
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012 1011

Evasion Techniques: Sneaking through Your
Intrusion Detection/Prevention Systems

Tsung-Huan Cheng, Ying-Dar Lin, Senior Member, IEEE, Yuan-Cheng Lai, and Po-Ching Lin, Member, IEEE

Abstract—Detecting attacks disguised by evasion techniques
is a challenge for signature-based Intrusion Detection Systems
(IDSs) and Intrusion Prevention Systems (IPSs). This study
examines five common evasion techniques to determine their
ability to evade recent systems. The denial-of-service (DoS)
attack attempts to disable a system by exhausting its resources.
Packet splitting tries to chop data into small packets, so that a
system may not completely reassemble the packets for signature
matching. Duplicate insertion can mislead a system if the system
and the target host discard different TCP/IP packets with a
duplicate offset or sequence. Payload mutation fools a system with
a mutative payload. Shellcode mutation transforms an attacker’s
shellcode to escape signature detection. This study assesses the
effectiveness of these techniques on three recent signature-based
systems, and among them, explains why Snort can be evaded.
The results indicate that duplicate insertion becomes less effective
on recent systems, but packet splitting, payload mutation and
shellcode mutation can be still effective against them.

Index Terms—IDS/IPS, evasion, attacks, signature.

I. INTRODUCTION

THE WAR between attackers and IPS1 developers never
ceases. Attackers continually try to find new exploits to

intrude a system, while system developers attempt to analyse
and detect attacks. IPSs are traditionally divided into two
categories in terms of how they detect attacks: signature-
based and anomaly-based. The former ones look for signatures
of known attacks in the network traffic [1], so they require
frequent signature updates to maintain an up-to-date signature
database. The latter ones use machine-learning approaches to
find anomaly in the network traffic that behaves differently
from normal profiles [2]. Instead of inspecting the payload
content for signatures, they typically analyse statistics such
as throughput, payload size, and the number of flows or
established connections in the network traffic, as well as their
states [3]. The alert messages generated from them indicate the
existence of anomaly, but cannot point out exactly the attack

Manuscript received 23 June 2010; revised 14 August 2011, 6 September
2011 and 7 September 2011. This work was supported in part by National
Science Council (NSC) and Institute for Information Industry (III) in Taiwan,
and in part by grants from ZyXEL Inc. and Cisco Systems.

T.-H. Cheng and Y.-D. Lin are with the Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan, 300 (e-mail: {raijin,
ydlin}@cs.nctu.edu.tw).

Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei, Taiwan, 106 (e-mail:
laiyc@cs.ntust.edu.tw).

P.-C. Lin is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan, 621 (e-mail:
pclin@cs.ccu.edu.tw).

Digital Object Identifier 10.1109/SURV.2011.092311.00082
1For simplicity in terminology, we use the term IPS to denote both IDS

and IPS in the rest of this paper.

names and their associated CVE (Common Vulnerabilities and
Exposures) numbers.

IPSs in both categories face a challenge from attackers:
an arsenal of evasion techniques. First introduced by Ptacek
and Newsham [4], the techniques include several ways to
escape the detection of an IPS. The success of evasion relies
on that the IPS and the end host (i.e., the victim) may
interpret or process the packet content in the input traffic
differently, due to different system implementations or depths
in which both systems interpret the packet content. Ever
since [4] and [5], there have been substantial evaluations
(e.g., [6]–[10]) and studies (e.g., [12]–[19]) on this topic.
Evasion techniques have evolved from exploiting tactics at the
TCP/IP layer [4] to transforming application-layer messages,
such as HTTP IDS evasion [13], polymorphic shellcode [14],
polymorphic worms [15] and evading an emulation detection
mechanism [16], [20], as well as polymorphic blending attacks
[21] that make attacks similar to normal traffic for evading
anomaly-based IPSs.

On the other hand, IPS researchers and developers have
proposed countermeasures such as [18], [24]–[27], [31], [32]
to enhance the anti-evasion capability of intrusion detection
for resolving the ambiguity in interpreting the packet content
due to evasion. Thus, it is necessary for network testers
and product reviewers to re-examine the effectiveness of
evasion techniques on modern IPS products. This work not
only reviews evasion techniques and their countermeasures,
but also conducts actual evasions to assess three modern
IPS products or open-source packages, and points out which
evasion techniques are still effective on them, which are not,
and why. The assessment can help IPS developers to improve
the products and network administrators to understand the
potential limitations of IPS products.

The remainder of this article is organized as follows.
Section II reviews the evasion techniques, the relevant tools,
and the countermeasures against the evasion techniques. Sec-
tion III assesses the effectiveness of the evasion techniques by
conducting several experiments on three recent IPS products.
Experimental results in Section IV reveal the weak spots of
the IPS products, which evasion techniques are still effective,
and the reasons. Section V concludes this work.

II. SURVEY OF EXISTING EVASION TECHNIQUES, TOOLS
AND COUNTERMEASURES

In this section, we review the evasion techniques, the
tools that can realize the techniques, and the countermeasures
against the techniques.

1553-877X/12/$31.00 c© 2012 IEEE



1012 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

A. Evasion techniques

Five common techniques can evade the examination of
an IPS: (1) denial-of-service (DoS), (2) packet splitting, (3)
duplicate insertion, (4) payload mutation, and (5) shellcode
mutation. We will introduce each of them as follows.

1) Denial-of-service: The first is the denial-of-service
(DoS) attack, which intends to overwhelm network bandwidth
or system resources such as the CPU and the memory space of
the IPS [33]. Besides generating a large volume of network
traffic, the attack can exploit the weakness of the detection
algorithms. An example in [34] demonstrates that it is possible
to significantly slow down the rule-matching algorithm in
Snort 2.4.3 by manipulating the input network traffic to
exploit the worst-case execution of the rule matching in Snort,
which uses backtracking in an attempt to cover all possible
pattern matches in a rule. Just 4.0kbps of bandwidth for the
manipulated input traffic is sufficient for the DoS attack. This
algorithmic complexity attack is a typical example of DoS
attacks without consuming high network bandwidth.

2) Packet splitting: Packet splitting, which includes IP
fragmentation and TCP segmentation, chops IP datagrams or
TCP stream into non-overlapping fragments or segments, par-
ticularly small ones. If an IPS does not completely reassemble
the IP fragments or TCP segments to restore the original
application content, it may neglect an attack embedded in
the content targeted at the victim host. For example, an IPS
may look for a signature /bin/sh in the packet payload,
but the attacker can deliberately split the payload with the
signature into two segments, one containing /bin and the
other containing /sh. If the IPS does not reassemble the
two segments, it will be unable to find the signature in either
segment, so the attacker can evade its detection.

