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Abstract The function of a protein is generally related to

its subcellular localization. Therefore, knowing its subcel-

lular localization is helpful in understanding its potential

functions and roles in biological processes. This work

develops a hybrid method for computationally predicting

the subcellular localization of eukaryotic protein. The

method is called EuLoc and incorporates the Hidden Mar-

kov Model (HMM) method, homology search approach and

the support vector machines (SVM) method by fusing

several new features into Chou’s pseudo-amino acid com-

position. The proposed SVM module overcomes the

shortcoming of the homology search approach in predicting

the subcellular localization of a protein which only finds

low-homologous or non-homologous sequences in a protein

subcellular localization annotated database. The proposed

HMM modules overcome the shortcoming of SVM in

predicting subcellular localizations using few data on pro-

tein sequences. Several features of a protein sequence are

considered, including the sequence-based features, the

biological features derived from PROSITE, NLSdb and

Pfam, the post-transcriptional modification features and

others. The overall accuracy and location accuracy of Eu-

Loc are 90.5 and 91.2 %, respectively, revealing a better

predictive performance than obtained elsewhere. Although

the amounts of data of the various subcellular location

groups in benchmark dataset differ markedly, the accuracies

of 12 subcellular localizations of EuLoc range from 82.5 to

100 %, indicating that this tool is much more balanced than

other tools. EuLoc offers a high, balanced predictive power

for each subcellular localization. EuLoc is now available on

the web at http://euloc.mbc.nctu.edu.tw/.
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Background

Most eukaryotic proteins are encoded in the nuclear gen-

ome, synthesized in the cytosol, and must be targeted to the

correct subcellular compartments before they can have

their biological effects. Each subcellular compartment

contains particular proteins, including enzymes, to enable it

to carry out its biological function. In addition, as is well

known, proteins may simultaneously exist at, or move

between, two or more different subcellular locations. Pro-

teins with multiple locations or dynamic feature of this

kind are particularly interesting because they may have

some very special biological functions intriguing to

investigators in both basic research and drug discovery.

Knowing the subcellular localization of a protein helps in

determining its function, because subcellular localization

yields valuable information on the interaction partners,

function and potential roles of a protein in the cell [1–3]. In

recent years, the field of proteomics has expanded rapidly,

and very many protein sequences have been recorded in

databases. Despite technological advances, experimenting

on the subcellular localization of proteins is time-con-

suming. Therefore an efficient computational method for

predicting protein subcellular localization is becoming

increasingly important.

As presented in Table 1, various computational methods

have been developed to predict subcellular localization [4–

39], and many machine-learning approaches have been

adopted. They include those of support vector machines

(SVM) [6, 8–10, 12–16, 18, 19, 30, 40–47], the use of

neural networks [4, 5], the use of Bayesian networks [7, 9],

text classification [17], fuzzy-nearest neighbors algorithm

[20] and the K-nearest neighbor classifier [21–27]. Addi-

tionally, Chou et al. [33] developed several web-servers

iLoc-Euk, iLoc-Hum [35], iLoc-Plant [36], iLoc-Gpos

[34], iLoc-Gneg [39] and iLoc-Virus [37] by using multi-

layer KNN approach to cope with the multiple location

problems in eukaryotic, human, plant, Gram-positive,

Gram-negative, and virus proteins, respectively.

Most approaches use the SVM as the predictor since the

SVM is very useful in classifying proteins with diverse

sequences and has therefore been widely adopted. In par-

ticularly, Chou’s [31] pseudo-amino acid composition

(PseAAC) for the feature representation of biological

sequences have been widely used [38, 48–63]. The pre-

dictive performance of SVM depends sensitively on the

sizes and diversity of the protein sequences used [64]. The

SVM method tends to generate feature vectors that push

the hyper-plane towards the side with fewer data [65],

commonly resulting in reduced predictive accuracy for a

class with fewer samples or less diversity. Therefore,

subcellular localization is often hard to predict accurately

using few data about the relevant proteins.

Some approaches use the GO annotation of a protein for

predicting its subcellular localization [21–27] based on an

assumption that proteins mapped onto the GO database

space would be clustered in a way better reflecting their

subcellular localizations [2]. Some approaches depend on a

sequence homology search against a protein database to

obtain additional information of a protein, including text

annotations, localization annotations and Gene Ontology

(GO) annotations, for making further prediction of its

subcellular localization [8–10, 16, 19]. Several studies have

already indicated that there is a close relationship between

sequence similarity and identity in both subcellular local-

ization and the signal peptide cleavage sites [66, 67]. For

instance, Nair and Rost’s large-scale analysis [66] shows

that the subcellular compartment of a protein can be

accurately inferred if the close homologs of experimentally

verified localization can be found using HSSP distance

[66], a measure for sequence similarity accounting for

pairwise sequence identity and alignment length. Despite

the usefulness of homology search approach, which infers

subcellular localization of a protein based on subcellular

localization of homologous sequence, in predicting sub-

cellular localization, it performs poorly if no homologous

sequence is found [14]. Therefore, other computational

methods should be adopted in predicting the subcellular

localization of proteins with no homologs. As presented in

Table 1, different methods consider different features of a

protein. They include the sequence-based features that are

derived from the protein sequences, including N-/C-ter-

minal amino acid sequences [4, 12, 13, 15, 18], amino acid

compositions [8, 10–15, 20], general n-peptide composi-

tions [6, 14, 16] and amphiphilic pseudo amino acid [21,

23–27], the biological features that are derived from the

physio-chemical properties of amino acids [8, 14] or

obtained using the detection models which are provided in

biological databases, such as PROSITE, NLSdb and Pam

[7, 9, 11, 15].

