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Abstract—Many solutions for detecting signals transmitted
over flat-faded multiple input multiple output (MIMO) channels
have been proposed, e.g., the zero-forcing (ZF), minimum mean
squared error (MMSE), sphere decoding (SD) algorithms, to
name a few. These approaches however suffer from either
unsatisfactory performance or high complexity. In this paper, we
focus on the soft-output SD algorithm and propose a modification
on the repeated tree search (RTS) strategy. It is shown that our
modification can maintain a fixed upper limit in decoding com-
plexity and results in a good performance-complexity tradeoff.

Index Terms—MIMO, sphere decoding, repeated tree search.

I. INTRODUCTION

IN recent years, wireless transmission with multiple an-
tennas at the transmitter and receiver, also being referred

to as the multiple input multiple output (MIMO) system,
has attracted enormous interest. It is considered to be the
technology that can provide significant capacity improvement
over existing communication systems.

In an MIMO fading channel suffering additive white Gaus-
sian noises (AWGN), different data streams are transmitted
from different antenna elements via the same channel; so the
receiver has to separate these data streams in order to recover
them. Some detection algorithms for MIMO systems have thus
been proposed and are reviewed in the following.

Linear detection methods, such as zero-forcing (ZF) or min-
imum mean-squared error (MMSE), estimate the information
of channel matrix and then use the estimate to compensate
the channel effect. Although having usually low computational
complexity, the linear detection methods cannot totally remove
the inter-stream interference and may induce noise enhance-
ment; they accordingly could result in significant perfor-
mance degradation. As a contrary, the brutal-force maximum
likelihood (ML) detector is optimal in performance but its
computational complexity is high. Being regarded as a balance
of the previous two, the sphere decoding (SD) algorithm
[1], [2] smartly reduces the number of candidate symbol
vectors during the codeword search and can still statistically
guarantee the finding of the ML solution with greatly reduced
complexity.

Unlike uncoded systems where single hard-decision ML
solution is directly outputted, the soft information for each
information bit is required for iterative decoding. The soft-
output SD algorithm [3], [4], [5] thus draws research attention
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recently. In comparison with the hard-output SD algorithm,
the soft-output SD algorithm generally requires more compu-
tational complexity; therefore a particular method to reduce
its complexity is necessary [4]. Some known complexity-
reduction methods in literature include log-likelihood ratio
(LLR) clipping, channel matrix regularization, and run-time
constraint (i.e., imposing a constraint on the maximal compu-
tational complexity of the decoder). As expected, these meth-
ods reduce the decoding complexity at a price of performance
degradation. The above complexity-reduction methods still
yield a varying complexity; yet a hardware implementation
may prefer one with a fixed complexity, which motivated the
work of a fixed complexity soft-output SD in [5].

In this paper, we propose a modification on the repeated tree
search (RTS) in [3], resulting in less performance degradation
and also less complexity than those of the single tree search
(STS) in [4], and the smart ordering and candidate adding
(SOCA) algorithm in [5]. Moreover, our modification can
maintain a fixed upper limit in decoding complexity and thus
meet the requirement of hardware implementation.

The remaining of the paper are organized as follows.
Section II introduces the system model and the existing MIMO
detection approaches. Section III gives the detail of the soft-
output SD algorithm. Section IV presents the idea of our
proposed algorithm. Section V summarizes the simulation
results, and Section VI concludes the paper.

Throughout the paper, superscripts “T” and “H” are reserved
to denote the transpose and Hermitian transpose of a matrix,
respectively.

II. SYSTEM MODEL AND KNOWN MIMO DETECTORS

Consider an MIMO system with NT transmit antennas and
NR receive antennas, where NT ≤ NR. At the transmitter end,
Q coded information bits are mapped to a complex constel-
lation O (e.g., QPSK, 16-QAM, etc); hence, the number of
constellation points is |O| = 2Q. The set of system vectors
being transmitted is then given by ONT . Assume that the
channel suffers flat fading. The received symbol vector thus
can be written as:

y = Hx+ n, (1)

where x ∈ ONT is the transmitted symbol vector with
covariance matrix E{xxH} = INT ; y ∈ CNR denotes the
received symbol vector; n ∈ C

NR is an independent zero-
mean Gaussian-distributed complex noise vector with common
variance N0 per entry; and H ∈ CNR×NT denotes the NR×NT

channel matrix with each element in H being a complex
Gaussian variable with zero mean and variance 1/NT. In the
above expression, C denotes the domain of complex numbers,
and each channel matrix realization H is assumed perfectly
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estimated by the receiver. Note that in our setting, the signal-
to-noise ratio (SNR) per receive antenna is equal to 1/N0.

