,
we apply the LRs to Fig. 18(g) and the result is shown as
Fig. 18(h). We recurrently apply the above procedure to the

remaining rows until the last row is processed. The final re-
sult is shown in Fig. 18(j).

3 Experimental results

To do experiment, we collect 264 puzzles. Most of them
come from [4, 6–8] and few are created by us. A PC (CPU:
AMD Athlon 2600+ 1.92 GHz) is used to run the proposed
method and the methods GA and DFS provided in [6].

Because most nonograms are meaningful, they can be
solved quickly and completely only by logical rules. The
execution time is less than 1 second. If a puzzle cannot be
solved deterministically using logical rules, the unknown
part left can be solved successfully by CB with LR filter.
Figure 19 shows some test image. Using the methods pro-
vided in [6], Figs. 19(a), (b) and (d) take more than 20
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Fig. 18 (continued)

minutes to get the solutions, even an incorrect solution, but
using our proposed logical rules, only about 0.1 second is
needed to solve them correctly. Using the proposed method,
Figs. 19(c) and (f), which are random images (50% black),
needs 13.1 and 23.4 seconds respectively to get the solu-
tions, the speed is slow. The reason is that when black cells
in a puzzle scatter everywhere, the LRs will fail to solve this
kind of puzzles in the first time to apply LRs. Furthermore,
in CB with LR filter, since there are many short black runs
in each row, this produces many possible solutions in each
row and we should check all of them. However, using the
GA or DFS provided in [6], more than 2 days is needed, our
method is still faster.

On the other hand, Fig. 19(e) is solved successfully
within 4.82 minutes using the proposed method. The rea-

son is that there are many short black runs in a row, that is,
many possible solutions should be checked in the DFS tree.

Figure 20 from [4] is a puzzle with two solutions. After
applying our algorithm, all solutions are found. Figure 21
shows a puzzle with no solution, using GA [6] will get a
local optimal answer (see Fig. 21(b)). However, our method
can detect it quickly. We use a scheme that when one cell is
determined as a colored cell, but it has been left empty, the
puzzle is considered to have no solution. Similarly, if one
cell is determined as an empty cell, but it has been colored,
the puzzle will also be considered to have no solution.

Finally, Fig. 22 shows some other test images and Ta-
ble 1 shows the comparison of the experimental results us-
ing the methods proposed in [6] and our proposed algorithm.
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Fig. 19 Test images.
(a) Sheep (25 × 25).
(b) Airplane (25 × 25).
(c) Random_1 (30 × 30).
(d) Monkey (15 × 15).
(e) Sunflower (25 × 25).
(f) Random_2 (30 × 30)

Fig. 20 A 7 × 8 puzzle with
two solutions. (a) The result
after applying logical rules.
(b) The first solution. (c) The
second solution

Fig. 21 A puzzle with no
solution. (a) The original
puzzle. (b) A local optimal
answer obtained using GA

Fail denotes the case where the executing time is more than

24 hour. From Table 1, we can see that over 93% puzzles

take more than 1 minute using GA or DFS. However, apply-

ing our proposed method, over 98% puzzles need less than

0.6 seconds. All puzzles in our database are solved success-

fully and correctly. The detail results are shown in Table 1.

Note that our decision heuristic used in the search is lex-

icographical (i.e. selects sequentially row by row starting

from the first). We have also done other experiments using

the most conflicting heuristic of starting with the row with
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Fig. 22 Test images.
(a) Flower_word (10 × 10).
(b) Hippo (20 × 20).
(c) Formosa (25 × 25).
(d) Snoopy (25 × 25).
(e) Owl (30 × 25).
(f) Skating (30 × 25)

Table 1 The comparison of the experimental results among methods in [6] and our algorithm

Puzzle size: Number of puzzles (264 puzzles) Execution time

GA DFS Our method

5 × 5:1, 5 × 6:1 Local optimal answer >1 min No solution <0.07 sec
No solution <0.032 sec

10 × 10:2, 30 × 40:1 Local optimal answer >1 min No solution >1 min

(above five puzzles have no solution)

�6 × 6:7 <6 sec <0.7 sec <0.048 sec

6 × 6–10 × 10:9 30 sec:1, >1 min:8 <1 min:7, >1 min:2 <0.048 sec

10 × 10–15 × 15:33
15 × 15–25 × 25:111
�25 × 25:99

Random_1 Fail Fail 13.1 sec

Sunflower >1 hr >1 hr 4.82 min

Random_2 >1 hr >1 hr 23.4 sec

Others >1 min >1 min

Owl: 0.25 sec

Skating: 0.359 sec

Others: <0.517 sec

tighter constraints (i.e. higher numbers). The result shows
that the search with the most conflicting heuristic does not
perform better than with the lexicographical heuristic. In
our method, rows are processed sequentially, once the col-
umn information is used to do verification, some cells in the
next row according to the column information may be deter-
mined; this will reduce the size of the DFS tree. For exam-
ple, in Fig. 23, if cell i in the first row and cell j in the sec-
ond row are colored, we can certainly determine that cell k

in the third row should be colored. If we select the row with
the higher number, then row 6 and row 4 will be processed
first. Since these two do not adjoin, the column information
can not be used to determine the cells in rows 3, 5, or 7. In
Fig. 23, if cell o and m are colored, we can not determine
cell n.

4 Conclusions and discussion

In this paper, we have proposed a fast method to solve nono-
grams. The method first applies the LRs to solve nonograms
iteratively until all LRs can not be applied. Most nonograms
can be solved by only applying LRs. If it can not be solved
completely, the proposed method will use CB with LR filter
to solve those unknown cells.

The experimental results show that our method can solve
those puzzles with compact black patterns quickly. For those
puzzles with random black patterns, the method can also
raise the speed of DFS using the pruning scheme. Further-
more, our method can always provide correct solutions and
is better than the methods provided in [6].

Since the DT problem can be considered as a general
form of nonograms, extending our method to solve the DT
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Fig. 23 An example to
illustrate the search with the
most conflict heuristic and the
lexicographical heuristic

problem is our future work. At first, a DT problem can be
decomposed into many kinds of corresponding nonograms.
Then these nonograms are considered as the input of our
method, and our method will provide all of the correct solu-
tions. Moreover, our method can determine that a nonogram
has no solution. The number of the corresponding nono-
grams is very large, and most nonograms have no solution
and take a lot of processing time, the key challenge of our
future work is to reduce the number of nonograms corre-
sponding to a given DT.
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