Since the IPS monitors all the traffic through the network
under its supervision, ideally, it has to reassemble all the IP
fragments and TCP segments in the traffic to counter potential
evasion. However, an IPS may have limited system resources
to keep track of per-connection information [35] (e.g., the
TCP states and the reassembled application content) in a large
network. For example, the space allocated to a buffer for
reassembly may be insufficient. Therefore, an attack may still
have a chance to appear in the IP fragments or TCP segments
that an IPS happens to not reassemble.

3) Duplicate insertion: Duplicate insertion is a technique
in which attackers insert duplicate or overlapping segments (or
IP fragments) to confuse the IPS. This technique depends on
that the IPS and victim may handle the duplicate/overlapping
fragments or segments2 inconsistently because the IPS lacks
related information such as network topology and the victim’s
operating system. Figure 1 illustrates how the technique works
with a trivial example. In this example, the attacker inserts
segments with small Time-To-Live (TTL) values (the two X’s
in the figure), so that they will be dropped before reaching
the target. If the IPS cannot predict whether the segments will
reach the victim, it will be unable to consistently reassemble
the segments and see the same content as the victim.

2This work classifies the evasion techniques into packet splitting or
duplicate insertion according to whether the fragments/segments are non-
overlapping or duplicate/overlapping.

Fig. 1. Duplicate insertion with small Time-to-Live (TTL) values.

Overlapping IP fragments and TCP segments can be am-
biguous to an IPS. For example, suppose that a TCP segment
carries the sequence number 10 and the content ATTXYZ,
and another segment in the same connection carries the
sequence number 13 and the content ACK. The victim host
will interpret the application content as either ATTACK or
ATTXYZ upon receiving the two segments, depending on the
victim’s operating system [18]. Without knowing the operating
system, an IPS will be likely to interpret the application
content inconsistently with the victim. An attacker therefore
can leverage the ambiguity to evade the detection.

Ideally, administrators can configure the policy to set how
the operating system on each host in the internal network
will interpret the packets for a certain ambiguity, so that the
IPS can interpret the incoming packets consistently. Manual
configuration is error-prone, so the work in [18] proposes an
active mapping method to actively test each host and derive the
policy. Several factors can complicate the mapping in practice.
For example, associating an IP address to a host is not one-to-
one with the use of NAT and DHCP. The active testing may
be imprecise due to packet filtering by firewalls or unexpected
packet drops on an intermediate router when the traffic volume
through it is high.

4) Payload mutation: Payload mutation means an attacker
transforms malicious packet payloads into semantically equiv-
alent ones. The transformed payloads will look different
from the signatures that an IPS expects, so the attack can
evade the detection. Since the semantics of the transformed
payloads is the same, the attack is still effective to the victim.
For example, an attack in the Uniform Resource Identifier
(URI) of an HTTP request can be transformed into several
mutated expressions using the libwhisker library (www.
wiretrip.net/rfp/txt/whiskerids.html). The transformation can
be URI hexadecimal encoding, self-reference directories, re-
verse traversal directories and so on (see the aforementioned
Web page for the details) to represent the URIs in several se-
mantically equivalent forms. Take URI hexadecimal encoding
as an example. If the directory name cgi-bin in the request
is encoded as %63%67%69%2d%62%69%6e, detecting the
signature cgi-bin will fail if the mutated representation is
not normalized into cgi-bin before the IPS detection. A



CHENG et al.: EVASION TECHNIQUES: SNEAKING THROUGH YOUR INTRUSION DETECTION/PREVENTION SYSTEMS 1013

TABLE I
THE EVASION TOOLS.

Evasion technique Tool name
packet splitting Fragroute, Sploit
duplicate insertion Fragroute, Sploit
payload mutation Nikto, Sploit, Havij
shellcode mutation ADMmutate, Sploit, Metasploit

string of SQL injection can also be encoded in a similar way
for evasion.

Like normalization for duplicate insertion, normalization for
payload mutation can be ambiguous because the destination
hosts may process the content differently, depending on the
applications. For example, an Apache Web server does not
accept backslashes as legitimate slashes, but a Microsoft IIS
server does. Therefore, administrators have to configure the
IPS to be aware of the applications on the destination hosts
and have a consistent view of the application payloads as the
destinations.

5) Shellcode mutation: Shellcode mutation encodes a shell-
code (i.e., a piece of code to exploit a software vulnerability)
into polymorphic forms to evade an IPS that detects a shell-
code according to the signatures extracted from one or a few
variants of that shellcode. Several methods are feasible for
the polymorphism. For example, an attacker can encrypt or
compress the shellcode, and prepend a piece of code to decrypt
or decompress the shellcode in the exploit. An attacker can
also replace a piece of the original code with different, but
semantically equivalent instructions. A trivial example in the
latter case is inserting the nop instructions, i.e., no operation,
to make the code look different. An instruction, say mov
eax, ebx, can be also replaced with two instructions push
ebx and pop eax, for example. Since the signature for the
shellcode does not appear in the polymorphic form, the IPS
will fail to detect it. The techniques are also found in malicious
programs such as viruses and worms. The authors in [36]
offered a survey of such evasion techniques.

Since there are too many ways to mutate a shellcode,
detecting polymorphic codes on an IPS is particularly tricky.
An IPS may need to decrypt the encrypted code to restore the
original signature, or even emulate the code execution (e.g.,
on a sandbox that emulates the execution on the target hosts)
to find malicious behavior. The tasks of restore the shellcode
semantics on-line are therefore computationally expensive, and
burden the load of an IPS.

B. Evasion tools

Table I summaries several well-known free tools for the
aforementioned evasion techniques: Fragroute (www.monkey.
org/∼dugsong/fragroute), which can exploit TCP/IP protocols,
(2) Nikto (cirt.net/nikto2), which can transform URI requests,
(3) ADMmutate (www.databaseofspyware.com/ADMmutate.
php), which can transform the shellcode of attacks, (4)
Sploit [8], which can provide a framework for most of the
evasion techniques above, (5) Metasploit (www.metasploit.
com), which can provide many shell-mutation encoders, and
(6) Havij (itsecteam.com/en/projects/project1.htm), which can
launch SQL injection attacks with mutated strings.

Fragroute implements packet splitting and duplicate inser-
tion at the TCP/IP layer and helps the attackers evade signature
matching on the IPSs. The attackers can write a simple script
to arrange the sequence of evasion techniques to be launched
before running Fragroute, which then automatically transforms
the attack traffic into the specified format to cheat the IPSs.

Nikto, a Web scanning tool for generating multiple mali-
cious URI requests, helps developers and network administra-
tors test their Web servers for possible security problems. This
tool also provides anti-IPS methods that can exercise payload
mutation to help a Web scanner evade IPSs. The attackers can
leverage these methods for evasion with payload mutation.