This work presents a hybrid method, called EuLoc, to

solve the aforementioned problem. It incorporates the

Hidden Markov Model (HMM) method, homology search

approach and the SVM method. EuLoc involves an SVM

module to overcome the shortcoming of homology search

approach in predicting the subcellular localization of the

sequence which can only find low-homologous or non-

homologous sequences in a protein subcellular localization

annotated database, and involves an HMM module to

overcome the shortcoming of SVM in predicting the sub-

cellular localizations using few data on the relevant protein

sequences. The SVM module considers many features of a

protein sequence, including the sequence-based features,

the biological features derived from PROSITE, NLSdb and

Pfam, the post-transcriptional modification features and

others. The total accuracy (TA) and location accuracy (LA)
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Table 1 Comparison of features of various subcellular localization prediction tools

Tool name Main method Used features Species: # of

localizations

References

[29] Covariant discriminant

algorithm

Amino acid composition Eukaryotes: 12 Chou and Elrod [29]

TargetP [4] Neural network N-terminal amino acid sequence Plant: 4

Non-plant: 3

Emanuelsson et al. [4]

[31] Covariant discriminant

algorithm

Pseudo amino acid composition

(PseAAC)

Eukaryotes: 12 Chou [31]

[30] Covariant discriminant

algorithm, SVM

Amino acid composition, functional

domain composition

Eukaryotes: 12 Chou and Cai [30]

[5] Neural network Evolutionary and protein structure

information

Eukaryotes: 4 Nair et al. [84]

PK method [6] SVM Gapped amino acid composition Eukaryotes: 12 Park and Kanehisa [6]

PLST [7] Bayesian network InterPro motifs, specific membrane

domain, co-occurrence of protem

motifs/domain,

Human: 9 Scott et al. [7]

PSLpred [8] PSI-BLAST, SVM Sequence similarity, residues, dipeptides,

physio-chemical properties

Gram-negative: 5 Bhasin et al. [8]

PSORTb [9] Bayesian network, frequent

subsequence based SVM,

SCL-BLAST

Sequence similarity, PSORTb’s SCL-

BLAST module, PROSITE motifs and

localization specific profiles, frequent

subsequence, N-terminal signal peptide,

membrane domain features

Gram-positive: 6

Gram-negative: 6

Gardy et al. [9]

LOCSVMPSI [10] PSI-BLAST, SVM Sequence similarity, position specific

scoring matrix generated from profiles

of PSI-BLAST, four-part amino acid

composition

Eukaryotes:

4 (Swiss-Prot);

12 (PK data set)

Xie et al. [10]

pTARGET [11] Pfam score, AAC score Occurrence of protein functional domain,

amino acid composition, Pfam motifs

Eukaryotes: 9 Guda [11]

MultiLoc [12] Two-layer SVM N-terminal targeting peptide, single

anchor (SA), amino acid composition,

motifs from PROSITE and NLSdb

Fungi: 9

Animal: 9

Plant: 10

Hoglund et al. [12]

BaCelLo [13] SVMs in a decision tree Whole sequence composition, the

compositions of both the N- and

C-termini

Fungi: 4;

Animal: 4;

Plant: 5

Pierleoni et al. [13]

CELLOII [14] Two-layer SVM n-peptide, partitioned amino acid, g-gap

dipeptide and local amino acid

composition, physio-chemical

properties

Eukaryotes: 12

Prokaryotes: 5

Hwang et al. [14]

SherLoc [15] Two-layer SVM N-terminal targeting peptide, single

anchor (SA), amino acid composition,

motifs from PROSITE and NLSdb, text

from Pubmed abstract by its Swiss-Prot

entry

Animal: 9

Plant: 10

Shatkay et al. [15]

PSLDoc [16] PSI-BLAST, probabilistic

latent semantic analysis

(PSLA), SVM

Sequence similarity, gapped-dipeptides Gram-negative: 5 Chang et al. [18]

[17] Text classification Synonyms from gene ontology (GO) and

using GO hierarchy to generalize terms

Animal: 9

Plant: 10

Fyshe et al. [17]

ESLpred2 [18] SVM Evolutionary information, N-terminal

sequence composition

Fungi: 4;

Animal: 4;

Plant: 5

Garg and Raghava [18]

ProLoc-GO [19] GO mining—an intelligent

genetic algorithm with IGA

and SVM classier

GO terms derived from the result of

similar sequences of BLAST

Human: 12

Eukaryotes: 16

Huang et al. [19]
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of EuLoc are 90.5 and 91.2 %, respectively, and so the

predictive performance is better than in other studies. The

accuracies of 12 subcellular localizations of EuLoc range

from 82.5 to 100 %, indicating that it is much more bal-

anced than other tools. Therefore, EuLoc has a high and

balanced capacity to predict each subcellular localization.

Methods

According to a recent comprehensive review [3], to

establish a really useful statistical predictor for a protein

system, we need to consider the following procedures: (1)

construct or select a valid benchmark dataset to train and

test the predictor; (2) formulate the protein samples with an

effective mathematical expression that can truly reflect

their intrinsic correlation with the attribute to be predicted;

(3) introduce or develop a powerful algorithm (or engine)

to operate the prediction; (4) properly perform cross-vali-

dation tests to objectively evaluate the anticipated accuracy

of the predictor; (5) establish a user-friendly web-server for

the predictor that is accessible to the public. Below, let us

describe how to deal with these steps.