The SD algorithm has recently been used to solve the signal
detection problem for MIMO systems because it can signif-
icantly reduce the computational complexity in comparison
with the brutal force ML detector while maintaining the same
ML performance. The idea behind the SD algorithm can be
described as follows. It first sets a sphere centered at the
received symbol vector with a properly chosen radius. Then
instead of searching the entire system constellation, it only
searches the constellation points inside the sphere.

The SD algorithm can be separated into two steps: 1)
preprocessing step and 2) tree search step. The preprocessing
step is mainly on the construction of the tree structure.
Specifically, the channel matrix H is QR-decomposed with
sorting and regularization [4] as:[

H
αINT

]
P = QR (2)

where Q is an (NR+NT)×NT unitary matrix, R is an NT×NT

upper triangular matrix with diagonals being real-valued, and
the NT×NT permutation matrix P and the real parameter α are
carefully chosen to fit the need of sorting and regularization
[4], [5]. Partition Q into Q1 and Q2 according to

Q =
[
QT

1 QT
2

]T

where Q1 and Q2 are respectively NR ×NT matrix and NT ×
NT matrix. Then, multiplying (1) by QH

1 leads to a modified
input-output relation as

ỹ = QH
1y = QH

1Hx+QH
1n = Rx̃+ ñ

where x̃ = PTx and ñ = QH
1n. In matrix form, the above

equation can be written as

⎡
⎢⎣
ỹ1
...

ỹNT

⎤
⎥⎦=

⎡
⎢⎢⎢⎣
r1,1 r1,2 · · · r1,NT

0 r2,2 · · · r2,NT

...
. . .

. . .
...

0 · · · 0 rNT,NT

⎤
⎥⎥⎥⎦

⎡
⎢⎣
x̃1

...
x̃NT

⎤
⎥⎦+

⎡
⎢⎣
ñ1

...
ñNT

⎤
⎥⎦.

By treating ñ to be independent Gaussian distributed, it can
be obtained that

x̂ML = arg min
x̃∈ONT

‖ ỹ −Rx̃ ‖2

= arg min
x̃∈ONT

NT∑
i=1

∣∣∣∣∣∣ỹi −
NT∑
j=i

ri,j x̃j

∣∣∣∣∣∣
2

. (3)

The second step then performs tree traversal based on (3).
There are three major tree traversal algorithms that have been
proposed in the literature, which are depth-first search [4],
breadth-first search [6], and best-first search [7] algorithms.

III. SOFT-OUTPUT SPHERE DECODING AND METHODS

FOR COMPLEXITY REDUCTION

Denote by x̃j,b the bth bit in the constellation point corre-
sponding to the jth entry of vector x̃. In order to reduce the
computational burden, we approximate the true LLR for bit
x̃j,b by its max-log approximation [4]:

L(x̃j,b)= min
x̃∈X (0)

j,b

‖ ỹ −Rx̃ ‖2− min
x̃∈X (1)

j,b

‖ ỹ −Rx̃ ‖2, (4)

where X (0)
j,b and X (1)

j,b are sets of vectors that have the bth bit in
the jth entry equal to 0 and 1, respectively. The computation
of Eq. (4) can be done via a tree search process, after which
the resulted LLRs should be permuted back to the x-domain
using the relation of x̃ = PTx.

Several tree traversal strategies have been proposed for the
generation of the LLR values. They are described below.

1) Repeated Tree Search (RTS): The idea behind the RTS
strategy [3] is to repeat the tree search to compute the value of
(4) for every bit in the symbol vector based on the ML solution
located by the hard-output SD algorithm. Its main drawback is
that some branch computations may be performed more than
once, resulting in significant complexity waste.

2) Single Tree Search (STS): The STS is a more efficient
tree search strategy when it is compared with the RTS. It
ensures that every node in the tree is visited at most once;
hence it reduces considerably the computational complexity.
In particular, the STS [4] searches the ML solution as well as
its corresponding counter-hypothesis paths concurrently in a
depth-first fashion. Whenever a leaf is reached, two situations
will be considered: If the leaf updates the temporary ML
solution, the metric of the former temporary ML solution
can serve as the metric of a counter-hypothesis of the new
temporary ML solution, and if however no new temporary ML
solution is found, the algorithm checks whether better counter-
hypotheses of the current temporary ML solution have been
traversed and the LLRs are updated accordingly.