ADMmutate is an engine for shellcode mutation that helps
an attack program evade IPSs. The engine can obfuscate the
appearance of a piece of shellcode, but retain its effectiveness
to exploit a software vulnerability. A program compiled with
the ADMmutate API can generate different forms of shellcode
to confuse a signature-based IPS.

Sploit is an evasion testing framework that allows the testers
and attackers to develop new attacks and evasion techniques.
This tool includes most of the evasion techniques provided
by Fragroute, Nikto and ADMmutate. It also implements
payload mutation on the messages of application protocols
such as FTP and IMAP. For example, \xff\xf1 is a telnet
control sequence that denotes “no operation”, so a PASS FTP
command can be replaced with P\xff\xf1ASS to evade
detection by an IPS matching the pattern PASS [8].

Metasploit is a framework for penetration testing, IDS
signature development, and exploit research. It supports de-
velopment of exploit codes against a remote target host.
The Metasploit Framework also provides more polymorphic
shellcode encoders [11] than ADMmutate and Sploit. The
encoders allows a penetration tester to mutate the exploit codes
for evasion testing.

Havij is an automated SQL injection tool to exploit SQL
injection vulnerabilities on Web pages. It supports evasion by
manipulating white space in the attack strings, replacing space
with the comment syntax of the C language, encoding the
characters in hexadecimal, BASE64, and so on.

Besides the evasion tools listed in Table I, a few other
tools can also generate evasion traffic, such as FTester
(dev.inversepath.com/trac/ftester), idsprobe [37] and AGENT
[38]. These tools can play several combinations of evasion
techniques based on packet splitting and duplicate insertion,
as well as a few payload mutations.

C. Countermeasures against evasion techniques

In this subsection, we will review the countermeasures
against the aforementioned evasion techniques.

1) Countermeasures against DoS attacks: In the preceding
example of DoS attacks, the authors of [34] have proposed
a remedy by memorizing the intermediate matches to reduce
the time complexity in the worst case. For countering DoS
attacks in general, the administrators can increase available
bandwidth, use IPS clustering, and so on to enhance the
robustness to a DoS attack beforehand, while monitoring the
resource consumption of the IPS execution. If a DoS attack
happens, the administrators can block certain malicious input



1014 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

traffic and investigate the attack vector. They may report it to
the IPS developers to see whether the IPS implementation is
vulnerable to an algorithmic complexity attack.

2) Countermeasures against packet splitting and duplicate
insertion: Countering packet splitting relies on packet re-
assembly on the IPS to restore the packet content. A few
research works have proposed signature-matching algorithms
without packet reassembly to relieve the additional compu-
tation of packet reassembly [31], [32]. The basic ideas of
these algorithms are splitting the signatures into short ones
and matching them in the split segments without reassembly.
However, the algorithms do not deal with the other evasion
techniques. If an attacker uses other techniques such as
payload mutation, the signature-matching algorithms will still
fail to detect an attack.

Two main techniques can counter duplicate insertion. The
first is flow modification (e.g., [5], [22], [39]), which removes
protocol ambiguities by picking one interpretation of the
protocols and normalizing network traffic according to the
interpretation, so that the IPS and the victims can see the traffic
consistently. The memory consumption in the normalization
can be a problem if the normalizer on high-speed links buffers
unacknowledged packets to detect data in TCP segments
for the same sequence number. The authors in [39] present
a hashing method for unacknowledged segments to reduce
memory consumption in the detection.

The second technique is collecting networking policies of
the destination. The methods include communicating sequen-
tial processes (CSP) [17], active mapping [18], and ambiguity
resolution via passive OS fingerprinting [19]. An IPS can
therefore obtain the environment information (e.g., the hop
count from the IPS to the victim, the system on the victim,
etc.), and view the traffic from the victim’s perspective.

CSP manually models the IPS and the environment for each
type of ambiguity [17], and thus the IPS can interpret the
packets according to the model. However, the manual method
is certainly not scalable for the IPS to know the environment.
Active mapping can actively send probing packets to infer
the environment [18], but the probing packets may be too
noisy, and blocked by a firewall. Passive OS fingerprinting
infers the environment information by passive monitoring
the packets across the IPS [19] without generating probing
packets. The inference may be imprecise if the victim does
not generate the right packets for the IPS to recognize it. The
network administrators have to consider the advantages and
disadvantages of each method, since none of them is ideal.

3) Countermeasures against payload mutation: An IPS can
normalize the transformed request to defend against payload
mutation. For example, when seeing a hexadecimal encoded
character %20 in an URI request, the IPS can decode it back
to a space character. An IPS should be able to handle the
encoding methods in various applications. Because the encod-
ing methods supported by the victim application may vary
significantly, normalizing payload mutation requires careful
configurations to ensure the IPS and the victim application
interpret the payload consistently. Another defense against
payload mutation is host-based context scanning [23], in which
the IDS must cooperate with the backend Web server. After
getting a mutated request from the attacker, the Web server

decodes the URL and sends the normalized URL back to the
IDS for detection.

4) Countermeasures against shellcode mutation: Several
methods can detect polymorphic shellcodes. Buttercup [24]
uses the range of the return address to detect polymor-
phic shellcodes for buffer overflow vulnerabilities. Since the
method manually figures out the the abnormal range of the
return address for each exploit in the detection rules, it is not
scalable, even though its accuracy is high — the false-positive
rate is only 0.01%, and the false-negative rate is 0%.

A hybrid engine [25] uses neural network (NN) based
techniques to classify the disassembled instructions. This
method attempts to find out possible execution paths from
the payload, and use the frequencies of selected instructions
along an execution path as the features in the training (from
known polymorphic shellcode engines) and classification by
the neural network. Although both the false-positive and false-
negative rates are quite low in this method, it may be unable
to detect a zero-day shellcode if the shellcode does not follow
common evasion strategies such as decryption loops, junk
instructions, and so on.

Network-level polymorphic shellcode detection [26], [27]
emulates the shellcode execution on a CPU emulator. This ap-
proach treats the input byte stream as the instruction codes and
tries to execute it. The detection is feasible because executing
random bytes in the input usually stops soon (e.g., due to
encountering an illegal instruction code), while polymorphic
codes can be executed until the encrypted payload is fully
decrypted. The detection finds out the decryptor based on
the following heuristic: if the instructions associated with
deriving the location of encrypted payload are found, and
there are an excessive number of memory reads within a
small memory region (i.e., likely to be the decryption process),
the condition is an indication of executing a polymorphic
shellcode. However, if the shellcode does not rely on self-
modification such as decrypting the encrypted payload for
evasion, the detection will fail. Moreover, the emulation may
be unable to deeply analyse complicated shellcodes on-line in
the network level for the sake of performance.