Materials

The benchmark dataset used in the proposed method was

taken from Park and Kanehisa [6], and is called the PK

dataset. To remove the homologous sequences from the

benchmark dataset, a cutoff threshold of 25 % was imposed

in [2, 21, 68, 69], to exclude those proteins from the

benchmark datasets that have equal to or greater than 25 %

sequence identity to any other in a same subset. However, in

this study we did not use such a stringent criterion because

the benchmark dataset used here was taken from Park and

Kanehisa [6] and that the main purpose of this paper is to

show a different prediction approach. The subcellular

localization information pertaining to the PK dataset was

obtained by a keyword search of the CC-filed annotation in

the Swiss-Prot database [70, 71]. The PK dataset contains

7,579 eukaryotic protein sequences in 12 subcellular local-

izations. They are chloroplast, cytoplasmic, cytoskeleton,

endoplasmic reticulum (ER), extracellular, Golgi apparatus,

lysosomal, mitochondrial, nuclear, peroxisomal, plasma

membrane and vacuolar proteins. As presented in Additional

file 1, the amounts of data for the subcellular location groups

vary markedly.

To obtain other protein sequences with known subcel-

lular localization, the protein sequences from the Swiss-

Prot database release 53 were collected, and the annotated

subcellular localization in the CC-fields was extracted. A

total of 158,596 protein sequences exhibited known sub-

cellular localization, and 87,675 protein sequences were

eukaryotic. These sequences were used in the homological

search process.

The hybrid method consists of three modules—the

HMM module, the homology search module and the SVM

module. Figure 1 is the analysis flowcharts of the three

modules, respectively. Since the PK dataset was lack of the

information of multiple locations, and our method did not

deal with the case of multiplex proteins. The analytical and

predictive processes are described below.

Table 1 continued

Tool name Main method Used features Species: # of

localizations

References

[20] Fuzzy k-nearest neighbors

algorithm

Amino acid composition Eukaryotes: 4

Prokaryotes: 3

Nasibov and Kandemir-

Cavas [20]

Cell-PLoc [21]-a

package includes

Euk-mPLoc [22]

Hum-mPLoc [23]

Plant-PLoc [24]

Gpos-PLoc [25]

Gneg-PLoc [26]

Virus-PLoc [27]

An ensemble classifier by

fusing K-nearest neighbor

classifiers

GO annotation, PseAAC Eukaryotes: 22

Human: 14

Plant: 11

Gram-positive: 5

Gram-negative: 8

Virus: 7

Chou et al. [22–27]

iLoc-Euk [33]

ILoc-Hum [35]

iLoc-Plant [36]

iLoc-Gpos [34]

iLoc-Gneg [39]

iLoc-Virus [37]

Multi-layer KNN classifier,

KNN, BLAST, PSI-BLAST

Sequence similarity, GO annotation,

PseAAC, position-specific scoring

matrix (PSSM)

Eukaryotes: 22

Human: 14

Plant: 12

Gram-positive: 4

Gram-negative: 8

Virus: 6

Chou et al. [33–37, 39]
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Feature extraction

To develop a powerful predictor for a protein system, one

of the keys is to formulate the protein samples with an

effective mathematical expression that can truly reflect

their intrinsic correlation with the target to be predicted [3].

To realize this, the concept of pseudo amino acid compo-

sition (PseAAC) was proposed [31] to replace the simple

amino acid composition (AAC) for representing the sample

of a protein. Ever since the concept of PseAAC was

introduced, it has been widely used to study various

problems in proteins and protein-related systems (see, e.g.,

[50, 53–63, 72–74]). For various different modes of

PseAAC, see [75]. According to a recent comprehensive

review [3], the general form of PseAAC can be formulated

as (see Eq. 6 of [3]):

P = [W1W2 � � �Wu � � �WX�T

where T is a transpose operator, while the subscript X is an

integer and its value as well as the components W1, W2, …
will depend on how to extract the desired information from

the amino acid sequence of P. Here, we are to use a dif-

ferent feature extraction method to formulate the PseAAC.

The targeting signals in the N-terminal or C-terminal

regions help in translocating some proteins into subcellular

components [76–79], and they vary in length (from 15 to

70 amino acids) and primary sequence [80]. To analyze the

characteristics of these regions, the N-terminal and C-ter-

minal residues of each sequence in PK dataset are extracted

using the different lengths, which are 20, 40, 60, 80, 100,

120, for further HMM analysis. In the homology search

module, PSI-BLAST [81] searches for the sequences that

are homologous to a PK dataset sequence against Swiss-

Prot database release 53. Several representative keywords

are generated for 12 subcellular localizations (Additional

file 2), and used to search for the CC-field of a homologous

sequences to extract the corresponding subcellular local-

izations. For example, if the keyword ‘‘plastid’’ is present

in the CC-field, then the subcellular localization of the

homologous sequence is annotated as ‘‘Chloroplast’’. Mul-

tiple subcellular localization annotations are acceptable for

a single sequence. These annotated subcellular localizations

of sequences that are homologous to a PK dataset sequence

are extracted for further process of predicting subcellular

localization.

Numerous sequence-based features are extracted from a

protein sequence to construct 10 SVM modules, which are

amino acid composition (ACC) of whole sequence (deno-

ted as AAC module), ACC of four-part sequence (denoted

as X4 module), ACC of N-terminal region, C-terminal

region and centered window region (denoted as NCC

module), and n-gapped dipeptide composition (n = 0, 1, 2,

3, 4, 5, 6; denoted as D0, D1, D2, D3, D4, D5 and D6

module, respectively). To compute the four-part sequence

AAC, a protein sequence is separated into four parts of

equal length and the AAC of each part is calculated.

Therefore, four-part sequence AAC encodes a protein

sequence as an 80 dimensional vector. The N-terminal

AAC encodes a protein as a 60 dimensional vector based

on the AACs of the first 40, 60 and 100 residues. The

C-terminal AAC encodes a protein as a 60 dimensional

vector based on the AAC of the last 50, 80 and 100 resi-

dues. The centered window AAC encodes a protein as a

100-dimensional vector, based on the AAC of the centered

windows using 13, 15, 17, 19 and 21 residues. Thus, when

using the general formulation of PseAAC to incorporate

sequence-based features, we have X = 20, 400, 400, 400,

400, 400, 400, 400, 80 and 220 for SVM module of AAC,

D0, D1, D2, D3, D4, D5, D6, X4 and NCC, respectively.