3) Smart Ordering and Candidate Adding (SOCA) Algo-
rithm: In [5], a soft-output SD algorithm named SOCA was
proposed. By performing QR decomposition with a smart
ordering criterion and also by adding pre-defined numbers
of layer-by-layer candidates for its breadth-first search, it
achieves a good performance-complexity tradeoff. A striking
characteristic of the SOCA is that it has a fixed complexity.
This makes it well suited for hardware implementation.

There are many subsequent researches focusing on further
complexity reduction of the tree search algorithms mentioned
previously. Additional complexity reduction enhancements
such as LLR clipping, sorting and regularization are subse-
quently proposed [3], [4], [5].

IV. MODIFIED RTS TRAVERSAL STRATEGY

In this work, we propose to modify the RTS soft-output
SD algorithm such that the computational complexity can be
limited by a pre-defined number. It is observed that better
performance-complexity tradeoff can be resulted in compari-
son with the STS and the SOCA.

Similar to the original RTS, the proposed soft-output SD
algorithm is separated into two stages. In the first stage, a
hard-output solution is found by an SD algorithm. We set
a maximum allowable complexity T1 for the first stage so
that only near-ML hard-output is guaranteed. After finding the
near-ML hard-output path, we repeat the tree traversal in the
second stage to generate soft output with a fixed complexity
upper limit T2. By pre-defining T1 and T2, our modified
RTS algorithm can guarantee to generate soft output with
complexity no more than (T1 + T2). Details are given below.

One suitable candidate for the first stage is the Schnorr-
Euchner sphere decoder (SESD) with radius reduction [10].
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Fig. 1. Illustration of the second stage with NT = 3 and b = [b1 b2 b3] =
[432] for the proposed modification. The thick solid line corresponds to the
near-ML path obtained from the first stage.

It is known that the SESD has variable and potentially high
decoding complexity; hence it is not suitable for hardware
implementation. We therefore propose to set an upper limit T1

such that the first stage is terminated when either the SESD
finds the ML solution within complexity T1 or the maximum
allowable complexity T1 is reached. With a complexity con-
straint, the hard-decision output no longer guarantees to be
ML. Nevertheless, we will later show by simulations that a
small to medium value of T1 is adequate to secure a good
performance-complexity tradeoff.

We next describe the second stage. First, a vector b =
[b1, · · · , bNT ] that specifies the number of counter hypothesis
paths to be extended at each level is given, where 1 ≤ bi ≤ Q.
Note that at each level, there are Q counter hypothesis paths
corresponding to the near-ML path obtained from the first
stage; but only the best bi of them are extended at level i.1

Further extension along these bi counter-hypothesis paths only
include the best path. For a better understanding, a simple
illustration of the second stage is given in Fig. 1.

For all soft-output SD algorithms, clipping the LLR to make
it within ±Lmax plays an important role for performance,
complexity or both [4], [5]. In this work, the counter hypoth-
esis paths traversed by our modified RTS strategy may not be
the ones required by (4) since usually bi < Q. In such case,
the max-log approximated LLR will be infinity for these non-
traversed paths. The selection of clipping limit Lmax thus is
essential in our modification. Notably, except for the RTS, the
situation that some of the counter hypothesis paths required
are not visited could also happen to the STS and the SOCA;
hence, these two schemes also need a clipping limit to prevent
from overestimation of the LLR values. In all cases, LLR
clipping can at the same time help reducing the complexity of
the second stage.

The upper complexity limit of the second stage can be

1Take 16-QAM (hence, Q = 4) as an example. If x̂i = 0000 is the
i-th symbol of the near-ML path, then the four counter hypothesis paths
are specified by {1000, 0100, 0010, 0001}. Among them, the bi counter
hypothesis paths selected are the ones that are closest in distance to the
received complex value ỹi.

It should be mentioned that the SOCA also pre-defines numbers of layer-
by-layer candidates for its breadth-first search; however, by considering the
performance-complexity tradeoff, the selective choice for the SOCA is b 2 =
b3 = · · · = bNT = 1. That is why only b1 is identified for the SOCA in
Figs. 2 and 3.

computed as follows:

T2 =

NT∑
i=1

bi (NT + 1− i) . (5)

By only expending those nodes with branch metric within
Lmax, the complexity of the second stage can be further
reduced and is usually smaller than T2.

We close this section by stress the differences between our
modified RTS and the SOCA. First, our modified RTS finds
the near-ML hard-output path and compute the LLR values in
different stages, whereas the SOCA obtain both concurrently
in one tree search. A second difference is that the SOCA adds
Q counter hypothesis paths at all levels in a simple bit-flip
fashion as only a portion of the MAP path is known before the
selection of these counter hypotheses, whereas our modified
RTS extends only bi counter hypothesis paths at level i with
respect to a completely known near-ML path.