The method, Spector, in [28] also symbolically emulates
the shellcode execution and finds out the behavior in the
shellcode, such as executing certain instructions or calling
certain application programming interfaces (APIs). Despite
the deep analysis in the emulation, attackers can evade the
detection with some advanced techniques, such as memory-
scanning attacks [29]. For example, the shellcode can scan the
code regions of the victim process for the ret instruction,
and call to the location. The execution will return to the
original location if the shellcode execution is in the victim
process. Since the emulator is unable to access the code within
the victim process, the emulation will be disrupted. Yataglass
proposed in [30] can detect the memory-scanning loop in the
shellcode execution, and prepare a code region to trick the
shellcode into believing it has found the code in the search.
This strategy can prevent the shellcode from evading network-
level code emulation by memory-scanning attacks.



CHENG et al.: EVASION TECHNIQUES: SNEAKING THROUGH YOUR INTRUSION DETECTION/PREVENTION SYSTEMS 1015

III. EVASION TESTING

This section describes the environment and the experiments
in the testing, which checks whether the IPSs under the tests
are resilient to the evasion techniques or not. The study uses
Fragroute, Nikto, ADMmutate, Sploit and Metasploit to con-
duct experiments on three IPSs, and examines the effectiveness
of the evasion techniques from the tools. The study also uses
libemu to examine the effectiveness of detecting shellcode
encoded by Metasploit. We assess only signature-based IPSs
since they are dominant in operational environments [2]. We
also notice that Juan et al. [37] have conducted evasion
tests on the open-source IPSs: Snort (www.snort.org) and
Bro (www.bro-ids.org). Their testing involves only evasion
techniques based on packet splitting and duplicate insertion,
and the IPSs under test do not include commercial ones. This
work covers a wider range of evasion techniques, and tests
more than open-source IPSs.

A. The Testing Environment

This study tests three IPSs: the FortiGate, Snort and ZyXEL
IPSs3. They all operate with the up-to-date firmware/code and
rules at the time of testing. The experiments focus on only the
resilience of the IPSs to various evasion techniques, but not
the capability of IPS signature matching to the latest attacks in
the wild, which is not the purpose of this work. Therefore, it
is sufficient to choose attacks that trigger specific signatures in
the IPSs, apply various evasion techniques, and check whether
the IPS can still detect the attacks or not.

Among the three IPSs, Snort allows users to config-
ure the maximum number of bytes and segments in the
queue for packet reassembly with the options such as
max_queued_bytes and max_queued_segs in the
Stream5 preprocessor. We set these options to be unlimited, so
that packet reassembly will not fail due to insufficient queue
space. The other two IPS products do not provide the options
for configuring the anti-evasion policy, so we just leave their
default configuration intact. The detailed configurations of the
three IPSs are available at www.cs.ccu.edu.tw/∼pclin/evasion.
For attack generation, we execute the attack tools with the
default configuration and use only the required options in the
command to launch each attack instance.

B. The Experiments to Assess the IPSs Against Evasion

This study designs the following experiments to cover var-
ious evasion techniques as many as we can. Each experiment
begins with a baseline test to ensure the IPSs can successfully
detect an attack, and then checks whether they can still find
that attack after the evasion techniques have been applied.

For testing with ADMmutate and Fragroute, it requires
a vulnerable service on the victim and an attack program
exploiting the vulnerability. This study uses Sendmail ver-
sion 8.12.5 buffer overflow vulnerability (www.securityfocus.
com/advisories/5054) and an exploit program (from www.
securityfocus.com/bid/6991/exploit) for this vulnerability to
access root privilege of the target. We select the vulnerability

3We anonymize the two commercial IPSs as IPS-A and IPS-B in the rest
of the paper.

because buffer overflow is a typical attack, and it is easy to
validate the effect of evasion by comparing the received email
with and without evasion (see the later discussion).

After the three-way handshake, the exploit program uses
a long string to overflow the From header of the DATA
command, inserts a shellcode into the message body, and
immediately resets the connection. We repeat the attack with
various evasion techniques, and validate the success of each
evasion. Besides observing whether or not the IPS generates
an alert, we also check if the attack still works on the victim
in the experiments. If the attack succeeds, the victim’s root
account will receive an email that contains the overflowed
header and message, which include the input string that the
vulnerable application sees.

The email from the packets transformed by Fragroute
should be the same as that from a successful attack without
evasion, except for the timestamp information. Therefore,
comparing both emails can validate the success of the attack
after evasion. Also, if an IPS successfully detects the attack
and blocks the connection, the victim will not receive any mail.
Because ADMmutate applies polymorphic shellcode mutation,
a message body that contains the shellcode is different from
the original one, and success in evasion can only be validated
from the IPS alerts.

Nikto, which tests a Web server by sending dangerous
requests, is equipped with an extensive database of request
URIs for generating many variations of HTTP requests. Since
the experiments in this study focus on evasion techniques, the
number of baseline request URIs in the database is reduced
to save time. The Nikto evasion options for each technique of
payload mutation (see the test items in Table IV) are then
enabled to compare the alerts in the baseline test and the
evasion test. We also mutate the following strings of SQL
injection with Havij to test the anti-evasion capability of IPSs.
The strings are selected because they can be detected by the
IPSs in the baseline test. We can see whether they can be still
detected with evasion.
1. &query=SELECT uid FROM page_fan WHERE page_id =

80360974615 AND (uid == 1784906357 OR (uid IN (SELECT
uid2 FROM friend WHERE uid1 = 1784906357) ) )&call_id =
12879276368062

2. GET /bbs/viewthread.php?extra=page=1&tid=74654’
/**/OR/**/ ’1’=’1

3. GET /bbs/viewthread.php?extra=page=1&tid=74654; insert
into name

A previous study shows that the two exploits, “Wu-ftpd
Remote String Stack Overwrite” and “Wu-imapd Remote
Buffer Overflow”, can evade Snort 2.1.2 using telnet control
sequences and shellcode mutation [8]. This study simulates
the same environment, but replaces the devices under test
with the three IPSs to see whether there is any difference
from the previous study. Sploit provides the two FTP evasion
techniques. The first is to change the case of the command,
and the second is to insert a telnet control sequence within
a word. We also test how well libemu can handle shellcode
mutation to understand the capability of IPSs if they were
equipped with a code emulator.

IV. EXPERIMENTAL RESULTS AND OBSERVATIONS

This section presents the result of each above experiment,
and then explains the results.



1016 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

TABLE II
RESULTS OF THE FRAGROUTE EVASION TEST.