Numerous biological features are used to construct 6

SVM modules, which are physio-chemical properties of the

amino acid (denoted as Physio-chemical module), post-

translational modification (PTM) of amino acid (denoted as

PTM module), protein domains obtained from Pfam [82]

(denoted as Pfam module), and motifs obtained from

PROSITE [83] and NLSdb [84] (denoted as Motif module).

Additionally, the biological features of PROFEAT [85],

such as the structural and physio-chemical features, are also

incorporated (denoted as PROFEAT300 and PROFEATF56

module). The physio-chemical properties of an amino acid

are used to encode a protein as a 40-dimensional vector

based on its classification (Additional file 3). Post-transla-

tional modification (PTM) is the chemical modification of a

protein after its translation. It is one of the later steps in the

biosynthesis of many proteins, and is related to protein

functions and subcellular localizations [86–90]. Several

PTM prediction tools, which are NetAcet [91], MASA [92],

NetNGlyc [93], NetOGlyc [94], NetPhos [95], and SulfoSite

[96], are incorporated to predict the substrates of N-acetyl-

transferase, the methylation site, the N-glycosylation sites,

the mucin-type O-glycosylation, the phosphorylation sites

and the sulfation sites of a protein sequence, respectively.

The protein domains from the Pfam database and the

sequence patterns from PROSITE and NLSdb are adopted to

detect the biological domains and motifs of a protein. Thus,

Fig. 1 Analysis flowchart of HMM module, homological module and

SVM module
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when using the general formulation of PseAAC to incor-

porate biological features, we have X = 300, 169, 825, 900,

40 and 27 for SVM module of PROFEAT300, PRO-

FEATF56, Motif, Physio-chemical and PTM, respectively.

These sequence-based features and biological features are

extracted for further SVM analysis.

Model training and evaluation

In the HMM module, the HMMER [97] is employed to

build numerous HMMs with residues of different lengths

in the N-terminal and the C-terminal region. Following

the performance evaluation, three discriminative HMMs,

which are constructed with 60, 100 and 100 residues, are

found in the C-terminus of the cytoskeleton, the Golgi

apparatus and the vacuole, respectively. They are used to

predict the corresponding subcellular localization. In the

homology search module, the subcellular localization of a

protein is predicted using majority voting on the subcel-

lular localizations of its three most homologous sequen-

ces. Since 4,826 proteins of PK dataset are recorded in

Swiss-Prot database release 53, the subcellular localiza-

tion of identical sequence of a query protein is not col-

lected for voting. The iteration parameter is set to one and

the E-value is set to 0.001 to perform PSI-BLAST. In the

SVM module, the LIBSVM [98] package is adopted and

the Radial Basis Function (RBF) kernel employed to

construct 16 SVM models with sequence-based features

and biological features. Ten sequence-based SVM models

are constructed based on the features of the AAC of

whole sequence, the n-gapped dipeptide composition, the

AAC of the four-part sequence, and the AAC of the

N-terminal region, the C-terminal region and the centered

window region. Between zero and six gaps are used in the

dipeptide composition and therefore seven SVM models

are generated. The AAC from the N-terminal region, the

C-terminal region and the centered window region are

combined and incorporated into a single SVM model. The

other six biological based SVM models are constructed

using the physio-chemical properties, the PROFEAT

features, the PTM features, the domains from Pfam [82],

and the motifs from PROSITE [83] and NLSdb [84].

Some biological features obtained from PROFEAT are

incorporated into two SVM models. Finally, the SVM

module predicts the subcellular localization of a protein

using majority voting on the predicted subcellular local-

izations of 16 SVM models.

In statistical prediction, the following three cross-vali-

dation methods are often used to examine a predictor for

its effectiveness in practical application: independent

dataset test, subsampling test, and jackknife test. However,

of the three test methods, the jackknife test is deemed the

least arbitrary that can always yield a unique result for a

given benchmark dataset. The reasons are as follows. (1)

For the independent dataset test, although all the samples

used to test the predictor are outside the training dataset

used to train it so as to exclude the ‘‘memory’’ effect or

bias, the way of how to select the independent samples to

test the predictor could be quite arbitrary unless the

number of independent samples is sufficiently large. This

kind of arbitrariness might result in completely different

conclusions. For instance, a predictor achieving a higher

success rate than the other predictor for a given inde-

pendent testing dataset might fail to keep so when tested

by another independent testing dataset. (2) For the sub-

sampling test, the concrete procedure usually used in lit-

eratures is the fivefold, sevenfold or tenfold cross-

validation. The problem with this kind of subsampling test

is that the number of possible selections in dividing a

benchmark dataset is an astronomical figure even for a

very simple dataset, as elucidated in [21] and demon-

strated by Eqs. 28–30 in [3] Therefore, in any actual

subsampling cross-validation tests, only an extremely

small fraction of the possible selections are taken into

account. Since different selections will always lead to

different results even for a same benchmark dataset and a

same predictor, the subsampling test cannot avoid the

arbitrariness either. A test method unable to yield a unique

outcome cannot be deemed as a good one. (3) In the

jackknife test, all the samples in the benchmark dataset

will be singled out one-by-one and tested by the predictor

trained by the remaining samples. During the process of

jackknifing, both the training dataset and testing dataset

are actually open, and each sample will be in turn moved

between the two. The jackknife test can exclude the

‘‘memory’’ effect. Also, the arbitrariness problem as

mentioned above for the independent dataset test and

subsampling test can be avoided because the outcome

obtained by the jackknife cross-validation is always

unique for a given benchmark dataset. Accordingly, the

jackknife test has been increasingly and widely used by

those investigators with strong math background to

examine the quality of various predictors (see, e.g., [49–53,

72, 99, 100]). However, to reduce the computational time,

we adopted the independent testing dataset cross-validation

in this study as done by many investigators with SVM as

the prediction engine.