V. SIMULATION RESULTS

In our simulations, we assume that the MIMO channels
are Rayleigh faded without spatial or temporal correlation,
and all channel matrix realizations can be perfectly estimated
by the receiver. Also, NT = 4 transmit antennas, NR = 4
receive antennas, and 16-QAM constellation are considered.
In addition, the channel realizations do not change during
the transmission of an entire codeword in the simulated slow
fading scenario, as identically assumed in [5].

The outer codes adopted [8] are 3GPP-specified (2, 1, 8)
convolutional code and punctured turbo code of code rate
R = 1/2. For the convolutional coded simulations, 180 16-
QAM symbols are fed into a 15× 48 block interleaver before
they are sent, while for the turbo coded simulations, 500
16-QAM symbols are transmitted after being passed through
a (40 × 50)-block interleaver. As a result, the codeword
lengths for the convolutional and turbo coded systems are
respectively 180 × 4 = 720 bits and 500 × 16 = 2000
bits. At the receiver, the Viterbi decoder and the 8-iteration
Max-Log-MAP decoder are used respectively for the decoding
of convolutional code and turbo code. Simulation results for
convolutional and turbo coded systems are then summarized
in Figs. 2 and 3, respectively.

In our simulations, various Lmax values are tested for the
STS, while Lmax = 0.3 and Lmax = 0.25 are chosen as
suggested by our trial simulations not shown in this paper for
the SOCA and our modified RTS, respectively. The channel
regularization algorithm used in our modified RTS is the
same as that in [4]. As for the sorting approach in QR
decomposition, the SQRD [4] is used for both the STS and
our modified RTS, while the SOQR [5] is implemented for
the SOCA. The maximum allowable complexity for the first
stage is T1 = 30, and various vectors b required for the second
stage are examined, which are b = [4444], [4442], [4422],
[4222], [2222]; they respectively result in T2 = 40, 38, 34,
28, 20. Finally, the metric for the system performance after
decoding is the SNR required to achieve a block error rate
(BLER) of 10−2. The index for computational complexity
is the number of visited nodes during the tree search; this
complexity index is widely adopted for one-node-per-cycle
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Fig. 2. Performance versus complexity for the STS, the SOCA, and the
modified RTS in slow Rayleigh fading channels. The numbers beside the STS
marks are the Lmax used. The numbers next to the SOCA curve correspond
to b1. The number next to each modified RTS mark is T2. The channel code
adopted is the convolutional code.
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Fig. 3. The same simulations as Fig. 2 except that the channel code adopted
is the turbo code.

hardware implementation architecture [9]. Based on the above
setting, we are ready to present our simulation results.

As observed from Fig. 2 and Fig. 3, the simulation results
for convolutional and turbo coded systems are quite similar. A
result not shown in these two figures is that the performance
degradation from T1 = ∞ down to T1 = 30 is less than 0.05
dB; this is the basis of our claim that a small to medium T1 is
adequate to secure a good performance for our modified RTS.
For a complete comparison, we also show the 99.9th percentile
complexities in the two figures. Notably, a highly variant
decoding complexity will add difficulties to the hardware
implementation of a decoding algorithm. From this regard,
the 99.9th percentile complexity can serve as an assessment
index for hardware design.

These two figures then show that the STS achieves the

best performance-complexity tradeoff in slow fading scenario
when only the average complexity is considered; however, its
99.9th percentile complexity is the worst among all simulated
schemes. In particular, the 99.9th percentile complexity of
the STS is six times more than its average complexity in
both figures. Thus, the STS has a large complexity variation.
On the contrary, our modified RTS, whose 99.9th percentile
complexity almost approaches its strict upper complexity
bound (T1+T2), turns out to have a much smaller complexity
variation than the STS. Note that the SOCA has a fixed
decoding complexity so that its 99.9th percentile complexity
is identical to its average complexity. Since the curve of the
99th percentile complexity (equivalently, the upper complexity
bound) of our modified RTS is only slightly above the curve of
the SOCA, and since a hardware designer may use this upper
complexity bound as its design criterion, we can conclude
that our modified RTS requires a similar hardware complexity
to the SOCA. As a result, the SOCA and our modified
RTS remain to be more attractive solutions for hardware
implementation because of their low complexity variation.

VI. CONCLUSION

In this paper, we present a modified RTS algorithm for soft
detection in an MIMO system as a support to an outer code.
A visible performance-complexity tradeoff improvement has
been obtained by our proposed modification. The guaranteed
decoding complexity upper limit makes this modified RTS
algorithm a suitable candidate for hardware implementation.
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