Test Items IPS-A IPS-B Snort
Fragment IP packet OK OK OK
Segment TCP packet 91 357 2
Overlap new IP fragment OK OK OK
Overlap new TCP segment 45 187 357
Interleave bad IP payload OK OK OK
Interleave bad IP option OK OK OK
Interleave short-TTL IP packet OK OK OK
Add IP lsrr|ssrr option OK OK OK
Modify TTL value OK OK OK
Modify TOS value OK OK OK
Change order of packet OK OK OK
Interleave bad checksum OK OK OK
Interleave null flags OK OK OK
Interleave zero timestamp OK OK OK
Interleave fake retransmit OK OK OK
Interleave fake packet seq. OK OK OK
Interleave SYN during conn. OK OK OK
Insert short-TTL TCP packet OK OK OK
Modify TCP MSS options OK OK OK
Modify TCP wscale option OK OK OK

A. Results of Testing with Fragroute and ADMmutate

This study first conducts the baseline testing on the three
IPSs. They all block and log the attacks without evasion.
The alert messages can be all subsumed under the category
of “SMTP from header overflow.” This study then conducts
the testing with the evasion techniques by Fragroute and
ADMutate. Table II lists the Fragroute evasion techniques and
the test results. “OK” denotes that the IPS can still detect the
attack with evasion, while “Evaded” denotes that the IPS fails
to detect the attack. The numbers in the first four rows mean
the largest size (in bytes) of the split TCP segments that can
successfully evade detection. The remaining rows show the
testing results from miscellaneous techniques described in [5]
and the man page of Fragroute.

According to Table II, the three IPS boxes can counter the
techniques of duplicate insertion at the TCP/IP layer. Although
it is possible to evade their detection with overlapping new
TCP segments, the success in evasion is still due to packet
splitting. The IPSs use different countermeasures against du-
plicate insertion. For example, the Snort Stream5 preprocessor
tracks the state of each connection, so that it can ignore invalid
packets that should be dropped. Examining the traffic going
through the other IPSs, we find that they adopt the strategies
of traffic normalization [5] and protocol scrubbing [22] for
countering the evasion. The IPSs support rewriting the Time-
To-Live field value to 64, reassembling fragmented packets,
removing options, and dropping invalid packets. Regardless
of these measures, splitting TCP segments can still evade
the detection. Adjusting the segment sizes reveals the largest
TCP segment sizes for evading the detection of each IPS (see
Table II).

To investigate why packet splitting is effective in IPS
evasion, this study examines the Snort source code, since
it is the only open-source system among the three IPSs.
Before scanning the packet content for intrusion signatures
with its detection engine, Snort uses the Stream5 preprocessor
to inspect the state of TCP sessions and reassemble TCP
streams. In the following experiments, a buffer overflow

attack triggers the default SMTP rule with the alert message:
“SMTP from comment overflow attempt.” This rule tries
to recognize four specific keywords: (1) From|3A|, (2) a
string of 22 contiguous pairs of “<>”, (3) |28| and (4)
|29|, where |hh| denotes a character whose ASCII code
is hh in hexadecimal4. We added some C printf func-
tions to the function CheckANDPatternMatch in src/
detection-plugins/sp_pattern_match.c and re-
built Snort to print out the pattern buffer, packet data and an
indication of whether the pattern is found or not.

Figure 2(a) and Figure 2(b) list the results of packet splitting
into 3-byte and 2-byte segments after running the experiments
again. The figures demonstrate why 3-byte segments fail to
evade the detection, but 2-byte segments succeed. Figure 2(a)
shows that the stream of 3-byte segments is reassembled
into 484-byte data, which matches all the keywords we have
mentioned. However, Figure 2(b) shows that the stream of 2-
byte segments is reassembled into 269-byte data, which is too
short to match the third and the fourth keywords.

The results indicate that splitting TCP segments into small
ones can be still effective for attackers to evade IPS detection
because the packet reassembly may be incomplete and thus the
detection fails to match the signatures in the detection rule.
However, if an IPS is configured to detect a burst of such small
segments, the evasion technique can still be detected with a
different alert, such as “Too Many Small Segments Found.”

After we obfuscated the attack program by encrypting the
code with the ADMmutate API, the shellcode appearance was
completely different from the original. As a result, IPS-B and
Snort were successfully evaded. That is to say, polymorphic
shellcode mutation works on some IPSs. This work also
studied Snort for the reason and found that Snort was evaded
because the Snort only inspects the buffer overflow in the mail
header, but does not check the shellcode in the message body.

B. Results of Testing with Nikto and Havij

Table III lists the detailed alerts triggered by Nikto without
applying any evasion techniques. In this testing, Snort is
equipped with two sets of rules: one is the default Snort
rules for Web attacks, and the other is the rule set for
network scanning, downloaded from Bleeding Edge Threats5

(www.bleedingthreats.net), which provides a large number of
various Snort rules for users to download.

Table IV lists the experimental results of applying nine
Nikto evasion techniques of payload mutation, where “OK”
denotes that the IPS can correctly handle the evasion and
generate the same alerts. The table shows that payload mu-
tation with Nikto is still effective to Snort, but not to the
other two commercial IPSs. Compared with the case without
evasion, most of the tests on Snort have fewer alerts after
payload mutation, but a few exceptions exist. Examples of
the exceptions are from the techniques of “Premature URL
ending” and “Prepend long random string to request”, in which
the payloads after mutation happen to trigger some additional

4The keywords |3A|, |28|, and |29| therefore denote the characters of
colon, left parenthesis, right parenthesis, respectively.

5The Web site has become www.emergingthreats.net at the time of paper
revision.



CHENG et al.: EVASION TECHNIQUES: SNEAKING THROUGH YOUR INTRUSION DETECTION/PREVENTION SYSTEMS 1017

(a) Failure to evade Snort with 3-byte segments.

(b) Success in evading Snort with 2-byte segments.

Fig. 2. Splitting TCP segments to evade Snort.

alerts on Snort, such as “invalid HTTP version string” and
“http directory traversal.” The additional alerts are more than
the eliminated alerts due to payload mutation, so the total
number of alerts increases because of the exceptions.

We also test the anti-evasion capability of the IPSs for
SQL injection attacks generated by Havij. Table V presents
the results that the SQL injection attacks can evade the
detection by white-space manipulation, various encodings of
the characters in the SQL injection, and so on. The three
IPSs all perform poorly when detecting SQL injection attacks

TABLE III
ALERTS TRIGGERED BY NIKTO WITHOUT EVASION TECHNIQUES.

System Alerts

IPS-A 1. CGI Website cgi-bin Access
2. HTTP Password File Download (2 alerts)

IPS-B

1. Web-cgi /cgi-bin/ (2 alerts)
2. Web-IIS (1 alert)
3. IIS-back-evasion-attack (1 alert)
4. Web-misc (4 alerts)

Snort
1. From Web-attack rules (47 alerts)
2. Nikto progress (53 alerts)
3. attempt to execute java code (1 alert)

TABLE IV
RESULTS OF THE NIKTO EVASION TEST.