In this work, the same validation procedures are used to

determine predictive performance as are applied in earlier

works [6, 10, 14]. The performance of SVM models are

evaluated by five-fold cross-validation. Specificity (SP),

sensitivity (SN), total accuracy (TA) [6], location accuracy

(LA) [6], and Matthew’s correlation coefficient (MCC) are

utilized to evaluate the performance of classification. They

are defined as
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SN ¼ TP= TPþ FNð Þ; SP ¼ TN= TNþ FPð Þ; TA

¼
Pk

i¼1 Ti

N
; LA ¼

Pk
i¼1 Pi

k

where Pi ¼
Ti

ni
;

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFN)�ðTPþFP)�ðTNþFP)�ðTNþFN)
p , where

TP, TN, FP and FN are the numbers of true positives, true

negatives, false positives and false negatives [101]; N is

the total number of proteins in the data set (N = 7,579);

k is the number of subcellular locations (k = 12); ni is

the number of proteins in each subcellular localization i,

and Ti is the number of correctly predicted proteins (true

positives) in each subcellular localization i. The value of

MCC is one for a perfect prediction, zero for a completely

random prediction and -1 for a perfectly inverse

correlation.

Predictive process

As presented in Fig. 2, the prediction flow of EuLoc

involves the HMM module, the homology search module

and the SVM module. First, the HMM module is applied to

detect the subcellular localization of the cytoskeleton,

Golgi apparatus or vacuole. If the HMM module cannot

recognize the sequence, then the sequence is dispatched to

the homology search module. If no homologous sequence

with known subcellular localization is identified by the

homology search module, then the sequence is dispatched

to the SVM module for final prediction.

Results

To find the discriminative HMM of each subcellular

localization, numerous HMMs with N-terminal and C-ter-

minal sequences of different lengths are constructed in the

HMM module. Table 2 presents the predictive perfor-

mance and collected region of the most discriminative

HMM of each subcellular localization. For example, the

best discriminative HMM of the cytoskeleton and endo-

plasmic reticulum (ER) are constructed with the last 60

C-terminal residues and the first 100 N-terminal residues of

protein sequences, respectively. The HMMs of cytoskele-

ton, Golgi apparatus and vacuole are the most discrimi-

native, with MCC values of 0.99, 0.99 and 1, respectively.

Since they have high discriminative ability, these three

HMMs are adopted as the predictors for cytoskeleton,

Golgi apparatus and vacuole, and incorporated into the first

predictive process herein.

Table 3 presents the predictive performance of the

homology search module. The TA of this module is 86.1 %

when the iteration parameter is set to one and the E-value is

set to 0.001 in PSI-BLAST. If the iteration parameter is

increased to 2, then the TA declines to 82.3 % (Additional

file 4). Therefore, the iteration parameter is set to one, and

for 398 protein sequences of the PK dataset, no homolo-

gous sequence can be found with a known subcellular

localization. The analysis results show that cytoplasmic

and extracellular prediction reaches greatest sensitivities of

90.7 and 90.9 %, respectively, in the homologous search

module.

Table 4 presents the predictive performances of ten

sequence-based SVM models. AAC stands for amino acid

composition, D for dipeptide composition, where the

number after the D denotes the length of the gap between

the two residues; X4 stands for the AAC of the four-part

sequence, and NCC stands for the AAC of the N-terminal

region, the C-terminal region and the centered window

region. Analysis result shows that the TA value of AAC is

67.6 % and the TA values of gapped-dipeptide composi-

tion are about 72 %. X4 has the best predictive perfor-

mance with 75.5 % TA in sequence-based SVM models.

Table 5 presents the predictive performance of six bio-

logical based SVM models. Three hundred top-ranked

PROFEAT features are collected to construct PRO-

FEAT300SVM because the overall predictive performance

reaches greatest accuracy when these features are used to

construct SVM model (Additional file 5). These top-ranked

features are extracted by using the WEKA [102]. Two

PROFEAT families, F5 and F6, are related to the structural

and physio-chemical features, and are used to build the

PROFEATF56 SVM model. The TA values of PRO-

FEAT300 and PROFEATF56 are 71.8 and 68.9 %,

respectively. The TA values of the motif SVM model, the

Pfam SVM model, the physio-chemical property SVM

model and the PTM SVM models are 62.5, 70.6, 68.3 and

45.3 %, respectively. Although the overall accuracy of the

PTM SVM model is not high as that of the other models,

the post-translational modification (PTM) features seem to

be more strongly related to the nuclear and plasma

Fig. 2 Prediction flowchart of EuLoc
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membrane than other subcellular localizations and provide

useful information that can be used to predict the proteins

of these localizations. Table 6 presents the predictive per-

formance of the SVM module which determines the sub-

cellular localization of a protein using majority voting on

the predicted subcellular localizations of 16 SVM models.

The TA and LA values of the SVM module are 82.6 and

60.6 %, respectively, which are much higher than those of

individual SVM models.