Test items IPS-A IPS-B Snort
Random URI encoding
(non-UTF8)

OK OK 1. 6 alerts
2. 0 alert
3. 0 alerts

Add directory self-
reference /./

OK OK 1. 38 alerts
2. 0 alert
3. 1 alert

Premature URL ending OK OK 1. 161 alerts
2. 0 alert
3. 1 alert

Prepend long random
string to request

OK OK 1. 161 alerts
2. 36 alerts
3. 1 alert

Fake parameters to
files

OK OK 1. 103 alerts
2. 0 alert
3. 1 alert

TAB as request spacer
instead of spaces

OK OK 1. OK
2. 0 alert
3. 1 alert

Random case sensitiv-
ity

OK OK 1. 8 alerts
2. 0 alert
3. 0 alert

Use Windows directory
separator instead of /

OK OK 1. 41 alerts
2. 0 alert
3. 1 alert

Session splicing OK OK 1. 3 alerts
2. 0 alert
3. 0 alert

with evasion. The results are unsurprising. Snort does not
have the preprocessor to normalize transformed strings of
SQL injection, except white space manipulation, which can
be handled by matching the payloads with regular-expression
patterns such as /insert\s+into\s+[ˆ\/\\]+/Ui (i.e.,
allowing one or more space characters between the words).
We believe the other two IPSs have similar limitations, even
though they are black boxes to us. In summary, equipping an
IPS with a capable preprocessor to normalize the mutation of
SQL injection attacks, not just regular-expression patterns, is
still strongly desired for countering the evasion.

C. Results of Testing with Sploit

Table VI lists the detailed alerts triggered by the exploit
“Wu-ftpd Remote String Stack Overwrite” in Sploit without
applying evasion techniques, and Table VII lists the exper-
imental results after applying the Sploit evasion techniques,
where “OK” denotes that the alerts are the same with and
without evasion, and “Evaded” denotes that the IPS does not
generate any alerts. The table demonstrates that the evasion
techniques can avoid generating some of the alerts.



1018 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

TABLE V
RESULTS OF THE HAVIJ EVASION TEST.

Test items IPS-A IPS-B Snort
White space manipulation OK OK OK
C-style comment Evaded Evaded Evaded
Encoding: HEX Evaded Evaded Evaded
Encoding: BASE64 Evaded Evaded Evaded
Encoding: DECIMAL Evaded Evaded Evaded

TABLE VI
ALERTS TRIGGERED BY SPLOIT WITHOUT EVASION TECHNIQUES.

System Alerts

IPS-A
1. FTP PASS Command Overflow
2. WuFTP SITE EXEC Attempt
3. FTP Text Line Too Long

IPS-B 1. FTP SITE EXEC format string attempt
2. FTP command overflow attempt

Snort

1. FTP PASS overflow attempt
2. FTP SITE EXEC format string attempt
3. FTP SITE overflow attempt
4. FTP SITE EXEC attempt
5. SHELLCODE x86 NOOP
6. FTP command parameters were too long

Figure 3 lists the three Snort signatures successfully evaded
by Sploit, as well as their corresponding alert messages and the
evasion techniques that make it. The reason that 2-byte TCP
segment splitting can evade the “FTP PASS overflow attempt”
and “FTP SITE overflow attempt” signatures is that Snort
reassembles the split segments into 82 bytes before passing
them to the detection engine, which matches the string PASS.
However, since the length of the remaining data is shorter than
100 bytes, the rule option isdataat:100, which specifies
there should be at least 100 bytes of data after the end of string
PASS, is certainly not matched. Therefore, the alert will not
be generated. This case again demonstrates that evasion with
packet splitting can succeed due to incorrect reassembly in the
IPS implementation.

Inserting telnet control sequences cannot evade Snort thanks
to the new Stream5 protocol preprocessor for TCP reassembly.
However, if Stream5 is replaced with the old Stream4, the
detection engine even fails to match the PASS and SITE
keywords, and Snort will be successfully evaded. Changing
the case of the FTP command does not help to evade Snort
because the Snort signatures are case-insensitive due to the
nocase rule option.

For the third signature in Figure 3, NOP (no operation, 0x90
in hexadecimal) in the shellcode disappeared after applying
shellcode mutation. As the result, Snort failed to match the
signature in the rule for “SHELLCODE x86 NOOP” because
it does nothing about countering the shellcode mutation.

D. Libemu experiment: Detecting Metasploit encoded shell-
codes

Since signatures based on shellcode patterns can be evaded
by shellcode mutation, we add an additional test with libemu
to see how well an IPS could detect shellcode mutation if it
were equipped with a code emulator like libemu, which tries
to detect encoded shellcode by emulating the code execution.

This study detects shellcodes generated from Metasploit
using the libemu library. Table VIII lists the four types of

TABLE VII
RESULTS OF THE SPLOIT EVASION TEST.

Test items IPS-A IPS-B Snort

FTP Command
Change Case

1. OK 1. OK 1. OK
2. OK 2. OK 2. OK
3. OK 3. OK

4. OK
5. OK
6. OK

Insert telnet
control sequence

1. Evaded 1. Evaded 1. OK
2. Evaded 2. OK 2. OK
3. OK 3. OK

4. OK
5. OK
6. OK

Shellcode mutation
(nop encoder)

1. OK 1. OK 1. OK
2. OK 2. OK 2. OK
3. OK 3. OK

4. OK
5. Evaded
6. OK

2-byte TCP
segment splitting

1. OK 1. Evaded 1. Evaded
2. OK 2. Evaded 2. OK
3. OK 3. Evaded

4. OK
5. OK
6. OK

TABLE VIII
RESULTS OF THE SHELLCODE MUTATION TEST.

Encoder EC BS RS ED
None (baseline) N/A OK OK OK
Pex OK OK OK OK
Countdown N/A N/A N/A OK
PexFnstenvSub Evaded OK OK N/A
PexAlphaNum OK OK OK OK
PexFnstenvMov OK OK OK OK
JmpCallAdditive OK OK OK OK
ShikataGaNai OK Evaded Evaded Evaded
Alpha2 OK OK OK OK

shellcodes (Execute Command (EC), Bind shell (BS), Reverse
Shell (RS) and Executable Download and Execute (ED)) and
eight different encoders [11] in the tests to determine if libemu
can detect an encoded shellcode. The results show that most of
encoded shellcodes can be detected, and imply that emulation
is effective to detect most shellcode mutations.

V. CONCLUSION

This article provides a survey and tutorial of evasion
techniques, tools, and countermeasures. Besides the survey
and tutorial parts, we also design several experiments to
assess whether the evasion techniques are still effective to
modern IPSs or not, and explain why some evasion techniques
can work by studying the inner working of the open-source
Snort IPS. The experimental results have the following major
observations.