Finally, EuLoc incorporates the HMM module, the

homology search module and the SVM module into an

integrated predictive process, and the TA is then increased

to 90.5 % (Table 7). In prediction, EuLoc outperforms

previous methods applied to the PK dataset, such as

CELLO II (90.3 %) [14], the PK method (78.2 %) [6] and

LOCSVMPSI (83.5 %) [10]. The predictive accuracy of

EuLoc when applied to plasma membrane (91 %) is a little

weaker than the CELLO II (96.1 %), the LOCSVMPSI

(94.7 %) or the PK method (92.2 %). However, EuLoc

remarkably improves upon the predictive accuracy in most

subcellular localizations, especially in the cytoskeleton

(97.5 %), the Golgi apparatus (97.9 %), the peroximal

(84.8 %) and the vacuole (100 %). The predictive accura-

cies of 12 subcellular localizations of EuLoc range from

82.5 to 100 %, and the LA of EuLoc is 91.2 %. This value

is much better than those of CELLO II (83.4 %), the

LOCSVMPSI (67.5 %) or the PK method (57.8 %). These

results show that EuLoc has a favorable and balanced

predictive capacity in each subcellular localization.

Discussion

Since the difference among the data sizes of the subcellular

location groups in the PK dataset vary greatly (Additional

file 1), by up to 48 times, both TA and LA must be con-

sidered in the evaluation of the predictive performance. TA

has been extensively utilized to measure predictive per-

formance. However, TA can be easily optimized at the cost

of accuracy for small groups. Therefore, LA is used to

balance predictive performance between large and small

groups.

As stated above, the predictive performance of SVM

depends sensitively on the sizes and diversity of protein

Table 2 Predictive performance of the most discriminative HMM of each subcellular localization and the corresponding region for constructing

HMM

Subcellular localization

(# of proteins)

Region Number

of residues

MCC Sensitivity

(%)

Specificity

(%)

Chloroplast (671) N-terminus 60 0.49 41 98

Cytoplasmic (1,241) – – – – –

Cytoskeleton (40) C-terminus 60 0.99 98 100

ER (114) N-terminus 100 0.52 57 99

Extracellular (861) N-terminus 60 0.70 81 95

Golgi apparatus (47) C-terminus 100 0.99 98 100

Lysosomal (93) N-terminus 100 0.81 66 100

Mitochondrial (727) N-terminus 40 0.30 35 94

Nuclear (1,932) N-terminus 40 0.29 51 79

Peroximal (125) – – – – –

Plasma membrane(1,674) N-terminus 60 0.47 41 96

Vacuole (54) C-terminus 100 1 100 100

For example, the best discriminative HMMs of cytoskeleton and ER are established from the last 60 C-terminal residues and the first 100

N-terminal residues of the protein sequences, respectively. The contents in cytoplasmic and peroximal are recorded as dashes since no

discriminative HMM that corresponds with either of these two subcellular localizations is found

Table 3 Predictive performance of homological search module using

iteration parameter of one and E-value of 0.001 in PSI-BLAST

Subcellular localization

(# of proteins)

Sensitivity

(%)

Specificity

(%)

MCC

Chloroplast (671) 87.2 98.7 0.86

Cytoplasmic (1241) 90.7 96.9 0.85

Cytoskeleton (40) 10.0 1 0.32

ER (114) 89.5 99.8 0.89

Extracellular (861) 90.9 98.2 0.87

Golgi apparatus (47) 19.1 1 0.44

Lysosomal (93) 87.1 99.8 0.87

Mitochondrial (727) 80.7 98.5 0.81

Nuclear (1932) 88.2 95.4 0.83

Peroximal (125) 84.8 99.8 0.87

Plasma membrane (1674) 84.3 95.7 0.80

Vacuole (54) 48.1 1 0.69

Total accuracy, TA 86.1

Location accuracy, LA 71.7
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sequences used [64]. Therefore, subcellular localization is

commonly hard to predict well when few data on the

proteins are available. As presented in Table 7, the three

previous SVM methods, CELLOII, the PK method and

LOCSVMPSI, perform subcellular localization using many

data on the protein sequences with an accuracy of more

than 90 %, but subcellular localization using fewer data on

the protein sequences can be even under 20 % accurate.

The SVM method is apparently optimized for large sub-

cellular location groups in the PK dataset, such as the

plasma membrane (22 % of the PK dataset) and the nuclear

(25 %), at the cost of accuracy for small subcellular loca-

tion groups, such as the cytoskeleton (0.5 %), the Golgi

apparatus (0.6 %) and the vacuole (0.7 %). To solve with

this problem, this work presents a hybrid method to reduce

the trade-off between TA and LA. The presented method is

more balanced than earlier methods. For example, although

the cytoskeleton is a small subcellular location group in the

PK dataset, which contains only the 40 protein sequences,

the accuracy of EuLoc when applied to the cytoskeleton is

97.5 %.

Some proteins are well known to be translocated into the

subcellular components because of the targeting signals in

the N-terminal or C-terminal regions [76–79]. The target-

ing signals are pieces of information, which are contained

in a polypeptide chain or in a fold protein, to enable pro-

teins to be transported to the suitable subcellular compo-

nent. Therefore, numerous HMMs with sequences of

Table 4 Predictive

performance of ten sequence-

based SVM models

Subcellular localization

(# of proteins)

Sensitivity (%)

AAC D0 D1 D2 D3 D4 D5 D6 X4 NCC

Chloroplast (671) 46.8 64.2 61.8 67.2 65.6 63.6 63.9 62.3 68.9 66.0

Cytoplasmic (1241) 66.7 61.2 60.9 63.5 66.1 64.5 63.0 65.4 69.9 70.4

Cytoskeleton (40) 22.5 67.5 62.5 67.5 70.0 70.0 70.0 62.5 57.8 27.5

ER (114) 13.2 50.0 53.5 45.6 49.1 44.7 50.8 44.7 52.6 36.8

Extracellular (861) 67.3 74.6 76.2 79.7 78.7 76.7 77.5 78.3 77.7 80.4

Golgi apparatus (47) 0.0 19.1 10.6 12.8 17.0 12.8 10.6 8.5 38.3 0.0

Lysosomal (93) 28.0 57.0 58.1 49.5 57.0 54.8 55.9 49.4 54.8 32.3

Mitochondrial (727) 32.7 45.8 45.0 43.7 43.2 40.4 41.0 42.5 56.4 58.5

Nuclear (1932) 84.0 81.5 80.4 82.3 82.5 81.6 81.2 83.2 82.4 83.7

Peroximal (125) 0.0 29.6 32.0 26.4 25.6 29.6 21.6 24.8 28.8 12.8

Plasma membrane (1674) 89.0 90.1 90.3 89.8 89.1 89.5 89.6 88.9 90.7 84.5

Vacuole (54) 0.0 37.0 25.9 25.9 25.9 20.4 24.1 27.8 24.1 7.4

Total accuracy, TA 67.6 71.9 71.5 72.8 72.9 71.8 71.6 72.3 75.5 73.5

Location accuracy, LA 37.5 56.5 54.8 54.5 55.8 54.1 54.1 53.2 58.5 46.7

Table 5 Predictive

performance of six biological

based SVM models

Subcellular localization

(# of proteins)

Sensitivity (%)

PROFEAT300 PROFEATF56 Motif Pfam Physio-chemical

property

PTM

Chloroplast (671) 63.9 60.8 36.2 53.8 40.5 27.6

Cytoplasmic (1241) 69.5 68.3 55.1 75.3 64.8 42.2

Cytoskeleton (40) 35.0 27.5 32.5 5.0 30.0 10.0

ER (114) 31.8 25.4 59.6 49.1 14.9 6.1

Extracellular (861) 88.4 86.3 59.9 71.2 63.9 32.9

Golgi apparatus (47) 10.6 10.6 14.9 36.2 0.0 2.1

Lysosomal (93) 19.4 15.1 43.0 58.1 20.4 6.5

Mitochondrial (727) 66.2 60.3 34.0 43.2 34.0 15.3

Nuclear (1932) 81.3 78.6 72.9 75.0 81.8 59.4

Peroximal(125) 24.0 15.2 43.2 55.2 0.0 2.4

Plasma membrane (1674) 73.5 70.7 86.2 86.7 86.7 69.4

Vacuole (54) 9.2 1.9 31.5 48.2 3.7 0.0

Total accuracy, TA 71.8 68.9 62.5 70.6 68.3 45.3

Location accuracy, LA 47.7 43.4 47.4 54.7 36.7 22.8
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different lengths in the N-terminal or C-terminal regions

are established for each subcellular localization to analyze

these pieces of information. Three discriminative HMMs

are established using the C-terminal regions of the cyto-

skeleton, the Golgi apparatus and the vacuole. Additional

file 6 presents the sequence logo of these regions, generated

using WebLogo [103, 104]. Information from these regions

greatly increases the predictive capacity associated with

these three subcellular localizations, as presented in

Table 2, and the MCC values of the HMM of cytoskeleton,

Golgi apparatus and vacuole are 0.99, 0.99 and 1, respec-

tively. Due to their high discriminative abilities, they are

incorporated into the first predictive process to improve

low predictive accuracy of SVM module in these three

small subcellular location groups, which are cytoskeleton

(67.5 %), golgi apparatus (6.4 %) and vacuole (20.4 %).

Only one sequence in the cytoskeleton and one in the Golgi

apparatus fail to be detected because they are shorter than

the corresponding HMM building lengths of 60 and 100.

Table 4 indicates that the proteins in various subcellular

localizations may be associated with different sequence-

based features. The proteins in the nucleus (84 %) and the

plasma membrane (89 %) seem to be more strongly related

to the AAC of the whole sequence, and the proteins in

cytoplasmic (70.4 %), extracellular (80.4 %) and mito-

chondrial (58.5 %) seem to be more strongly related to the

AAC of the N-terminal region, the C-terminal region and

the centered window region.

As presented in Table 5, the predictive performance of

the biological based SVM models is poorer than that of the

sequence-based SVM models—especially the motif SVM

model and the PTM SVM model—because numerous pro-

teins cannot be identified by any PROSITE, NLSdb or PTM

features, or only a few such features on these proteins can be

identified, increasing the difficulty of SVM prediction.

Only 30 % of nuclear proteins are estimated to have an

NLS [105]. In the PK dataset, 1,335 out of 1,932 nuclear

protein sequences matched the nuclear localization signal

from NSLdb, while only 82 nonnuclear protein sequences

matched this signal. Therefore, the nuclear localization

signal is a very useful feature for distinguishing nuclear

sequences from other subcellular localization sequences.

Another discriminative signal is the ER retention signal

from PROSITE. Of 144 ER protein sequences in the PK

dataset, 53 matched the ER retention signal, and no other

Table 6 Predictive performance of SVM module which determines

the subcellular localization of a protein using majority voting on the

predicted subcellular localizations of 16 SVM models

Subcellular localization

(# of proteins)

Sensitivity (%) Specificity (%) MCC

Chloroplast (671) 79.7 98.6 0.81

Cytoplasmic (1241) 80.7 96.5 0.78

Cytoskeleton (40) 67.5 99.9 0.78

ER (114) 52.6 99.8 0.65

Extracellular (861) 89.4 97.6 0.84

Golgi apparatus (47) 6.4 99.9 0.16

Lysosomal (93) 55.9 99.8 0.69

Mitochondrial (727) 62.3 98.0 0.67

Nuclear (1932) 90.3 93.9 0.82

Peroximal (125) 28.0 99.8 0.45

Plasma membrane (1674) 93.6 94.6 0.85

Vacuole (54) 20.4 99.9 0.39

Total accuracy, TA 82.6

Location accuracy, LA 60.6

Table 7 Comparison of

predictive performance of

proposed method with those of

other predictive tools using PK

dataset

Numbers in bold font represent

that our method performs the

best predictive accuracy in

specific subcellular localization

as compared with other methods

Subcellular localization

(# of proteins)