1) The success of evasion techniques depends on the ability
of an IPS to restore the original semantics of the attacks
or design the signatures to cover the variants of the
attacks. For example, Snort is unable to handle various
encoded strings of SQL injection because it lacks a pre-
processor to normalize the encoded strings. Signatures in
regular expressions can express the variants from simple
mutation such as manipulating space characters, but they



CHENG et al.: EVASION TECHNIQUES: SNEAKING THROUGH YOUR INTRUSION DETECTION/PREVENTION SYSTEMS 1019

1) Alert message: FTP PASS overflow attempt
Signature: content:"PASS"; nocase; isdataat:100,relative;

pcre:"/ˆPASS(?!\n)\s[ˆ\n]{100}/smi";
Evasion technique: 2-byte TCP segment splitting

2) Alert message: FTP SITE overflow attempt
Signature: content:"SITE"; nocase; isdataat:100,relative;

pcre:"/ˆSITE(?!\n)\s[ˆ\n]{100}/smi
Evasion technique: 2-byte TCP segment splitting

3) Alert message: SHELLCODE x86 NOOP
Signature: content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128
Evasion technique: Shellcode mutation

Fig. 3. Snort signatures evaded by Sploit.

are still ineffective against various encoding techniques.
Equipping an IPS with the preprocessors to restore the
original semantics of the attack is therefore essential, but
the implementation should be accurate and sufficient to
cover each possibility of evasion, or the detection can
still be somehow evaded.

2) Packet splitting in IP fragmentation and TCP segmenta-
tion can still help attacks to evade the three modern IPSs
in this study because of the problematic implementation
of packet reassembly. In contrast, duplicate insertion is
less effective than other evasion techniques on the IPSs.
Therefore, the implementation of packet reassembly
should be carefully tested in terms of its robustness
to various fragment and segment sizes during the IPS
development.

3) Payload mutation and shellcode mutation can still help
attackers successfully suppress some alerts due to the
drawbacks of signature-based IPSs. Even though nor-
malizing the payload content (e.g., with a preprocessor)
and code emulation (e.g., with libemu) can relieve the
problems, the implementations of the countermeasures
on the three modern IPSs are still unable to correctly
handle all of the test cases in this study.

Based on the above observations, we think the robustness
of the IPS implementation to various evasion techniques
still deserves further research. For example, an issue can be
evaluating the coverage of test cases to assess the robustness to
various evasion techniques. Moreover, since the execution of
normalization and code emulation can be time-consuming, the
trade-offs between performance and capability to anti-evasion
have to be carefully evaluated in the future.

REFERENCES

[1] P. C. Lin, Z. X. Li, Y. D. Lin, Y. C. Lai and F.C. Lin, “Profiling and
accelerating string matching algorithms in three network content security
applications,” IEEE Commun. Surveys Tutorials, vol. 8, issue 2, pp. 24-
37, Second Quarter 2006.

[2] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning For Network Intrusion Detection,” In Proc. IEEE
Security and Privacy, May 2010.

[3] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras and B. Stiller,
“An Overview of IP Flow-Based Intrusion Detection,” IEEE Commun.
Surveys Tutorials, vol. 12, issue 3, pp. 343-356, Third Quarter 2010.

[4] T. H. Ptacek and T. N. Newsham, “Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection,” Technical Report from
Secure Networks, Inc., http://insecure.org/stf/secnet ids/secnet ids.html,
Jan. 1998.

[5] M. Handley, V. Paxson, and C. Kreibich, “Network Intrusion Detection:
Evasion, Traffic Normalization, and End-to-end Protocol Semantics,” In
Proc. USENIX Security Symposium, Aug. 2001.

[6] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba and K. Das, “The 1999
DARPA off-line intrusion detection evaluation,” Computer Networks,
vol. 34, issue 4, pp. 579-595, Oct. 2000.

[7] H. Debar and B. Morin, “Evaluation of the Diagnostic Capabilities
of Commercial Intrusion Detection Systems,” In Proceedings Recent
Advances in Intrusion Detection (RAID), Oct. 2002.

[8] G. Vigna, W. Robertson, and D. Balzarotti, “Testing Network-based
Intrusion Detection Signatures Using Mutant Exploits,” In Proc. 11th
ACM Conference on Computer and Communications Security (CCS),
Oct.2004.

[9] D. J. Chaboya, R. A. Raines, R. O. Baldwin and B. E. Mullins, “Network
Intrusion Detection: Automated and Manual Methods Prone to Attack
and Evasion,” IEEE Security & Privacy Magazine, vol. 4, no. 6, pp.
36-43, Nov./Dec. 2006.

[10] S. Zanero, “Flaws and frauds in the evaluation of IPS technologies,” In
Forum of Incident Response and Security Teams, June 2007.

[11] Metasploit encoding, http://www.derkeiler.com/pdf/Mailing-Lists/
securityfocus/pen-test/2006-03/msg00253.pdf.

[12] R. Bidou, “IPS shortcomings,” In Black Hat Briefings, July 2006.
[13] D. Roelker, “HTTP IDS evasions revisited,” Technical report, Sourcefire,

Sept. 2004.
[14] T. Detristan, T. Ulenspiegel, Y. Malcom and M. Underduk, “Polymor-

phic Shellcode Engine using Spectrum Analysis,” Phrack, 11(61), Aug.
2003.

[15] O. Kolesnikov and W. Lee, “Advanced Polymorphic Worms: Evading
IDS by Blending in with Normal Traffic,” In Proc. USENIX Security
Symposium, Aug. 2006.

[16] P. Bania, “Evading network-level emulation,” Available at piotrbania.
com/all/articles/pbania-evading-nemu2009.pdf, June 2009.

[17] G. Rohrmair and G. Love, “Using CSP to Detect Insertion and Eva-
sion Possibilities within the Intrusion Detection Area,” In Proc. BCS
Workshop on Formal Aspects of Security, Dec. 2002.

[18] U. Shankar and V. Paxson. “Active Mapping: Resisting NIDS Evasion
without Alerting Traffic,” In Proc. IEEE Symposium on Security and
Privacy, May 2003.

[19] G. Taleck, “Ambiguity Resolution via Passive OS Fingerprinting,”
in Proc. International Conference on Recent Advances in Intrusion
Detection (RAID), Sept. 2003.

[20] S. P. Chung, A. K. Mok, “Swarm Attacks against Network-Level
Emulation/Analysis,” In Proc. 11th international symposium on Recent
Advances in Intrusion Detection (RAID), Sept 2008.

[21] P. Fogla and W. Lee, “Evading Network Anomaly Detection Systems:
Formal Reasoning and Practical Techniques,” In Proc. ACM Conference
on Computer and Communications Security (CCS), Oct.–Nov. 2006.

[22] D. Watson, M. Smart, G. R. Malan and F. Jahanian, “Protocol Scrubbing:
Network Security Through Transparent Flow Modification,” IEEE/ACM
Trans. Netw., vol. 12, issue 2, pp. 261-273, Apr. 2004.

[23] H. Dreger, C. Kreibich, V. Paxson and R. Sommer, “Enhancing the
accuracy of network-based intrusion detection with host-based context,”
In Proc. Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), July 2005.

[24] A. Pasupulati, J. Coit, K. Levitt and F. Wu, “Buttercup: On Network-
based Detection of Polymorphic Buffer Overflow Vulnerabilities,” In
Proc. IEEE/IFIP Network Operation and Management Symposium, May
2004.



1020 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

[25] U. Payer, P. Teufl and M. Lamberger, “Hybrid Engine for Polymorphic
Shellcode Detection,” In Proc. Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA), July 2005.

[26] M. Polychronakis, K. G. Anagnostakis and E. P. Markatos, “Network-
level Polymorphic Shellcode Detection using Emulation,” In Proc.
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), July 2006.

[27] M. Polychronakis, K. Anagnostakis and E. P. Markatos, “Emulation-
Based Detection of Non-self-contained Polymorphic Shellcode.” In
Proc. 10th International Symposium on Recent Advances in Intrusion
Detection (RAID), Aug. 2007.

[28] K. Borders, A. Prakash and M. Zielinski, “Spector: Automatically
Analyzing Shellcode,” In Proc. Annual Computer Security Applications
Conference (ACSAC), Dec. 2007.

[29] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray, J.
Hartman, “Protecting against Unexpected System Calls,” In Proc. 13th
Usenix Security Symposium, Aug. 2005.

[30] M. Shimamura and K. Kono, “Yataglass: Network-Level Code Emula-
tion for Analyzing Memory-Scanning Attacks,” In Proc. Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA), July
2009.

[31] G. Varghese, J. A. Fingerhut and F. Bonomi, “Detecting Evasion Attacks
at High Speeds without Reassembly,” In Proc. ACM SIGCOMM, Sept.
2006.

[32] G. Antichi, D. Ficara, S. Giordano, G. Procissi and F. Vitucci, “Counting
Bloom Filters for Pattern Matching and Anti-Evasion at the Wire Speed,”
IEEE Network, vol. 23, issue 1, Jan/Feb 2009.

[33] V. M. Igure and R. D. Williams, “Taxonomies of Attacks and Vulnera-
bilities in Computer Systems,” IEEE Commun. Surveys Tutorials, vol.
10, issue 1, pp. 6-19, First Quarter 2008.

[34] R. Smith, C. Estan and S. Jha, “Backtracking Algorithmic Complexity
Attacks against a NIDS,” In Proc. 22nd Annual Computer Security
Applications Conference (ACSAC), Dec. 2006.

[35] S. Dharmapurikar and V. Paxson, “Robust TCP Stream Reassembly In
the Presence of Adversaries,” In Proc. USENIX Security Symposium,
Aug. 2005.

[36] M. Sachs and D. Ahmad, “Always the Same, Never the Same,” IEEE
Security & Privacy, vol. 8, issue 2, pp. 73-75, Mar./Apr. 2010.

[37] L. Juan, C. Kreibich, C. H. Lin and V. Paxson, “A Tool for Offline
and Live Testing of Evasion Resilience in Network Intrusion Detection
Systems,” Proc. Fifth GI International Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), July
2008.

[38] S. Rubin, S. Jha and B. P. MIller, “Automatic generation and analysis
of NIDS attacks,” In Annual Computer Security Conference (ACSAC),
Dec. 2004.

[39] M. Vutukuru, H. Balakrishnan and V. Paxson, “Efficient and Robust
TCP Stream Normalization,” In Proc. IEEE Symposium on Security
and Privacy, May 2008.

Tsung-Huan Cheng received his B.S. degree and
M.S. degree in Computer Science from National
Chiao Tung University (NCTU), Hsinchu, Taiwan,
in 2007 and 2009, respectively. His research inter-
ests include network security and network network
forensics. He is currently a software engineer of
MediaTek Company since 2010.

Ying-Dar Lin is Professor of Computer Science at
National Chiao Tung University (NCTU) in Taiwan.
He received his Ph.D. in Computer Science from
UCLA in 1993. He served as the CEO of Telecom
Technology Center during 2010–2011 and a visit-
ing scholar at Cisco Systems in San Jose during
2007–2008. Since 2002, he has been the founder
and director of Network Benchmarking Lab (NBL,
www.nbl.org.tw), which reviews network products
with real traffic. He also cofounded L7 Networks
Inc. in 2002, which was later acquired by D-Link

Corp. He recently, in May 2011, founded Embedded Benchmarking Lab
(www.ebl.org.tw) to extend into the review of handheld devices. His research
interests include design, analysis, implementation, and benchmarking of
network protocols and algorithms, quality of services, network security, deep
packet inspection, P2P networking, and embedded hardware/software co-
design. His work on “multi-hop cellular” has been cited over 500 times.
He is currently on the editorial boards of IEEE Transactions on Com-
puters, IEEE Network, IEEE Communications Magazine Network Testing
Series, IEEE Communications Surveys and Tutorials, IEEE Communications
Letters, Computer Communications, and Computer Networks. He recently
published a textbook “Computer Networks: An Open Source Approach”
(www.mhhe.com/lin), with Ren-Hung Hwang and Fred Baker (McGraw-Hill,
2011). It is the first text that interleaves open source implementation examples
with protocol design descriptions to bridge the gap between design and
implementation.

Yuan-Cheng Lai received the Ph.D. degree in com-
puter science from National Chiao Tung University,
Hsinchu, Taiwan, in 1997. In August 2001, he joined
the faculty of the Department of Information Man-
agement at National Taiwan University of Science
and Technology, Taipei, Taiwan, where he has been
a professor since February 2008. His research inter-
ests include wireless networks, network performance
evaluation, network security, and content network-
ing.

Po-Ching Lin received the B.S. degree in computer
and information education from National Taiwan
Normal University, Taipei, Taiwan, in 1995, and the
M.S. and Ph.D. degrees in computer science from
National Chiao Tung University, Hsinchu, Taiwan,
in 2001 and 2008, respectively. He joined the faculty
of the Department of Computer and Information
Science, National Chung Cheng University (CCU),
Chiayi, Taiwan, in August 2009. He is currently an
Assistant Professor. His research interests include
network security, network traffic analysis, and per-

formance evaluation of network systems. He is also a member of the IEEE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