Predictive accuracy (%)

Our

method

CELLO II

(Hybrid) [14]

LOCSVMPSI

[10]

PK method

[6]

Chloroplast (671) 87.5 90.0 76.5 72.3

Cytoplasmic (1241) 91.4 84.4 76.4 72.2

Cytoskeleton (40) 97.5 80.0 60.0 58.5

ER (114) 89.5 80.7 61.4 46.5

Extracellular (861) 93.0 93.5 89.4 78.0

Golgi apparatus (47) 97.9 74.5 46.8 14.6

Lysosomal (93) 87.1 87.1 62.4 61.8

Mitochondrial (727) 82.5 80.5 68.2 57.4

Nuclear (1932) 92.3 94.5 91.5 89.6

Peroximal (125) 84.8 74.4 41.6 25.2

Plasma membrane (1674) 91.0 96.1 94.7 92.2

Vacuole (54) 100 64.8 40.7 25.0

Total accuracy, TA 90.5 90.3 83.5 78.2

Location accuracy, LA 91.2 83.4 67.5 57.9
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subcellular localization protein matched this signal. The ER

retention signal provides useful information, and so the

accuracy of the prediction of ER using the motif SVM model

exceeds that using other biological based SVM models.

A protein domain is a part of a protein sequence. It is a

structure with biological functions, and can exist inde-

pendently of the rest of the protein sequence. Several

protein domains, such as the transmembrance domain, have

been experimentally proven to be involved in protein

translocation or to be necessary for its retention in partic-

ular location [106–108]. Therefore, the protein domains of

Pfam are utilized herein to construct the Pfam SVM model.

In this model, the subcellular localizations of cytoplasmic

(75.3 %), extracellular (71.2 %), lysosomal (58.1 %),

plasma membrance (86.7 %) seem to be more strongly

related to Pfam domains.

In the PTM SVM model, the nuclear (59.4 %) and

plasma membrane (69.4 %) seem to be more strongly

related to PTM features. As suggested in previous studies,

PTM is critically involved in the translocation of proteins

to different subcellular locations, especially in the plasma

membrane [86, 89, 109]. Protein localized in the nucleus is

associated with phosphorylation at serine and threonine

residues [110]. In Swiss-Prot release 53, 2,898 out of 6,253

nuclear proteins were annotated as having PTM sites, and

1,791 and 296 proteins were annotated as having phos-

phoserine and phosphothreonine sites, respectively. As

presented in Additional file 7, phosphorylation occurs in

more than half of all nuclear PTM proteins.

To determine whether the low predictive performance of

the PTM SVM model is cause of the predictive power of the

PTM prediction tool, another PTM SVM model was built

using the PTM sites recorded in dbPTM [110]. Of 7,579

proteins in the PK dataset, 1,436 were recorded as having

PTM data. The overall accuracy of the this PTM SVM model

is 51.4 %, which is a little improved than the PTM SVM

model was built using the predicted PTM sites derived from

PTM prediction tools (45.3 %). However, the model is still

not good as other models. As presented in Additional file 8,

only one fifth of proteins are annotated as having PTM

features, and therefore the number of PTM features may be

too few for prediction. Interestingly, 69.9 and 66.7 % of

lysosomal and vacuole proteins, respectively, are recorded

as having PTM sites. Despite the low accuracy of the indi-

vidual biological based SVM model, each model can

somewhat increase the overall accuracy of the SVM module.

Conclusions

This work presents a hybrid method for the computational

prediction of the subcellular localization of eukaryotic

protein, called EuLoc. It incorporates the HMM method,

homology search approach and the SVM method with

sequence-based features and biological features. The SVM

module overcomes the shortcoming of the homology

search approach in predicting the subcellular localization

of a sequence which can only find low-homologous or non-

homologous sequences in a protein subcellular localization

annotated database, and the HMM modules overcomes the

shortcoming of SVM in predicting subcellular localizations

using few data on protein sequences. Different features in a

protein sequence are considered, including the amino acid

composition, the motifs from PROSITE and NLSdb, the

domains from Pfam and the PTM features. The TA and LA

of EuLoc are 90.5 and 91.2 %, respectively, revealing that

EuLoc is more accurate than CELLOII, the PK method and

LOCSVMPSI. Although the amounts of data in the sub-

cellular location groups in the PK dataset vary greatly, the

accuracies of 12 subcellular localizations in the proposed

method range from 82.5 to 100 %, and so the method is

much more balanced than those in previous works. In some

subcellular localizations, such as that in plasma membrane,

the proposed method does not predict as accurately as other

approaches. However, the proposed method improves the

predictive accuracy for most of subcellular localizations—

especially in the cytoskeleton, Golgi apparatus, the per-

oximal and the vacuole. The LA of the proposed method

(91.2 %) markedly exceeds that of CELLO II (83.4 %), the

PK method (57.8 %) and the LOCSVMPSI (67.5 %).

Results of this study demonstrate that the proposed hybrid

method has a favorable and balanced predictive ability in

each subcellular localization. Hence EuLoc is a useful tool

for computationally predicting the subcellular localization

of eukaryotic protein. It is our intention to enhance EuLoc

in the future by extending our method to deal with

more subcellular localizations, such as the 22 subcellular

localizations of Euk-mPLoc [22], for providing a more

precise and comprehensive prediction of protein subcellu-

lar localization.
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